Evaluation of the Limit State of a Six-Inch Carbon Steel Pipe Elbow in Base-Isolated Nuclear Power Plants
Abstract
:1. Introduction
2. Methods
2.1. Expeimental Set-Up
2.2. Test Procedure and Measurement
3. Test Results
3.1. Low-Cycle Fatigue Life
3.2. Failure Criteria Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
APR1400 | Advanced Power Reactor 1400 |
CMOS | Complementary metal-oxide-semiconductor |
JNES | Japan Nuclear Energy Safety Organization |
LVDT | Linear variable differential transformer |
NRC | Nuclear Regulatory Commission |
SSE | Safe shutdown earthquake |
TES | Twice elastic slope |
TI | Tangent intersection |
USB | Universal serial bus |
UTM | Universal testing machine |
Displacement amplitude of i-th cycle | |
Damage index for M–R relationship | |
Damage index for P–D relationship | |
Yield displacement | |
Dissipated energy of i-th cycle by M–R relationship | |
Dissipated energy of i-th cycle by P–D relationship | |
Yield force | |
M–R | Moment–relative deformation angle |
Moment range | |
Yield moment | |
Number of cycles to failure | |
P–D | Force−displacement |
Coefficient of determination | |
Angle | |
Relative deformation angle amplitude of i-th cycle | |
Relative deformation angle range | |
Yield relative deformation angle | |
Standard deviation | |
References
- Wang, Q.; Xi, C.; Xu, Y.C. Accident like the Fukushima unlikely in a country with effective nuclear regulation: Literature review and proposed guidelines. Renew. Sustain. Energy Rev. 2013, 17, 126–146. [Google Scholar] [CrossRef]
- Saji, G. Safety goals for seismic and tsunami risks: Lessons learned from the Fukushima Daiichi disaster. Nucl. Eng. Des. 2014, 280, 449–463. [Google Scholar] [CrossRef]
- Stevenson, J.D. Summary of the historical development of seismic design of nuclear power plants in Japan and the U.S. Nucl. Eng. Des. 2014, 269, 160–164. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, D.D.; Thusa, B.; Han, T.S.; Lee, T.H. Identifying significant earthquake intensity measures for evaluating seismic damage and fragility of nuclear power plant structures. Nucl. Eng. Technol. 2020, 52, 192–205. [Google Scholar] [CrossRef]
- Jangid, R.S. Seismic response of isolated bridges. J. Bridge Eng. 2004, 9, 156–166. [Google Scholar] [CrossRef]
- Warn, G.P.; Ryan, K.L. A review of seismic isolation for buildings: Historical development and research needs. Buildings 2012, 2, 300–325. [Google Scholar] [CrossRef] [Green Version]
- Buckle, I.G.; Mayes, R.L. Seismic isolation: History, application, and performance—a world view. Earthq. Spectra 1990, 6, 161–201. [Google Scholar] [CrossRef]
- Makris, N. Seismic isolation: Early history. Earthq. Eng. Struct. Dyn. 2019, 48, 269–283. [Google Scholar] [CrossRef]
- Wongprasert, N.; Symans, M.D. Numerical evaluation of adaptive base-isolated structures subjected to earthquake ground motions. J. Eng. Mech. 2005, 131, 109–119. [Google Scholar] [CrossRef]
- Zhang, J.; Huo, Y. Evaluating effectiveness and optimum design of isolation devices for highway bridges using the fragility function method. Eng. Struct. 2009, 31, 1648–1660. [Google Scholar] [CrossRef]
- Whittaker, A.S.; Sollogoub, P.; Kim, M.K. Seismic isolation of nuclear power plants: Past, present and future. Nucl. Eng. Des. 2018, 338, 290–299. [Google Scholar] [CrossRef]
- Zhou, Z.; Hu, X.; Wong, J. Special issues in the application of seismic isolation to nuclear power plants. Energies 2018, 11, 2333. [Google Scholar] [CrossRef] [Green Version]
- Lo Frano, R. Benefits of seismic isolation for nuclear structures subjected to severe earthquake. Sci. Technol. Nucl. Install. 2018, 2018, 8017394. [Google Scholar] [CrossRef] [Green Version]
- Lo Frano, R.; Forasassi, G. Isolation systems influence in the seismic loading propagation analysis applied to an innovative near term reactor. Nucl. Eng. Des. 2010, 240, 3539–3549. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, C.; Xu, Q.; Yuan, C. Seismic analysis and evaluation of the base isolation system in AP1000 NI under SSE loading. Nucl. Eng. Des. 2014, 278, 117–133. [Google Scholar] [CrossRef]
- Medel-Vera, C.; Ji, T. Seismic protection technology for nuclear power plants: A systematic review. J. Nucl. Sci. Technol. 2015, 52, 607–632. [Google Scholar] [CrossRef]
- Takeda, M.; Ohkawa, Y.; Akutsu, Y. An evaluation method for seismic isolation effect in siting of a nuclear facility. Reliab. Eng. Syst. Saf. 1998, 62, 241–249. [Google Scholar] [CrossRef]
- Kubo, T.; Yamamoto, T.; Sato, T.; Jimbo, M.; Imaoka, T.; Umeki, Y. A seismic design of nuclear reactor building structures applying seismic isolation system in a high seismicity region—a feasibility case study in Japan. Nucl. Eng. Technol. 2014, 46, 581–594. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.C.; Bolisetti, C.; Coleman, J.L.; Kosbab, B.; Whittaker, A.S. Using seismic isolation to reduce risk and capital cost of safety-related nuclear structures. Nucl. Eng. Des. 2018, 326, 268–284. [Google Scholar] [CrossRef]
- Coladant, C. Seismic isolation of nuclear power plants—EDF’s philosophy. Nucl. Eng. Des. 1991, 127, 243–251. [Google Scholar] [CrossRef]
- Wang, H.; Weng, D.; Lu, X.; Lu, L. Life-cycle cost assessment of seismically base-isolated structures in nuclear power plants. Nucl. Eng. Des. 2013, 262, 429–434. [Google Scholar] [CrossRef]
- Kammerer, A.M.; Whittaker, A.S.; Constantinou, M.C. Technical Considerations for Seismic Isolation of Nuclear Facilities (NUREG/CR-7253); U.S. Nuclear Regulatory Commission: Rockville, MD, USA, 2019.
- Japan Electric Association(JEA). Technical Design Guide for Seismic Isolation of Nuclear Power Facilities; JEAG4614-2000; Japan Electric Association(JEA): Tokyo, Japan, 2000. [Google Scholar]
- Choi, Y.; Park, J.B.; Lee, S.J.; Park, N.C.; Park, Y.P.; Kim, J.S.; Roh, W.J. Seismic analysis of the APR 1400 reactor vessel internals using the model reduction method. J. Nucl. Sci. Technol. 2016, 53, 1701–1714. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, D.D.; Thusa, B.; Park, H.; Azad, M.S.; Lee, T.H. Efficiency of various structural modeling schemes on evaluating seismic performance and fragility of APR1400 containment building. Nucl. Eng. Technol. 2021, 53, 2696–2707. [Google Scholar] [CrossRef]
- Kim, S.W.; Jeon, B.G.; Hahm, D.G.; Kim, M.K. Seismic fragility evaluation of the base-isolated nuclear power plant piping system using the failure criterion based on stress-strain. Nucl. Eng. Technol. 2019, 51, 561–572. [Google Scholar] [CrossRef]
- Hahm, D.G.; Park, J.H.; Choi, I.K. Seismic performance evaluation of piping system crossing the isolation interface in seismically isolated NPP. J. Earthq. Soc. Korea 2014, 18, 141–150. [Google Scholar] [CrossRef]
- Surh, H.B.; Ryu, T.Y.; Park, J.S.; Ahn, E.W.; Choi, C.S.; Koo, J.C.; Choi, J.B.; Kim, M.K. Seismic response analysis of a piping system subjected to multiple support excitations in a base isolated NPP building. Nucl. Eng. Des. 2015, 292, 283–295. [Google Scholar] [CrossRef]
- Kwag, S.Y.; Eem, S.H.; Kwak, J.S.; Lee, H.H.; Oh, J.H.; Koo, G.H. Mitigation of seismic responses of actual nuclear piping by a newly developed tuned mass damper device. Nucl. Eng. Technol. 2021, 53, 2728–2745. [Google Scholar] [CrossRef]
- Vishnuvardhan, S.; Raghava, G.; Gandhi, P.; Saravanan, M.; Goyal, S.; Arora, P.; Gupta, S.K.; Bhasin, V. Ratcheting failure of pressurized straight pipes and elbows under reversed bending. Int. J. Press. Vessel. Pip. 2013, 105–106, 79–89. [Google Scholar] [CrossRef]
- Hassan, T.; Rahman, M.; Bari, S. Low-cycle fatigue and ratcheting responses of elbow piping components. J. Press. Vessel. Technol. 2015, 137, 031010. [Google Scholar] [CrossRef]
- Ravi Kiran, A.; Reddy, G.R.; Agrawal, M.K. Risk-based seismic performance assessment of pressurized piping systems considering ratcheting. J. Press. Vessel. Technol. 2020, 142, 021902. [Google Scholar] [CrossRef]
- Kim, S.W.; Jeon, B.G.; Hahm, D.G.; Kim, M.K. Ratcheting fatigue failure of a carbon steel pipe tee in a nuclear power plant using the deformation angle. Eng. Fail. Anal. 2020, 114, 104595. [Google Scholar] [CrossRef]
- Choi, H.S.; Jeon, B.G.; Firoozabad, E.S.; Kim, N.S. Small scaled model tests for piping components of seismically isolated nuclear power plant. In Proceedings of the SMiRT-23, Manchester, UK, 10–14 August 2015. [Google Scholar]
- Electric Power Research Institute. Seismic Fragility and Seismic Margin Guidance for Seismic Probabilistic Risk Assessments; EPRI TR-3002012994; Electric Power Research Institute: Palo Alto, CA, USA, 2018. [Google Scholar]
- Nakamura, I.; Otani, A.; Shiratori, M. Comparison of failure modes of piping systems with wall thinning subjected to in-plane, out-of-plane, and mixed mode bending under seismic load: An experimental approach. J. Press. Vessel. Technol. 2010, 132, 0310011–0310018. [Google Scholar] [CrossRef]
- Varelis, G.E.; Karamanos, S.A.; Gresnigt, A.M. Pipe elbows under strong cyclic loading. J. Press. Vessel. Technol. 2013, 135, 11207. [Google Scholar] [CrossRef]
- Urabe, Y.; Takahashi, K.; Sato, K.; Ando, K. Low cycle fatigue behavior and seismic assessment for pipe bend having local wall thinning-influence of internal pressure. J. Press. Vessel. Technol. 2013, 135, 041802. [Google Scholar] [CrossRef]
- Nuclear Energy Agency/Committee on the Safety of Nuclear Installations. Integrity of Structures, Final Report of the Project on Metallic Component Margins under High Seismic Loads (MECOS). In Systems and Components under Design and Beyond Design Loads in Nuclear Power Plants; Nuclear Energy Agency: Paris, France, 2018. [Google Scholar]
- Kim, S.W.; Choi, H.S.; Jeon, B.G.; Hahm, D.G.; Kim, M.K. Strain and deformation angle for a steel pipe elbow using image measurement system under in-plane cyclic loading. Nucl. Eng. Technol. 2018, 50, 190–202. [Google Scholar] [CrossRef]
- Kim, S.W.; Choi, H.S.; Jeon, B.G.; Hahm, D.G. Low-cycle fatigue behaviors of the elbow in a nuclear power plant piping system using the moment and deformation angle. Eng. Fail. Anal. 2019, 96, 348–361. [Google Scholar] [CrossRef]
- Kim, S.W.; Chang, S.J.; Park, D.U.; Jeon, B.G. Failure criteria of a carbon steel pipe elbow for low-cycle fatigue using the damage index. Thin-Walled Struct. 2020, 153, 106800. [Google Scholar] [CrossRef]
- Banon, H.; Biggs, J.M.; Irvine, H.M. Seismic damage in reinforced concrete frames. J. Struct. Div. 1981, 107, 1713–1729. [Google Scholar] [CrossRef]
- Banon, H.; Veneziano, D. Seismic safety of reinforced concrete members and structures. Earthq. Eng. Struct. Dyn. 1982, 10, 179–193. [Google Scholar] [CrossRef]
- Kim, S.W.; Yun, D.W.; Chang, S.J.; Park, D.U. Quantitative limit state assessment of a 3-inch carbon steel pipe tee in a nuclear power plant using a damage index. Energies 2020, 13, 6395. [Google Scholar] [CrossRef]
- American Society of Mechanical Engineers. Section III, Rules for Construction of Nuclear Facility Components. In ASME Boiler and Pressure Vessel Code; The American Society of Mechanical Engineers (ASME): New York, NY, USA, 2004. [Google Scholar]
Loading Amplitude (mm) | Nf | Average Energy for One Cycle (kN·m) | Range | |||
---|---|---|---|---|---|---|
P–D | M–R | Difference (%) | Moment (kN·m) | Relative Deformation Angle (Rad) | ||
20 | 347.50 | 0.70 | 0.72 | 2.02 | 72.36 | 0.066 |
318.00 | 0.88 | 0.86 | 1.86 | 66.60 | 0.067 | |
40 | 101.25 | 4.31 | 4.42 | 2.60 | 82.58 | 0.14 |
91.50 | 4.17 | 4.13 | 0.94 | 86.13 | 0.138 | |
60 | 42.25 | 8.77 | 8.77 | 0.04 | 98.29 | 0.204 |
41.25 | 9.12 | 9.03 | 1.01 | 100.83 | 0.205 | |
80 | 20.00 | 15.12 | 15.20 | 0.55 | 110.54 | 0.279 |
17.00 | 13.86 | 13.57 | 2.09 | 104.76 | 0.28 | |
100 | 12.00 | 19.81 | 20.22 | 2.09 | 121.09 | 0.35 |
15.00 | 21.00 | 21.61 | 2.87 | 129.48 | 0.346 | |
120 | 9.25 | 25.89 | 25.64 | 0.96 | 134.68 | 0.419 |
7.00 | 26.34 | 25.29 | 0.18 | 135.11 | 0.415 |
Loading Amplitude | Damage Index | ||
---|---|---|---|
P–D | M–R | Difference (%) | |
±20 | 11.66 | 11.81 | 1.33 |
12.28 | 12.57 | 2.31 | |
±40 | 11.90 | 12.38 | 3.93 |
11.35 | 11.89 | 4.55 | |
±60 | 11.20 | 11.76 | 4.75 |
11.30 | 11.70 | 3.47 | |
±80 | 9.92 | 10.70 | 7.26 |
10.34 | 11.06 | 6.47 | |
±100 | 9.83 | 10.42 | 5.60 |
10.42 | 11.02 | 5.50 | |
±120 | 10.82 | 11.62 | 6.84 |
9.95 | 11.01 | 9.84 | |
Average | 10.91 | 11.50 | 5.06 |
Statistical Data | Damage Index | |
---|---|---|
P–D | M–R | |
average | 10.91 | 11.27 |
median | 11.03 | 11.39 |
maximum | 12.28 | 12.44 |
minimum | 9.83 | 10.17 |
variance | 0.62 | 0.47 |
standard deviation | 0.82 | 0.66 |
average + 2· | 12.49 | 12.65 |
average − 2· | 9.33 | 9.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-W.; Yun, D.-W.; Jeon, B.-G.; Hahm, D.-G.; Kim, M.-K. Evaluation of the Limit State of a Six-Inch Carbon Steel Pipe Elbow in Base-Isolated Nuclear Power Plants. Energies 2021, 14, 8400. https://doi.org/10.3390/en14248400
Kim S-W, Yun D-W, Jeon B-G, Hahm D-G, Kim M-K. Evaluation of the Limit State of a Six-Inch Carbon Steel Pipe Elbow in Base-Isolated Nuclear Power Plants. Energies. 2021; 14(24):8400. https://doi.org/10.3390/en14248400
Chicago/Turabian StyleKim, Sung-Wan, Da-Woon Yun, Bub-Gyu Jeon, Dae-Gi Hahm, and Min-Kyu Kim. 2021. "Evaluation of the Limit State of a Six-Inch Carbon Steel Pipe Elbow in Base-Isolated Nuclear Power Plants" Energies 14, no. 24: 8400. https://doi.org/10.3390/en14248400
APA StyleKim, S. -W., Yun, D. -W., Jeon, B. -G., Hahm, D. -G., & Kim, M. -K. (2021). Evaluation of the Limit State of a Six-Inch Carbon Steel Pipe Elbow in Base-Isolated Nuclear Power Plants. Energies, 14(24), 8400. https://doi.org/10.3390/en14248400