Biotechnologies to Bridge the Schism in the Bioeconomy
Abstract
:1. Introduction
2. Typologies of the Bioeconomy
3. How Are Biotechnology and Synthetic Biology Captured in National Bioeconomy Strategies?
“The U.S. bioeconomy is economic activity that is driven by research and innovation in the life sciences and biotechnology, and that is enabled by technological advances in engineering and in computing and information sciences.”
Qualifying Comments
- The taxonomy of bioeconomy is ongoing and is as yet incomplete. In particular some countries and the European Union are not yet integrating biotechnology into bioeconomy. The result could be a “two-speed” bioeconomy, with some countries missing out on economic, environmental and social opportunities. At the extreme end, the United Kingdom and the United States have placed great emphasis on synthetic biology in the bioeconomy, and have established sophisticated publicly funded infrastructures.
- Such unaligned taxonomies will make difficulties for governments to compare and contrast the impacts of the bioeconomy strategies. Theoretically, this could negatively impact international trade. As Carlson discovered, even in the United States there is no official mechanism to measure the economic impact of the biotechnology industry. Undoubtedly this is the case in other countries [24].
- The magnitude of the McKinsey Global Institute bio-revolution estimates suggests that countries that exclude biotechnologies from their bioeconomy strategies will see proportionately smaller impacts on their national economies than those that do [26]. It is perhaps telling that the Canada’s unofficial strategy proposed to use the European Union bioeconomy definition but will “rely on biotechnology as a competitive advantage” [27]. If the economic impact of the McKinsey bio-revolution is accurate, then over 70% of the annual potential direct economic impact in 2030–2040 will be distributed between “human health and performance”, and “agriculture, aquaculture, and food”. As of today, there is a high risk that Europe will miss much of this windfall.
4. Biotechnology, Synthetic Biology and the Bioeconomy
“Advances in synthetic biology have the potential to develop new products, materials and services that could contribute to the 2030 United Nations Sustainable Development Goals. Support for synthetic biology initiatives in developing countries is needed to ensure that these benefits are open to all.”[28]
4.1. Enabling the Bioeconomy
- To test the technology, the MIT-Broad Institute biofoundry was tasked to build organisms to produce 10 molecules in 3 months. The biofoundry succeeded with 6 out of 10 targets [34].
- Over a period of 85 days, the Manchester (UK) biofoundry was able to produce 17 potential material monomers and key intermediates, in some cases with industrial-scale titres for E. coli fermentations [35].
4.1.1. Are Bio-Based Chemicals Sustainable?
4.1.2. Waste Gas Fermentation: Relief for Land Use
4.2. Greening the Bioeconomy: Biotechnology in Agriculture for the Grand Challenges
4.2.1. Water Use Efficiency in Plants
4.2.2. Food Security Threats from Crop Diseases
4.2.3. Improving Yields of Oil Palms
4.2.4. Resolving Contradictions of Mineral Fertilizers
4.2.5. Emissions from Animals as Food Sources
4.2.6. Genomics Has Revolutionised Dairy Farming
4.2.7. Reducing Methane Emissions from Cows
4.2.8. Aquaculture and the UN SDGs
4.3. Decontaminating the Bioeconomy
4.3.1. Biological Wastewater Treatment
4.3.2. Bioremediation of Contaminated Land and Water
4.4. Curing in the Bioeconomy
RNA Vaccines: From Scepticism to Fanfare in a Matter of Months
4.5. Securing the Bioeconomy
4.5.1. Illegal Logging
4.5.2. Illegal Fishing, and Fish and Seafood Fraud
4.5.3. Cyberbiosecurity, an Emerging Threat
4.6. Storing the Bioeconomy
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Disclaimer Statement
References
- OECD. The Bioeconomy to 2030: Designing a Policy Agenda. Available online: https://www.oecd.org/futures/long-termtechnologicalsocietalchallenges/thebioeconomyto2030designingapolicyagenda.htm (accessed on 21 April 2021).
- Sverko Grdic, Z.; Krstinic Nizic, M.; Rudan, E. Circular Economy Concept in the Context of Economic Development in EU Countries. Sustainability 2020, 12, 3060. [Google Scholar] [CrossRef] [Green Version]
- Stegmann, P.; Londo, M.; Junginger, M. The circular bioeconomy: Its elements and role in European bioeconomy clusters. Resour. Conserv. Recycl. 2020, 6, 100029. [Google Scholar] [CrossRef]
- Birch, K.; Levidow, L.; Papaioannou, T. Sustainable Capital? The Neoliberalization of Nature and Knowledge in the European “Knowledge-based Bio-economy”. Sustainability 2010, 2, 2898–2918. [Google Scholar] [CrossRef] [Green Version]
- George, G.; Howard-Grenville, J.; Joshi, A.; Tihanyi, L. Understanding and tackling societal grand challenges through management research. Acad. Manag. J. 2016, 59, 1880–1895. [Google Scholar] [CrossRef]
- d’Hondt, K.; Jiménez-Sánchez, G.; Philp, J. Reconciling food and industrial needs for an Asian bioeconomy: The enabling power of genomics and biotechnology. Asian Biotechnol. Dev. Rev. 2015, 17, 85–130. [Google Scholar]
- Frisvold, G.B.; Moss, S.M.; Hodgson, A.; Maxon, M.E. Understanding the U.S. Bioeconomy: A New Definition and Landscape. Sustainability 2021, 13, 1627. [Google Scholar] [CrossRef]
- Bracco, S.; Calicioglu, O.; Gomez San Juan, M.; Flammini, A. Assessing the Contribution of Bioeconomy to the Total Economy: A Review of National Frameworks. Sustainability 2018, 10, 1698. [Google Scholar] [CrossRef] [Green Version]
- Bugge, M.M.; Hansen, T.; Klitkou, A. What Is the Bioeconomy? A Review of the Literature. Sustainability 2016, 8, 691. [Google Scholar] [CrossRef] [Green Version]
- Vivien, F.-D.; Nieddu, M.; Befort, N.; Debref, R.; Giampietro, M. The hijacking of the bioeconomy. Ecol. Econ. 2019, 159, 189–197. [Google Scholar] [CrossRef]
- Gates, B. How to Avoid a Climate Disaster: The Solutions We Have and the Breakthroughs We Need; Allen Lane: London, UK, 2021; p. 8. [Google Scholar]
- Marvik, O.J.; Philp, J.; The Systemic Challenge of the Bioeconomy: A Policy Framework for Transitioning towards a Sustainable Carbon Cycle Economy. EMBO Reports. Available online: https://www.embopress.org/doi/full/10.15252/embr.202051478 (accessed on 21 April 2021).
- McKinsey & Company. Biotech in Europe: A Strong Foundation for Growth And innovation. Available online: https://www.mckinsey.com/industries/pharmaceuticals-and-medical-products/our-insights/biotech-in-europe-a-strong-foundation-for-growth-and-innovation# (accessed on 21 April 2021).
- European Commission. Strengthening the Connection between Economy, Society and the Environment; European Commission (EC): Brussels, Belgium, 2018. [Google Scholar]
- BIT II Bioeconomy in Italy. A New Bioeconomy Strategy for a Sustainable Italy. Available online: https://knowledge4policy.ec.europa.eu/publication/bit-ii-bioeconomy-italy-new-bioeconomy-strategy-sustainable-italy_en (accessed on 21 April 2021).
- Ministry of Agriculture and Food in France. A Bioeconomy Strategy for France. 2018–2020 Action Plan. Available online: https://www.gouvernement.fr/sites/default/files/locale/piece-jointe/2018/10/france-bioeconomy_plan.pdf (accessed on 21 April 2021).
- Bio-Strategy 2020 (Basic Measures). Available online: https://www.dwih-tokyo.org/files/2020/10/bio2020_honbun_en_rev-1.pdf (accessed on 21 April 2021).
- HM Government. Growing the Bioeconomy. Improving Lives and Strengthening Our Economy: A National Bioeconomy Strategy to 2030. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/761856/181205_BEIS_Growing_the_Bioeconomy__Web_SP_.pdf (accessed on 21 April 2021).
- National Academies of Sciences, Engineering, and Medicine. Safeguarding the Bioeconomy. Available online: https://www.nap.edu/catalog/25525/safeguarding-the-bioeconomy (accessed on 21 April 2021).
- German Federal Government. National Bioeconomy Strategy Summary. Available online: https://www.bmbf.de/files/2020_1501_National-Bioeconomy-Strategy_Summary_accessible.pdf (accessed on 21 April 2021).
- High-Tech Forum. Bio IT Innovations. Convergence of Biosciences and Information Technologies. Available online: https://www.hightech-forum.de/wp-content/uploads/htf_discussion_paper_bio_it_innovations.pdf (accessed on 21 April 2021).
- Statista. Total Number of Biotechnology Firms in Selected European Countries in 2018. Available online: https://www.statista.com/statistics/439960/number-of-biotechnology-companies-europe-eu/ (accessed on 28 February 2021).
- Schieb, P.-A.; Philp, J. Biorefinery policy needs to come of age. Trends Biotechnol. 2014, 32, 496–500. [Google Scholar] [CrossRef]
- Carlson, R. Estimating the biotech sector’s contribution to the US economy. Nat. Biotechnol. 2016, 34, 247–255. [Google Scholar] [CrossRef]
- Ronzon, T.; Piotrowski, S.; Tamosiunas, S.; Dammer, L.; Carus, M.; M’barek, R. Developments of Economic Growth and Employment in Bioeconomy Sectors across the EU. Sustainability 2020, 12, 4507. [Google Scholar] [CrossRef]
- McKinsey Global Institute. The Bio Revolution: Innovations Transforming Economies, Societies, and Our Lives. Available online: https://www.mckinsey.com/industries/pharmaceuticals-and-medical-products/our-insights/the-bio-revolution-innovations-transforming-economies-societies-and-our-lives (accessed on 21 April 2021).
- Bioindustrial Innovation. Canada’s Bioeconomy Strategy: Leveraging our Strengths for a Sustainable Future. Available online: http://www.biotech.ca/wp-content/uploads/2016/03/National_Bioeconomy_Strategy_EN-compressed.pdf (accessed on 28 February 2021).
- French, K.E. Harnessing synthetic biology for sustainable development. Nat. Sustain. 2019, 2, 250–252. [Google Scholar] [CrossRef]
- Lewin, H.A.; Robinson, G.E.; Kress, W.J.; Baker, W.J.; Coddington, J.; Crandall, K.A.; Durbin, R. Earth BioGenome Project: Sequencing life for the future of life. Proc. Natl. Acad. Sci. USA 2018, 115, 4325–4333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frost, J.W.; Lievense, J. Prospects for Biocatalytic Synthesis of Aromatics in the 21st Century. New J. Chem. 1994, 18, 341–348. [Google Scholar]
- Wong, K.-C. Computational Biology and Bioinformatics: Gene Regulation, 1st ed.; CRC Press: Boca Raton, FL, USA, 2016; pp. 154–196. [Google Scholar]
- Yim, H.; Haselbeck, R.; Niu, W.; Pujol-Baxley, C.; Burgard, A.; Boldt, J.; Khandurina, J.; Trawick, J.D.; Osterhout, R.E.; Stephen, R.; et al. Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat. Chem. Biol. 2011, 7, 445–452. [Google Scholar] [CrossRef] [PubMed]
- OECD. Meeting Policy Challenges for a Sustainable Bioeconomy. Available online: https://www.oecd.org/publications/policy-challenges-facing-a-sustainable-bioeconomy-9789264292345-en.htm (accessed on 21 April 2021).
- Casini, A.; Chang, F.-Y.; Eluere, R.; King, A.M.; Young, E.M.; Dudley, Q.M.; Karim, A.; Pratt, K.; Bristol, C.; Forget, A.; et al. A pressure test to make 10 molecules in 90 days: External evaluation of methods to engineer biology. J. Am. Chem. Soc. 2018, 140, 4302–4316. [Google Scholar] [CrossRef]
- Robinson, C.J.; Carbonell, P.; Jervis, A.J.; Yan, C.; Hollywood, K.A.; Dunstan, M.S.; Currin, A.; Swainston, K.J.; Spiess, N.; Taylor, R.; et al. Rapid prototyping of microbial production strains for the biomanufacture of potential materials monomers. Metab. Eng. 2020, 60, 168–182. [Google Scholar] [CrossRef] [PubMed]
- Kitney, R.; Adeogun, M.; Fujishima, Y.; Goñi-Moreno, Á.; Johnson, R.; Maxon, M.; Steedman, S.; Ward, S.; Winickoff, D.; Philp, J. Enabling the advanced bioeconomy with engineering biology. Trends Biotechnol. 2019, 37, 917–920. [Google Scholar] [CrossRef]
- Whitehead, T.A.; Banta, S.; Bentley, W.E.; Betenbaugh, M.J.; Chan, C.; Clark, D.S.; Hoesli, C.A.; Jewett, M.C.; Junker, B.; Koffas, M.; et al. The importance and future of biochemical engineering. Biotechnol. Bioeng. 2020, 117, 2305–2318. [Google Scholar] [CrossRef]
- Coley, C.W.; Thomas, D.A., III; Lummiss, J.A.M.; Jaworski, J.N.; Breen, C.P.; Hart, V.T.; Fishman, J.S.; Rogers, L.; Gao, H.; Hicklin, R.W.; et al. A robotic platform for flow synthesis of organic compounds informed by AI planning. Science 2019, 365. [Google Scholar] [CrossRef] [PubMed]
- Carbonell, P.; Le Feuvre, R.; Takano, E.; Scrutton, N.S. In silico design and automated learning to boost next-generation smart biomanufacturing. Synth. Biol. 2020, 5, ysaa020. [Google Scholar] [CrossRef] [PubMed]
- Weiss, M.; Haufe, J.; Carus, M.; Brandão, M.; Bringezu, M.S.; Hermann, B.; Patel, M.K. A review of the environmental impacts of bio-based materials. J. Ind. Ecol. 2012, 16, 169–181. [Google Scholar] [CrossRef]
- van Dam, J.; Junginger, M. Striving to further harmonization of sustainability criteria for bioenergy in Europe: Recommendations from a stakeholder questionnaire. Energy Policy 2011, 39, 4051–4066. [Google Scholar] [CrossRef]
- Liew, F.; Martin, M.E.; Tappel, R.C.; Heijstra, B.D.; Mihalcea, C.; Köpke, M. Gas fermentation—A flexible platform for commercial scale production of low-carbon-fuels and chemicals from waste and renewable feedstocks. Front. Microbiol. 2016, 7, 694. [Google Scholar] [CrossRef]
- WO/2020/186173. Gas Fermentation for the Production of Protein-Based Bioplastics. Available online: https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2020186173 (accessed on 21 April 2021).
- Pikaar, I.; Matassa, S.; Bodirsky, B.L.; Weindl, I.; Humpenöder, F.; Rabaey, K.; Boon, N.; Bruschi, M.; Yuan, Z.; van Zanten, H.; et al. Decoupling livestock from land use through industrial feed production pathways. Environ. Sci. Technol. 2018, 52, 7351–7359. [Google Scholar] [CrossRef] [PubMed]
- Heijstra, B.D.; Leang, C.; Juminaga, A. Gas fermentation: Cellular engineering possibilities and scale up. Microb. Cell Factories 2017, 16, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Q. Developments on CO2-utilization technologies. Clean Energy 2019, 3, 85–100. [Google Scholar] [CrossRef] [Green Version]
- Handler, R.M.; Shonnard, D.R.; Griffing, E.M.; Lai, A.; Palou-Rivera, I. Life Cycle Assessments of ethanol production via gas fermentation: Anticipated greenhouse gas emissions for cellulosic and waste gas feedstocks. Ind. Eng. Chem. Res. 2016, 55, 3253–3261. [Google Scholar] [CrossRef]
- Searchinger, T.; Heimlich, R.; Houghton, R.A.; Dong, F.; Elobeid, A.; Fabiosa, J.; Tokgoz, S.; Hayes, D.; Yu, T.-H. Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 2008, 319, 1238–1240. [Google Scholar] [CrossRef] [PubMed]
- Haberl, H. Competition for land: A sociometabolic perspective. Ecol. Econ. 2015, 119, 424–431. [Google Scholar] [CrossRef] [Green Version]
- OECD. Realising the Circular Bioeconomy; OECD Publishing: Paris, France, 2017. Available online: https://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=DSTI/STP/BNCT(2017)7/FINAL&docLanguage=En (accessed on 21 April 2021).
- Cook, B.I.; Ault, T.R.; Smerdon, J.E. Unprecedented 21st century drought risk in the American Southwest and Central Plains. Sci. Adv. 2015, 1, e1400082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karlen, D.L.; Rice, C.W. Soil Degradation: Will Humankind Ever Learn? Sustainability 2015, 7, 12490–12501. [Google Scholar] [CrossRef] [Green Version]
- Bosch, R.; van de Pol, M.; Philp, J. Define biomass sustainability. Nature 2015, 523, 526–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sophocleous, M. Global and regional water availability and demand: Prospects for the future. Nat. Resour. Res. 2004, 13, 61–75. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Dold, C. Water-use efficiency: Advances and challenges in a changing climate. Front. Plant Sci. 2019, 10, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Hondt, K.; Kostic, T.; McDowell, R.; Eudes, F.; Singh, B.K.; Sarkar, S.; Markakis, M.; Schelkle, B.; Maguin, E.; Sessitsch, A. Microbiome innovations for a sustainable future. Nat. Microbiol. 2021, 6, 138–142. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, L.; Atkinson, H.; Roderick, H.; Kubiriba, J.; Tripathi, J.N. Genetically engineered bananas resistant to Xanthomonas wilt disease and nematodes. Food Energy Secur. 2017, 6, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Conrow, J.; GMO Banana Offers Hope for Disease and Pest Resistance. Cornell Alliance for Science. Available online: https://allianceforscience.cornell.edu/blog/2017/04/gmo-banana-offers-hope-for-disease-and-pest-resistance/#:~:text=Share,a%20newly%20published%20scientific%20paper (accessed on 19 February 2021).
- Singh, R.; Ong-Abdullah, M.; Low, E.-T.L.; Manaf, M.A.A.; Rosli, R.; Nookiah, R. Oil palm genome sequence reveals divergence of inter-fertile species in old and new worlds. Nature 2013, 500, 335–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cold Spring Harbor Laboratory News. Full Genome Map of Oil Palm Indicates A Way to Raise Yields and Protect Rainforest. Available online: http://www.cshl.edu/News-Features/full-genome-map-of-oil-palm-indicates-a-way-to-raise-yields-and-protect-rainforest.html (accessed on 19 February 2021).
- Bloch, S.E.; Ryu, M.-H.; Ozaydin, B.; Broglie, R. Harnessing atmospheric nitrogen for cereal crop production. Curr. Opin. Biotechnol. 2020, 62, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Pan, Q.; He, F.; Akhunova, A.; Chao, S.; Trick, H.; Akhunov, E. Transgenerational CRISPR-Cas9 activity facilitates multiplex gene editing in allopolyploid wheat. CRISPR J. 2018, 1, 65–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Licht, S.; Cui, B.; Wang, B.; Li, F.-F.; Lau, J.; Liu, S. Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3. Science 2014, 345, 637–640. [Google Scholar] [CrossRef] [PubMed]
- Rosenblueth, M.; Ormeño-Orrillo, E.; López-López, A.; Rogel, M.A.; Reyes-Hernández, B.J.; Martínez-Romero, J.C.; Reddy, P.M.; Martínez-Romero, E. Nitrogen fixation in cereals. Front. Microbiol. 2018, 9, 1794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keasling, J. Building an opportunity space for synthetic biology. Int. Innov. 2015, 185, 24–25. [Google Scholar]
- Stokstad, E. The nitrogen fix. Science 2016, 353, 1225–1227. [Google Scholar] [CrossRef] [PubMed]
- Ellingsen, H.; Olaussen, J.O.; Utne, I.B. Environmental analysis of the Norwegian fishery and aquaculture industry—A preliminary study focusing on farmed salmon. Mar. Policy 2009, 33, 479–488. [Google Scholar] [CrossRef]
- Pelletier, N.; Tyedmers, P.; Sonesson, U.; Scholz, A.; Ziegler, F.; Flysjo, A.; Kruse, S.; Cancino, B.; Silverman, H. Not all salmon are created equal: Life cycle assessment (LCA) of global salmon farming systems. Environ. Sci. Technol. 2009, 43, 8730–8736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamerschlag, K.; Venkat, K.; Environmental Working Group. Meat Eaters Guide to Climate Change and Health: Life Cycle Assessments Methodology and Results. Available online: http://static.ewg.org/reports/2011/meateaters/pdf/methodology_ewg_meat_eaters_guide_to_health_and_climate_2011.pdf (accessed on 20 February 2021).
- Grossi, G.; Goglio, P.; Vitali, A.; Williams, A.G. Livestock and climate change: Impact of livestock on climate and mitigation strategies. Anim. Front. 2019, 9, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Agriculture and Horticulture Development Board. Factsheet. Genomics in the Dairy Industry. Available online: https://ahdb.org.uk/knowledge-library/genomics-in-the-dairy-industry (accessed on 14 February 2021).
- Schefers, J.M.; Weigel, K.A. Genomic selection in dairy cattle: Integration of DNA testing into breeding programs. Anim. Front. 2012, 2, 4–9. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Ruiz, A.; Cole, J.B.; VanRaden, P.M.; Wiggans, G.R.; Ruiz-Lopez, F.J.; Van Tassell, C.P. Changes in genetic selection differentials and generation intervals in US Holstein dairy cattle as a result of genomic selection. Proc. Natl. Acad. Sci. USA 2016, 113, E3995–E4004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rotz, C.A. Modeling greenhouse gas emissions from dairy farms. J. Dairy Sci. 2018, 101, 6675–6690. [Google Scholar] [CrossRef] [PubMed]
- Capper, J.L.; Cady, R.A. The effects of improved performance in the U.S. dairy cattle industry on environmental impacts between 2007 and 2017. J. Anim. Sci. 2019, 98, skz291. [Google Scholar] [CrossRef] [PubMed]
- Doublet, A.-C.; Croiseau, P.; Fritz, S.; Michenet, A.; Hozé, C.; Danchin-Burge, C.; Laloë, D.; and Restoux, G. The impact of genomic selection on genetic diversity and genetic gain in three French dairy cattle breeds. Genet. Sel. Evol. 2019, 51, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cole, J.B.; Eaglen, S.A.E.; Maltecca, C.; Mulder, H.A.; Pryce, J.E. The future of phenomics in dairy cattle breeding. Anim. Front. 2020, 10, 37–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinfeld, H.; Gerber, P.; Wassenaar, T.; Castel, V.; Rosales, M.; de Haan, C. Livestock’s Long Shadow: Environmental Issues and Options. Available online: http://www.fao.org/3/a0701e/a0701e00.htm (accessed on 21 April 2021).
- de Haas, Y.; Windig, J.J.; Calus, M.P.L.; Dijkstra, J.; de Haan, M.; Bannink, A.; Veerkamp, R.F. Genetic parameters for predicted methane production and potential for reducing enteric emissions through genomic selection. J. Dairy Sci. 2011, 94, 6122–6134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lassen, J.; Difford, G.F. Review: Genetic and genomic selection as a methane mitigation strategy in dairy cattle. Animal 2020, 14, s473–s483. [Google Scholar] [CrossRef] [PubMed]
- World Bank. Fish to 2030: Prospects for Fisheries and Aquaculture. Agriculture and Environmental Services Discussion Paper. Available online: https://openknowledge.worldbank.org/handle/10986/17579 (accessed on 21 April 2021).
- MacLeod, M.J.; Hasan, M.R.; Robb, D.H.; Mamun-Ur-Rashid, M. Quantifying greenhouse gas emissions from global aquaculture. Sci. Rep. 2020, 10, 11679. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2018—Meeting the Sustainable Development Goals. Available online: http://www.fao.org/3/i9540en/i9540en.pdf (accessed on 21 April 2021).
- Figueroa, C.; Veloso, P.; Espin, L.; Dixon, B.; Torrealba, D.; Elalfy, I.S.; Afonso, J.M.; Soto, C.; Conejeros, P.; Gallardo, J.A. Host genetic variation explains reduced protection of commercial vaccines against Piscirickettsia salmonis in Atlantic salmon. Sci. Rep. 2020, 10, 18252. [Google Scholar] [CrossRef] [PubMed]
- Reverter, M.; Sarter, S.; Caruso, D.; Avarre, J.-C.; Combe, M.; Pepey, E.; Pouyaud, L.; Vega-Heredía, S.; de Verdal, H.; Gozlan, R.E. Aquaculture at the crossroads of global warming and antimicrobial resistance. Nat. Commun. 2020, 11, 1870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitney, R.; Bell, J.; Philp, J. Build a sustainable vaccines industry with synthetic biology. Trends Biotechnol. 2021, in press. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Bruce, T.J.; Jones, E.M.; Cain, K.D. A review of fish vaccine development strategies: Conventional methods and modern biotechnological approaches. Microorganisms 2019, 7, 569. [Google Scholar] [CrossRef] [Green Version]
- UN-Water. Wastewater Management—A UN-Water Analytical Brief. Available online: https://www.unwater.org/publications/wastewater-management-un-water-analytical-brief/ (accessed on 16 February 2021).
- El-Chichakli, B.; Von Braun, J.; Lang, C.; Barben, D.; Philp, J. Five cornerstones of a global bioeconomy. Nature 2016, 535, 221–223. [Google Scholar] [CrossRef] [PubMed]
- Morgan-Sagastume, F.; Hjort, M.; Cirne, D.; Gérardin, F.; Lacroix, S.; Gaval, G.; Karabegovic, L.; Alexandersson, T.; Johansson, P.; Karlsson, A.; et al. Integrated production of polyhydroxyalkanoates (PHAs) with municipal wastewater and sludge treatment at pilot scale. Bioresour. Technol. 2015, 181, 78–89. [Google Scholar] [CrossRef] [PubMed]
- Mo, W.; Zhang, Q. Energy–nutrients–water nexus: Integrated resource recovery in municipal wastewater treatment plants. J. Environ. Manag. 2013, 127, 255–267. [Google Scholar] [CrossRef] [PubMed]
- US Department of Energy. The Water-Energy Nexus: Challenges and Opportunities. Available online: https://www.energy.gov/articles/water-energy-nexus-challenges-and-opportunities (accessed on 21 April 2021).
- Energy Resources Center, University of Illinois. Wastewater Treatment Facilities Program—Reducing Energy Usage in Wastewater Treatment. Available online: http://www.erc.uic.edu/energy-efficiency/illinois-energy-now-programs/waste-water-treatment-facilities-program (accessed on 21 April 2021).
- Capodaglio, A.G.; Olsson, G. Energy Issues in Sustainable Urban Wastewater Management: Use, Demand Reduction and Recovery in the Urban Water Cycle. Sustainability 2020, 12, 266. [Google Scholar] [CrossRef] [Green Version]
- Krieg, T.; Mayer, F.; Sell, D.; Holtmann, D. Insights into the applicability of microbial fuel cells in wastewater treatment plants for a sustainable generation of electricity. Environ. Technol. 2019, 40, 1101–1109. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; An, X.; Wu, D.; Xu, J.; Chen, Y.; Li, W.; Cao, Y.; Guo, X.; Lin, X.; Li, C.; et al. Engineering microbial consortia for high-performance cellulosic hydrolyzates-fed microbial fuel cells. Front. Microbiol. 2019, 10, 409. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Ghosh, D.; Tremblay, P.-L. Synthetic Biology Strategies to Improve Electron Transfer Rate at the Microbe–Anode Interface in Microbial Fuel Cells, 1st ed.; Krishnaraj, R.N., Ed.; John Wiley and Sons: Hoboken, NJ, USA, 2019; pp. 187–208. [Google Scholar]
- Ellis, H. Is the Source of 95 Percent of Our Food in Trouble? Available online: https://www.bbc.co.uk/food/articles/soil (accessed on 16 February 2021).
- Baveye, P.C.; Baveye, J.; Gowdy, J. Soil “ecosystem” services and natural capital: Critical appraisal of research on uncertain ground. Front. Environ. Sci. 2016, 4, 41. [Google Scholar] [CrossRef]
- D’Amato, D.; Bartkowski, B.; Droste, N. Reviewing the interface of bioeconomy and ecosystem service research. Ambio 2020, 49, 1878–1896. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Environment Fact Sheet: Soil Protection—A New Policy for the EU. Available online: http://ec.europa.eu/environment/pubs/pdf/factsheets/soil.pdf (accessed on 16 February 2021).
- Panagos, P.; Van Liedekerke, M.; Yigini, Y.; Montanarella, L. Contaminated sites in Europe: Review of the current situation based on data collected through a European network. J. Environ. Public Health 2013, 2013, 158764. [Google Scholar] [CrossRef] [PubMed]
- Sorvari, J.R.; Antikainen, R.; Kosola, M.L.; Hokkanen, P.; Haavisto, T. Eco- efficiency in contaminated land management in Finland—barriers and development needs. J. Environ. Manag. 2009, 90, 1715–1727. [Google Scholar] [CrossRef] [PubMed]
- Shekhar, C. Nature cure: Bioremediation as a sustainable solution for polluted sites. Chem. Biol. 2012, 19, 307–308. [Google Scholar] [CrossRef] [Green Version]
- Gillespie, I.M.M.; Philp, J.C. Bioremediation, an environmental remediation technology for the bioeconomy. Trends Biotechnol. 2013, 31, 329–332. [Google Scholar] [CrossRef] [PubMed]
- Diplock, E.E.; Mardlin, D.P.; Killham, K.S.; Paton, G.I. Predicting bioremediation of hydrocarbons: Laboratory to field scale. Environ. Pollut. 2009, 157, 1831–1840. [Google Scholar] [CrossRef] [PubMed]
- Abiraami, T.V.; Singh, S.; Nain, L. Soil metaproteomics as a tool for monitoring functional microbial communities: Promises and challenges. Rev. Environ. Sci. Bio/Technol. 2020, 19, 73–102. [Google Scholar] [CrossRef]
- Liang, Y.; Jiao, S.; Wang, M.; Yu, H.; Shen, Z.A. CRISPR/Cas9-based genome editing system for Rhodococcus ruber TH. Metab. Eng. 2020, 57, 13–22. [Google Scholar] [CrossRef]
- Walsh, G. Biopharmaceutical benchmarks 2018. Nat. Biotechnol. 2018, 36, 1136–1145. [Google Scholar] [CrossRef] [PubMed]
- Deloitte Insights. The future of Biopharma. Reimagining Traditional Business Models in 2040. The Deloitte Center for Health Solutions. Available online: https://www2.deloitte.com/cn/en/pages/life-sciences-and-healthcare/articles/the-future-of-biopharma.html (accessed on 21 April 2021).
- Zhang, K.; Liu, W. The current status, trend, and development strategies of Chinese biopharmaceutical industry with a challenging perspective. SAGE Open 2020, 10. [Google Scholar] [CrossRef] [Green Version]
- Schlake, T.; Thran, M.; Fiedler, K.; Heidenreich, R.; Petsch, B.; Fotin-Mleczek, M. mRNA: A novel avenue to antibody therapy? Mol. Ther. 2019, 27, 773–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahin, U.; Derhovanessian, E.; Miller, M.; Kloke, B.-P.; Simon, P.; Löwer, M.; Bukur, V.; Tadmor, A.D.; Luxemburger, U.; Schrörs, B.; et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 2017, 547, 222–226. [Google Scholar] [CrossRef] [PubMed]
- Tew, D. Synthetic biology and healthcare. Emerg. Top. Life Sci. 2019, 3, 659–667. [Google Scholar] [PubMed]
- Nguyen, A.; Schwalbe, N. Apples and oranges? Can second generation vaccines become as low cost as generic medicines? Vaccine 2019, 37, 2910–2914. [Google Scholar] [CrossRef]
- Trombetta, C.M.; Marchi, S.; Manini, I.; Lazzeri, G.; Montomoli, E. Challenges in the development of egg-independent vaccines for influenza. Expert Rev. Vaccines 2019, 18, 737–750. [Google Scholar] [CrossRef] [PubMed]
- Reboredo, F. Socio-economic, environmental, and governance impacts of illegal logging. Environ. Syst. Decis. 2013, 33, 295–304. [Google Scholar] [CrossRef]
- Nellemann, C. INTERPOL Environmental Crime Programme. Green Carbon, Black Trade: Illegal Logging, Tax Fraud and Laundering in the Worlds Tropical Forests. A Rapid Response Assessment. United Nations Environment Programme. Available online: https://wedocs.unep.org/20.500.11822/8030 (accessed on 10 December 2021).
- Elliott, L. Transnational environmental crime in the Asia Pacific: An un(der)securitized security problem? Pac. Rev. 2007, 20, 499–522. [Google Scholar] [CrossRef]
- Jiao, L.; Yin, Y.; Cheng, Y.-M.; Jiang, J.X. DNA barcoding for identification of the endangered species Aquilaria sinensis: Comparison of data from heated or aged wood samples. Holzforschung 2013, 68, 487–494. [Google Scholar] [CrossRef]
- Kannangara, S.; Karunarathne, S.; Ranaweera, L.; Ananda, K.; Ranathunga, D.; Jayarathne, H.; Weebadde, C.; Sooriyapathirana, S. Assessment of the applicability of wood anatomy and DNA barcoding to detect the timber adulterations in Sri Lanka. Sci. Rep. 2020, 10, 4352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fatima, T.; Srivastava, A.; Somashekar, P.V.; Hanur, V.S.; Rao, M.S. Development of DNA-based species identification and barcoding of three important timbers. Bull. Natl. Res. Cent. 2019, 43, 76. [Google Scholar] [CrossRef]
- Jiao, L.; Lu, Y.; He, T.; Guo, J.; Yin, Y. DNA barcoding for wood identification: Global review of the last decade and future perspective. IAWA J. 2020, 41, 620–643. [Google Scholar] [CrossRef]
- UNCTAD. 90% of Fish Stocks Are Used up—Fisheries Subsidies Must Stop. Available online: https://unctad.org/news/90-fish-stocks-are-used-fisheries-subsidies-must-stop (accessed on 17 February 2021).
- FAO. The State of World Fisheries and Aquaculture 2014 Highlights. Available online: http://www.fao.org/3/i3720e/i3720e.pdf (accessed on 21 April 2021).
- Barendse, J.; Roel, A.; Longo, C.; Andriessen, L.; Webster, L.M.I.; Ogden, R.; Neat, F. DNA barcoding validates species labelling of certified seafood. Curr. Biol. 2019, 29, R198–R199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ratnasingham, S.; Hebert, P.D.N. BOLD: The Barcode of Life Data System (www.barcodinglife.org). Mol. Ecol. Notes 2007, 7, 355–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, F.O.; Landi, M.; Martins, R.; Costa, M.H.; Costa, M.E.; Carneiro, M.; Alves, M.J.; Steinke, D.; Carvalho, G.R. A ranking system for reference libraries of DNA Barcodes: Application to marine fish species from Portugal. PLoS ONE 2012, 7, e35858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bekkevold, D.; Helyar, S.; Limborg, M.; Nielsen, E.; Hemmer-Hansen, J.; Clausen, L.; Carvalho, G.R. Gene-associated markers can assign origin in a weakly structured fish, Atlantic herring. ICES J. Mar. Sci. 2015, 72, 1790–1801. [Google Scholar] [CrossRef] [Green Version]
- Clark, L.F. The current status of DNA barcoding technology for species identification in fish value chains. Food Policy 2015, 54, 85–94. [Google Scholar] [CrossRef]
- Peccoud, J.; Gallegos, J.E.; Murch, R.; Buchholz, W.G.; Raman, S. Cyberbiosecurity: From naive trust to risk awareness. Trends Biotechnol. 2018, 36, 4–7. [Google Scholar] [CrossRef] [PubMed]
- Richardson, L.C.; Connell, N.D.; Lewis, S.M.; Pauwels, E.; Murch, R.S. Cyberbiosecurity: A call for cooperation in a new threat landscape. Front. Bioeng. Biotechnol. 2019, 7, 99. [Google Scholar] [CrossRef] [PubMed]
- KPMG. Digitalization in Life Sciences. Available online: https://assets.kpmg/content/dam/kpmg/xx/pdf/2018/01/digitalization-in-life-sciences.pdf (accessed on 21 April 2021).
- OECD. Chapter 6. Digitalisation in the Bioeconomy: Convergence for the Bio-Based Industries. Available online: https://www.oecd-ilibrary.org/sites/bd16d851-en/index.html?itemId=/content/component/bd16d851-en (accessed on 21 April 2021).
- IEA. Data Centres and Data Transmission Networks. Available online: https://www.iea.org/reports/data-centres-and-data-transmission-networks (accessed on 21 April 2021).
- Jones, N. The information factories. Nature 2018, 561, 163–166. [Google Scholar] [CrossRef] [PubMed]
- Zhirnov, V.; Zadegan, R.M.; Sandhu, G.S.; Church, G.M.; Hughes, W.L. Nucleic acid memory. Nat. Mater. 2016, 15, 366–370. [Google Scholar] [CrossRef] [PubMed]
- Extance, A. How DNA could store all the world’s data. Nature 2016, 537, 22–24. [Google Scholar] [CrossRef]
- Service, R.F. DNA Could Store All of the world’s Data in One Room. Available online: https://www.sciencemag.org/news/2017/03/dna-could-store-all-worlds-data-one-room (accessed on 21 April 2021).
- Goldman, N.; Bertone, P.; Chen, S.; Dessimoz, C.; LeProust, E.M.; Sipos, B.; Birney, E. Towards practical, high-capacity, low-maintenance information storage in synthesized DNA. Nature 2013, 494, 77–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Twist Bioscience. DNA-Based Digital Storage White Paper. Available online: https://www.twistbioscience.com/resources/white-paper/dna-based-digital-storage (accessed on 21 April 2021).
Keyword | Australia | France | Finland | United Kingdom | European Union |
---|---|---|---|---|---|
Sustainable | 0.081 | 0.000 | 1.500 | 0.316 | 0.139 |
Bioeconomy | 0.035 | 0.000 | 2.222 | 0.368 | 0.000 |
Business | 0.064 | 0.250 | 0.639 | 1.263 | 0.070 |
Commercialisation | 0.099 | 0.000 | 0.111 | 0.368 | 0.046 |
Investment(s) | 0.186 | 0.458 | 0.305 | 1.947 | 0.209 |
Total | 0.384 | 0.708 | 3.277 | 3.946 | 0.325 |
Biorefinery | 0.023 | 0.000 | 0.111 | 0.000 | 0.000 |
Engineering | 1.442 | 0.208 | 0.444 | 2.421 | 1.442 |
Industry | 0.680 | 0.208 | 1.833 | 1.684 | 0.442 |
Manufacturing | 0.157 | 0.042 | 0.139 | 0.421 | 0.046 |
Total | 2.302 | 0.458 | 2.527 | 4.526 | 1.930 |
Innovation(s) | 0.546 | 0.166 | 0.333 | 3.316 | 0.465 |
Education | 0.302 | 0.042 | 0.389 | 0.632 | 0.419 |
Science | 1.064 | 0.708 | 0.833 | 4.369 | 2.395 |
Research | 2.140 | 1.750 | 2.166 | 7.210 | 3.930 |
Total | 8.104 | 2.666 | 3.721 | 15.527 | 14.418 |
Product | CO2 (eq./kg) | Comments |
---|---|---|
Beef | 44.8 | Mainly a result of methane and N2O, not CO2 |
Idaho and Nebraska beef (average) | 33.50 | Farm-gate, quoted as 15.23 kg per pound of beef |
Idaho lamb | 44.96 | Farm-gate, average of low and high productivity |
Swedish pork | 3.3–4.4 | |
Michigan pork | 10.16 | Farm-gate |
Farmed trout | 4.5 | Raised in ponds. Frozen, leaving retailer |
Cod | 3.2 | Frozen fillet, leaving retailer |
Chicken | 2.0 | (Round weight, US) |
Poultry (US) | 1.4 | |
Chicken | 4.6 | (Round weight, UK) |
Farmed salmon (sea-based, UK) | 3.6 | Including processing and transportation |
Farmed salmon (sea-based, Canada) | 4.2 | Adjusted to fillet based on figures for live fish |
Farmed salmon (sea-based, Norway) | 3.0 | Transportation to Paris |
Farmed salmon (global average) | 2.15 | Farm-gate estimates |
Capture fish (global average) | 1.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Philp, J. Biotechnologies to Bridge the Schism in the Bioeconomy. Energies 2021, 14, 8393. https://doi.org/10.3390/en14248393
Philp J. Biotechnologies to Bridge the Schism in the Bioeconomy. Energies. 2021; 14(24):8393. https://doi.org/10.3390/en14248393
Chicago/Turabian StylePhilp, Jim. 2021. "Biotechnologies to Bridge the Schism in the Bioeconomy" Energies 14, no. 24: 8393. https://doi.org/10.3390/en14248393
APA StylePhilp, J. (2021). Biotechnologies to Bridge the Schism in the Bioeconomy. Energies, 14(24), 8393. https://doi.org/10.3390/en14248393