Characteristics and Genetic Mechanism of Pore Throat Structure of Shale Oil Reservoir in Saline Lake—A Case Study of Shale Oil of the Lucaogou Formation in Jimsar Sag, Junggar Basin
Abstract
:1. Introduction
2. Geological Setting
3. Data and Methods
4. Results
4.1. Petrological and Mineralogical Characteristics
4.2. Physical Characteristics
4.3. Diagenesis Characteristics
4.3.1. Compaction
4.3.2. Dissolution
4.3.3. Cementation
4.4. Pore Structure
4.4.1. Reservoir Spaces
4.4.2. Pore Throat Distribution
4.4.3. Pore Throat Structures
5. Discussion
5.1. Classification of Different Pore Throat Structures
5.2. Main Controlling Factors of the Pore Throat Structure
5.2.1. Tectonism
5.2.2. Sedimentation
5.2.3. Diagenesis
5.3. Genetic Evolution Models of Different Pore Throat Structures
5.3.1. Genetic Evolution Model of Large Pore Medium Throats and Medium Pore Medium Throat Reservoirs
5.3.2. Genetic Evolution Model of Medium Pore Fine Throat and Fine Pore Fine Throat Reservoirs
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Breyer, J.A. Shale Reservoirs: Giant Resources for the 21st Century; AAPG Memoir; American Association of Petroleum Geologists: Tulsa, OK, USA, 2012; Volume 97, pp. 1–451. [Google Scholar]
- Holditch, S.A. Unconventional oil and gas resource development-let’s do it right. J. Unconv. Oil Gas Resour. 2013, 1–2, 2–8. [Google Scholar] [CrossRef]
- Davies, R.J.; Almond, S.; Ward, R.S.; Jackson, R.B.; Adams, C.; Worrall, F.; Herringshaw, L.G.; Gluyas, J.G.; Whitehead, M.A. Oil and gas wells and their integrity: Implications for shale and unconventional resource exploitation. Mar. Pet. Geol. 2014, 56, 239–254. [Google Scholar] [CrossRef] [Green Version]
- Huo, Z.; Hao, S.; Liu, B.; Zhang, J.; Ding, J.; Tang, X.; Li, C.; Yu, X. Geochemical characteristics and hydrocarbon expulsion of source rocks in the first member of the Qingshankou Formation in the Qijia-Gulong Sag, Songliao Basin, Northeast China: Evaluation of shale oil resource potential. Energy Sci. Eng. 2020, 8, 1450–1467. [Google Scholar] [CrossRef]
- Zou, C.; Yang, Z.; Cui, J.; Zhu, R.; Hou, L.; Tao, S.; Yuan, X.; Wu, S.; Lin, S.; Wang, L.; et al. Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China. Pet. Explor. Dev. 2013, 40, 14–26. [Google Scholar] [CrossRef]
- Lu, S.; Huang, W.; Chen, F.; Wang, M.; Xue, H.; Wang, W.; Cai, X. Classification and evaluation criteria of shale oil and gas resources: Discussion and application. Pet. Explor. Dev. 2012, 39, 249–256. [Google Scholar] [CrossRef]
- Yang, Z.; Zou, C.; Wu, S.; Lin, S.; Pan, S.; Niu, X.; Men, G.; Tang, Z.; Li, G.; Zhao, J.; et al. Formation, distribution and resource potential of the “sweet areas (sections)” of continental shale oil in China. Mar. Pet. Geol. 2019, 102, 48–60. [Google Scholar]
- Zhang, J.; Lin, L.; Li, Y.; Tang, X.; Zhu, L.; Xing, Y.; Jiang, S.; Jing, T.; Yang, S. Classification and evaluation of shale oil. Earth Sci. Front. 2012, 19, 322–331. [Google Scholar]
- Song, J.; Littke, R.; Weniger, P.; Ostertag-Henning, C.; Nelskamp, S. Shale oil potential and thermal maturity of the Lower Toarcian Posidonia Shale in NW Europe. Int. J. Coal Geol. 2015, 150–151, 127–153. [Google Scholar] [CrossRef]
- Wang, C.; Kuang, L.; Gao, G. Difference in hydrocarbon generation potential of the shaly source rocks in Jimusar, Permian Lucaogou Formation. Acta Sedimentol. Sinca 2014, 32, 385–390. [Google Scholar]
- Nelson, P.H. Pore-throat sizes in sandstones, tight sandstones, and shales. AAPG Bull. 2009, 93, 329–340. [Google Scholar] [CrossRef]
- Feng, Q.; Xu, S.; Xing, X.; Zhang, W.; Wang, S. Advances and challenges in shale oil development: A critical review. Adv. Geo-Energy Res. 2020, 4, 406–418. [Google Scholar] [CrossRef]
- Wood, D.A. Techniques used to calculate shale fractal dimensions involve uncertainties and imprecisions that require more careful consideration. Adv. Geo-Energy Res. 2021, 5, 153–165. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, Y.; Fang, Z. Pore throat structure and classification of Paleogene tight reservoirs in Jiyang depression, Bohai Bay Basin, China. Pet. Explor. Dev. 2021, 48, 266–278. [Google Scholar] [CrossRef]
- Jin, J.; Yang, Z.; Erxiding, Y.; Li, L.; Liu, M. Nanopore Characteristics and Oil-Bearing Properties of Tight Oil Reservoirs in Jimsar Sag, Junggar Basin. Earth Sci. 2018, 43, 1594–1601. [Google Scholar]
- Li, W.; Mu, L.; Zhao, L.; Li, J.; Wang, S.; Fan, Z.; Shao, D.; Li, C.; Shan, F.; Zhao, W.; et al. Pore-throat structure characteristics and its impact on the porosity and permeability relationship of Carboniferous carbonate reservoirs in eastern edge of Pre-Caspian Basin. Pet. Explor. Dev. 2020, 47, 1027–1041. [Google Scholar] [CrossRef]
- Zou, C.; Zhu, R.K.; Bai, B.; Yang, Z.; Wu, S.; Su, L.; Dong, D.; Li, X. First discovery of nano-pore throat in oil and gas reservoir in China and its scientific value. Acta Petrol. Sin. 2011, 27, 1857–1864. [Google Scholar]
- Ren, X.; Li, A.; Wang, Y.; Wu, S.; Wang, G. Pore structure of tight sandstone reservoir and its influence on percolation: Taking the Chang 8 reservoir in Maling oilfield in Ordos Basin as an example. Oil Gas Geol. 2015, 36, 774–779. [Google Scholar]
- Yang, F.; Ning, Z.; Wang, Q.; Kong, D.; Peng, K.; Xiao, L. Fractal characteristics of nanopore in shales. Nat. Gas Geosci. 2014, 25, 618–623. [Google Scholar]
- Tian, W.; Liu, H.; He, S.; Wang, J.; Xie, L. Characterization of microscopic pore structure of tight oil reservoirs in Lucaogou Formation, Jimusaer Sag. Pet. Geol. Recovery Effic. 2019, 26, 25–30. [Google Scholar]
- Liu, Y.; Dong, X.; Yan, L.; Chen, F.; Gao, Y.; Chen, Z. Quantitative Characterization of Pore Structure of the Lucaogou Formation in Jimsar Sag. Xinjiang Pet. Geol. 2019, 40, 284–289. [Google Scholar]
- Liu, L.; Min, L.; Sun, Z.; Pei, L.; Gu, H. Pore structure and percolation characteristics in shale oil reservoir of Jiyang Depression. Pet. Geol. Recovery Effic. 2021, 28, 107–114. [Google Scholar]
- Clarkson, C.R.; Solano, N.; Bustin, R.M.; Bustin, A.M.; Chalmers, G.R.; He, L.; Melnichenko, Y.B.; Radliński, A.P.; Blach, T. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion. Fuel 2013, 103, 606–616. [Google Scholar] [CrossRef]
- He, L.; Zhao, L.; Li, J.; Ma, J.; Liu, R.; Wang, S.; Zhao, W. Complex relationship between porosity and permeability of carbonate reservoirs and its controlling factors: A case of platform facies in Precaspian Basin. Pet. Explor. Dev. 2014, 41, 206–214. [Google Scholar] [CrossRef]
- Qin, R.; LI, X.; Liu, C.; Mao, Z. Influential factors of pore structure and quantitative evaluation of reservoir parameters in carbonate reservoirs. Earth Sci. Front. 2015, 22, 251–259. [Google Scholar]
- Wang, Q.; Zhao, S.; Wei, Q.; Xiao, L.; Yang, Y.; Guo, Y.; Niu, M. Marine carbonate reservoir characteristics of the Middle Ordovician Majiagou Formation in Ordos Basin. J. Palaeogeogr. 2012, 14, 229–242. [Google Scholar]
- Liu, H.; Yang, Y.; Wang, F.; Deng, X.; Liu, Y.; Nan, J.; Wang, J.; Zhang, H. Micro pore and throat characteristics and origin of tight sandstone reservoirs: A case study of the Triassic Chang 6 and Chang 8 members in Longdong area, Ordos Basin, NW China. Pet. Explor. Dev. 2018, 45, 239–250. [Google Scholar] [CrossRef]
- Ma, K.; Liu, Y.; Hou, J.; Huang, S.; Yan, L.; Chen, F.; Yang, W. Mixed sedimentary model of salinized Lake in Lucaogou Formation of Permian in Jimusar Depression. Acta Pet. Sin. 2017, 38, 636–648. [Google Scholar]
- Shao, Y.; Yang, Y.; Wan, M.; Qiu, L.; Cao, Y.; Yang, S. Sedimentary characteristics and sedimentary facies evolution of Permian Lucaogou Formation in Jimusar Sag. Xinjiang Pet. Geol. 2015, 36, 635–642. [Google Scholar]
- Zhang, Y.; Ma, S.; Gao, Y.; Li, Y.; Zhang, J.; Wang, L.; Sun, Y.; Xu, F.; Li, H. Depositional facies analysis on tight reservoir of the Lucaogou Formation in Jimusar Sag, Junggar Bain. Acta Sedimentol. Sin. 2017, 35, 358–370. [Google Scholar]
- Fang, S.; Song, Y.; Xu, H.; Fang, R.; Liu, L.; Xiu, X. Relationship between tectonic evolution and petroleum system formation—taking the Jimusar sag of eastern Junggar basin as an example. Pet. Geol. Exp. 2007, 29, 149–153. [Google Scholar]
- Qu, C. Characteristics and Depositional Environment of Organic-Rich Mixed Sedimentary Rocks in Permian Lucaogou Formation, Jimusar Sag; China University of Petroleum: Beijing, China, 2017. [Google Scholar]
- Yang, Y.; Liu, Y.; Jiang, Y.; Yang, Z.; Zhou, D.; Jiao, X.; Zhou, P.; Li, X.; Jin, M. Geochemistry of the dolomitic rocks from the Permian Lucaogou Formation in the Jimusar depression, Junggar Basin, Xinjiang. Sediment. Geol. Tethyan Geol. 2019, 39, 85–93. [Google Scholar]
- Ma, K.; Liu, Y.; Hou, J.; Huang, S.; Yan, L.; Chen, F.; Yang, W. Densification Mechanism of Tight Reservoirs from Mixed Sedimentation in Saline Lacustrine Environment: A Case Study of Permian Lucaogou Formation, Jimsar sag. Xinjiang Pet. Geol. 2019, 40, 253–259. [Google Scholar]
- Li, S. Study on the Mixed Rock Microenvironment of the Lucaogou Formation in Jimusar Depression; School of Geosciences Yangtze University: Jinzhou, China, 2020. [Google Scholar]
- Bai, B.; Zhu, R.; Wu, S.; Wu, S.; Yang, W.; Gelb, J.; Gu, A.; Zhang, X.; Su, L. Multi-scale method of Nano(Micro)-CT study on microscopic pore structure of tight sandstone of Yanchang formation, Ordos Basin. Pet. Explor. Dev. 2013, 40, 329–333. [Google Scholar] [CrossRef]
- Zhou, P. Tight Oil Reservoir Characteristics and Reservoir Evaluation of Permian Lucaogou Formation in Jimsar Depression, Xinjiang; Northwest University: Xi’an, China, 2014. [Google Scholar]
- Wang, J.; Xiao, D.; Lu, S.; Kong, X.; Fang, Q. Classification evaluation of shale oil reservoir physical properties in Lucaogou formation, jimsar sag. J. China Univ. Min. Technol. 2020, 49, 173–183. [Google Scholar]
- Wang, R.; Hu, Z.; Sun, C.; Liu, Z.; Zhang, C.; Gao, B.; Du, W.; Zhao, J.; Tang, W. Comparative analysis of shale reservoir characteristics in the Wufeng-Longmaxi (O3w-S1l) and Niutitang (Є1n) Formations: A case study of the Wells JY1 and TX1 in southeastern Sichuan Basin and its periphery, SW China. Interpretation 2018, 6, SN31–SN45. [Google Scholar] [CrossRef]
- Wang, R.; Hu, Z.; Dong, L.; Gao, B.; Sun, C.; Yang, T.; Wang, G.; Yin, S. Advancement and trends of shale gas reservoir characterization and evaluation. Oil Gas Geol. 2021, 42, 54–65. [Google Scholar]
- Brunauer, S.; Emmett, P.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar] [CrossRef]
- Sing, K.S.W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Cao, Y.; Zhu, N.; Zhang, S.; Xi, K.; Xue, X. Diagenesis and Reserving Space Characteristics of Tight Oil Reservoirs of Permian Lucaogou Formation in Jimusar Sag of Junggar Basin, China. J. Earth Sci. Environ. 2019, 41, 253–266. [Google Scholar]
- Zhang, Z.; Tian, J.; Han, C.; Zhang, W.; Deng, S.; Sun, G. Reservoir characteristics and main controlling factors of the Lucaogou Formation in Jimsar Sag, Jungger Basin. Lithol. Reserv. 2021, 33, 116–126. [Google Scholar]
- Dai, C.; Zheng, R.; Zhu, R.; Li, F.; Gao, Z.; Bai, B. Reservoir characteristics of the Xujiahe Formation in central-west Sichuan analogous foreland basin. Nat. Gas Geosci. 2011, 27, 47–55. [Google Scholar]
- Yu, C. Pore structure characteristics and formation mechanism of Chang 8 member tight sandstone reservoir in Fuxian area. Unconv. Oil Gas 2021, 8, 15–21. [Google Scholar]
- Bear, D.C.; Weyl, P.K. Influence of texture on porosity and permeability of unconsolidated sand. AAPG Bull. 1973, 57, 349–369. [Google Scholar]
- Scherer, M. Parameters influencing porosity in sandstones: A model for sandstone porosity prediction. AAPG Bull. 1987, 71, 485–491. [Google Scholar] [CrossRef]
- Wang, R.; Chen, M. Quantiative analysis of porosity evolution during the reservoir sedimentation diagenesis-taking the Yan 25 and Zhuang 40 areas in the Ordos Basin as examples. Acta Geol. Sin. 2007, 81, 1432–1437. [Google Scholar]
- Wang, J.; Zhou, L.; Liu, J.; Zhang, X.; Zhang, F.; Zhang, B. Acid-base alternation diagenesis and its influence on shale reservoirs in the Permian Lucaogou Formation, Jimusar Sag, Junggar Basin, NW China. Pet. Explor. Dev. 2020, 47, 898–912. [Google Scholar] [CrossRef]
- Wang, M.; Tang, H.; Liu, S.; Zhao, F.; Li, L.; Lu, H.; Wang, Y.; Zhang, L. Formation mechanism of differential sandstone densification modes and its impact on reservoir quality: A case study of Upper Paleozoic Permian in eastern part of Sulige gasfield, Ordos basin. J. China Univ. Min. Technol. 2017, 46, 1228–1246. [Google Scholar]
Physical Parameters | Minimum | Max | Main Interval | Average |
---|---|---|---|---|
Porosity/% | 0.49 | 21.80 | 6.0–19.0 | 11.35 |
Permeability/mD | 0.01 | 1.24 | 0.01–0.10 | 0.14 |
Physical Parameters | Lithology | |||
---|---|---|---|---|
Feldspar Detritus Sandstone | Dolomitic Sandstone | Sandy Dolomite | ||
Porosity/% | Max | 21.80 | 13.80 | 19.80 |
Minimum | 0.50 | 0.49 | 1.58 | |
Main interval | 6.0–10.0 | 2.0–8.0 | 4.0–8.0 | |
Average | 11.97 | 9.98 | 8.54 | |
Standard deviation | 4.52 | 4.88 | 4.65 | |
Permeability/mD | Max | 1.24 | 1.13 | 1.83 |
Minimum | 0.01 | 0.03 | 0.01 | |
Main interval | 0.01–1.00 | 0.01–0.02 | 0.01–0.32 | |
Average | 0.18 | 0.10 | 0.04 | |
Standard deviation | 0.29 | 0.10 | 0.47 |
Cause Type | Pore Type | Cause Mechanism | Feature | Pore Size/um |
---|---|---|---|---|
Primary pores | Residual intergranular pores | Mostly residual pores between particles | Mostly triangular or polygonal generally distributed in isolation poor connectivity | 30–80 |
Intercrystalline pores | ||||
Secondary pores | Intergranular dissolution pores | Partial dissolution of particles such as feldspar or cuttings and partial dissolution of interstitials form interstitial dissolution pores | Irregular, scattered, small pores and fine throat | >0.01 |
Matrix dissolution pores | ||||
Intercrystalline dissolution pores |
Curve Shape | Sample | Porosity/% | Permeability/mD | Median Radius/um | Discharge Pressure/Mpa | Maximum Pore Throat Radius/um | Maximum Mercury Saturation/% |
---|---|---|---|---|---|---|---|
Weak platform | J10012-26 | 10.700 | 0.030 | 0.140 | 1.270 | 0.580 | 87.600 |
J10022-40 | 14.000 | 0.040 | 0.220 | 1.270 | 0.580 | 86.800 | |
J10022-41 | 11.600 | 0.010 | 0.100 | 2.550 | 0.288 | 80.700 | |
J10016-47 | 10.900 | 0.010 | 0.070 | 2.550 | 0.288 | 97.200 | |
High slope linear straight | J10014-42 | 1.200 | 0.020 | 0.009 | 2.550 | 0.288 | 76.700 |
J10014-08 | 4.200 | 0.480 | 0.028 | 0.630 | 1.167 | 85.200 | |
J10016-22 | 7.600 | 0.020 | 0.039 | 1.270 | 0.580 | 72.800 | |
J10013-06 | 3.500 | 0.020 | 0.023 | 0.630 | 1.167 | 89.800 | |
Low slope linear straight | J10022-37 | 4.600 | 0.010 | 0.007 | 10.230 | 0.072 | 75.500 |
J10012-28 | 3.700 | 0.010 | 0.007 | 20.450 | 0.036 | 83.600 | |
J10016-15 | 10.700 | 0.010 | 0.014 | 10.230 | 0.072 | 76.700 | |
J10014-07 | 7.300 | 0.030 | 0.011 | 10.230 | 0.072 | 81.700 | |
Upward convex | J10012-29 | 1.300 | 0.130 | — | 10.230 | 0.072 | 38.100 |
J10012-24 | 0.800 | 0.020 | — | 20.450 | 0.036 | 20.700 | |
J10016-17 | 1.700 | 0.200 | — | 20.450 | 0.036 | 32.700 | |
J10013-05 | 0.500 | 0.010 | — | 20.450 | 0.036 | 46.200 |
Sample | Specific Surface Area/m2/g | Pore Volume/mm3/g | Average Pore Diameter/nm | Peak Pore Diameter Distribution/nm |
---|---|---|---|---|
J10012-26 | 0.83 | 5.51 | 29.40 | 3.64 |
J10022-40 | 0.61 | 2.14 | 29.52 | 27.42 |
J10022-41 | 0.71 | 3.70 | 45.38 | 40.02 |
J10022-37 | 40.23 | 14.89 | 8.34 | 3.75 |
J10016-15 | 1.60 | 9.49 | 20.48 | 3.88 |
J10016-22 | 1.12 | 8.89 | 26.81 | 12.86 |
Lithology | Sorting Coefficient | Cement Content | Primary Intergranular Porosity/% | Cement Face Rate/% | Dissolution Pore Face Rate/% | Porosity/% | Total Face Rate/% |
---|---|---|---|---|---|---|---|
Detrital feldspar sandstone | 4.20 | 6.24 | 4.32 | 13.68 | 13.86 | 11.97 | 17.26 |
Dolomitic sandstone | 2.60 | 5.37 | 9.36 | 16.85 | 15.24 | 9.98 | 18.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zha, X.; Lai, F.; Gao, X.; Gao, Y.; Jiang, N.; Luo, L.; Li, Y.; Wang, J.; Peng, S.; Luo, X.; et al. Characteristics and Genetic Mechanism of Pore Throat Structure of Shale Oil Reservoir in Saline Lake—A Case Study of Shale Oil of the Lucaogou Formation in Jimsar Sag, Junggar Basin. Energies 2021, 14, 8450. https://doi.org/10.3390/en14248450
Zha X, Lai F, Gao X, Gao Y, Jiang N, Luo L, Li Y, Wang J, Peng S, Luo X, et al. Characteristics and Genetic Mechanism of Pore Throat Structure of Shale Oil Reservoir in Saline Lake—A Case Study of Shale Oil of the Lucaogou Formation in Jimsar Sag, Junggar Basin. Energies. 2021; 14(24):8450. https://doi.org/10.3390/en14248450
Chicago/Turabian StyleZha, Xiaojun, Fuqiang Lai, Xuanbo Gao, Yang Gao, Nan Jiang, Long Luo, Yingyan Li, Jia Wang, Shouchang Peng, Xun Luo, and et al. 2021. "Characteristics and Genetic Mechanism of Pore Throat Structure of Shale Oil Reservoir in Saline Lake—A Case Study of Shale Oil of the Lucaogou Formation in Jimsar Sag, Junggar Basin" Energies 14, no. 24: 8450. https://doi.org/10.3390/en14248450
APA StyleZha, X., Lai, F., Gao, X., Gao, Y., Jiang, N., Luo, L., Li, Y., Wang, J., Peng, S., Luo, X., & Tan, X. (2021). Characteristics and Genetic Mechanism of Pore Throat Structure of Shale Oil Reservoir in Saline Lake—A Case Study of Shale Oil of the Lucaogou Formation in Jimsar Sag, Junggar Basin. Energies, 14(24), 8450. https://doi.org/10.3390/en14248450