Analysis of the Influence of Coal Petrography on the Proper Application of the Unipore and Bidisperse Models of Methane Diffusion
Abstract
:1. Introduction
2. Diffusion Models
2.1. Unipore Diffusion Model
2.2. Bidisperse Diffusion Model
3. Materials and Methods
3.1. Materials
3.2. Petrographic Analysis—Research of Vitrinite Reflectivity and Maceral Composition
3.3. Sorption Analysis—Determination of Sorption Kinetics
3.4. Identification Procedure
4. Results and Discussion
4.1. Petrographic Analysis
- Samples with R0 < 1% should be treated as low rank coals (acc. to ASTM—Subbituminous and High Volatile Bituminous) [54].
- Samples with R0 1–1.4% should be treated as medium rank coals (acc. to ASTM—Medium Volatile Bituminous) [54].
- Samples with R0 > 1.4% should be treated as high rank coals (acc. to ASTM—Low Volatile Bituminous) [54].
4.2. Sorption Analysis
5. Conclusions
- The pore size distribution has a significant impact on the rate of gas sorption processes in the coal structure. Coals homogeneous in terms of pore size distribution can be well fitted with simple diffusion models based on the unipore pore structure. Such coals are characterized by a high degree of coalification and a homogeneous maceral composition with a visible predominance of one of the maceral groups. The possibility of using the unipore model to describe the sorption of bright coals suggests that the micropore system plays a dominant role in their structure.
- Bidisperse sorption is indicated for dull coals rich in inertinite, especially semifusinite. Coals with a complex structure, in which sorption and diffusion occur simultaneously in micro- and macropores, must be described by a bidisperse model, which has a better fit to the real course of sorption kinetics.
- The application of the unipore model is possible for high rank coals, characterized by structures with vitrinite predominating. Conditionally, it can be applied to medium rank coals on the condition of high vitrinite content, indicating the predominance of micropores in the structure.
- For low rank coals, it is necessary to use a bidisperse model to properly describe the course of sorption processes. The bidisperse model provides a good fit for all analysed coal types, regardless of the ratio of individual maceral groups.
- Hard coal with a low degree of coalification is characterized by a high volatile matter content Vdaf, and as the vitrinite reflectivity R0 increases, Vdaf decreases. This correlation is not perfectly rectilinear, as Vdaf is also affected by the content of individual maceral groups, especially the ratio of vitrinite to inertinite.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- U.S. Energy Information Administration, International Energy Statistics. Available online: https://www.eia.gov/international/data/world/electricity/electricity-consumption (accessed on 6 December 2021).
- Norby, R.J.; Luo, Y. Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world. New Phytol. 2004, 162, 281–293. [Google Scholar] [CrossRef]
- Perera, F. Pollution from Fossil-Fuel Combustion is the Leading Environmental Threat to Global Pediatric Health and Equity: Solutions Exist. Int. J. Environ. Res. Public Health 2018, 15, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paraschiv, S.; Paraschiv, L.S. Trends of carbon dioxide (CO2) emissions from fossil fuels combustions (coal, gas and oil) in the EU member states from 1960 to 2018. Energy Rep. 2020, 6, 237–242. [Google Scholar] [CrossRef]
- Borowski, M.; Życzkowski, P.; Cheng, J.; Łuczak, R.; Zwolińska, K. The combustion of Methane from Hard Coal Seams in Gas Engines as a Technology Leading to Reducing Greenhouse Gas Emissions—Electricity Prediction Using ANN. Energies 2020, 13, 4429. [Google Scholar] [CrossRef]
- Tutak, M.; Brodny, J. Forecasting Methane Emissions from Hard Coal Mines Including the Methane Drainage Process. Energies 2019, 12, 3840. [Google Scholar] [CrossRef] [Green Version]
- Gonet, A.; Nagy, S.; Rybicki, C.; Siemek, J.; Stryczek, S.; Wiśniowski, R. Coal bed methane extraction technology (CBM). Górnictwo i Geol. 2010, 5, 5–25. [Google Scholar]
- Ahmed, A.; Johnston, J.S.; Boyer, C.; Lambert, S.W.; Bustos, O.A.; Pashin, J.C.; Wray, A. Coalbed methane: Clean energy for the world. Oilfield Rev. 2009, 21, 4–13. [Google Scholar]
- Busch, A.; Gensterblum, Y. CBM and CO2-ECBM related sorption processes in coal: A review. Int. J. Coal Geol. 2011, 87, 48–71. [Google Scholar] [CrossRef]
- Zou, C. Chapter 2—Meaning of Unconventional Petroleum Geology. Unconventional Petroleum Geology, 2nd ed.; Petroleum Industry Press: Beijing, China, 2017; pp. 49–95. [Google Scholar]
- Hadro, J.; Wójcik, I. Coalbed methane: Resources and exploitation. Przegląd Geol. 2013, 61, 404–410. [Google Scholar]
- Słoczyński, T.; Drozd, A. Coalbed methane (CBM)—World experience and development prospects in Poland. Naft. i Gaz 2017, 11, 851–856. [Google Scholar] [CrossRef]
- Karbownik, M.; Krause, E. Tests of methane desorption and emission from samples of hard coal in the context of mine closures through flooding. J. Sustain. Min. 2019, 18, 127–133. [Google Scholar] [CrossRef]
- Harpalani, S.; Chen, G. Influence of gas production induced volumetric strain on permeability of coal. Geotech. Geol. Eng. 1997, 15, 303–325. [Google Scholar] [CrossRef]
- Robertson, E.P. Measurement and Modeling of Sorption-Induced Strain and Permeability Changes in Coal; Idaho National Laboratory: Idaho Falls, ID, USA, 2005. [Google Scholar]
- Zhou, F.B.; Xia, T.Q.; Wang, X.; Zhang, Y.; Sun, Y.; Liu, J. Recent developments of coal mine methane extraction and utilization in China: A review. J. Nat. Gas Sci. Eng. 2016, 31, 437–458. [Google Scholar] [CrossRef]
- Wierzbicki, M.; Skoczylas, N. Selected methods of determining the effective diffusion coefficient on the basis of the kinetics of saturation/gas release from a coal sample. Pract. Inst. Mech. Górotworu PAN 2010, 12, 43–50. [Google Scholar]
- Hobler, T. Diffusive Mass Movement and Absorbers; Wydawnictwo Naukowo-Techniczne: Warszawa, Poland, 1976. [Google Scholar]
- Keshavarz, A.; Sakurovs, R.; Grigore, M.; Sayyafzadeh, M. Effect of maceral composition and coal rank on gas diffusion in Australian coals. Int. J. Coal Geol. 2017, 173, 65–75. [Google Scholar] [CrossRef]
- Crank, J. The Mathematics of Diffusion, 2nd ed.; Oxford University Press: London, UK, 1975; p. 414. [Google Scholar]
- Crosdale, P.J.; Beamish, B.B.; Valix, M. Coalbed methane sorption related to coal composition. Int. J. Coal Geol. 1998, 35, 147–158. [Google Scholar] [CrossRef]
- Laxminarayana, C.; Crosdale, P.J. Role of coal type and rank on methane sorption characteristics of Bowen Basin, Australia coals. Int. J. Coal Geol. 1999, 40, 309–325. [Google Scholar] [CrossRef]
- Godyń, K.; Dutka, B. The impact of the degree of coalification on the sorption capacity of coals from the Zofiówka Monocline. Arch. Min. Sci. 2018, 63, 727–746. [Google Scholar] [CrossRef]
- Godyń, K.; Dutka, B.; Chuchro, M.; Młynarczuk, M. Synergy of Parameters Determining the Optimal Properties of Coal as a Natural Sorbent. Energies 2020, 13, 1967. [Google Scholar] [CrossRef]
- Karbownik, M.; Krawczyk, J.; Schlieter, T. The Unipore and Bidisperse Diffusion Models for Methane in Hard Coal Solid Structures Related to the Conditions in the Upper Silesian Coal Basin. Arch. Min. Sci. 2020, 65, 591–603. [Google Scholar] [CrossRef]
- Dutka, B.; Godyń, K. Coalification as a Process Determining the Methane Adsorption Ability of Coal Seams. Arch. Min. Sci. 2021, 66, 181–195. [Google Scholar] [CrossRef]
- Bukowska, M.; Senetra, U.; Wadas, M. Chronostratigraphic and Depth Variability of Porosity and Strength of Hard Coals in the Upper Silesian Basin. Gospod. Surowcami Miner. 2012, 28, 151–166. [Google Scholar] [CrossRef] [Green Version]
- Busch, A.; Gensterblum, Y.; Krooss, B.M.; Littke, R. Methane and carbon dioxide adsorption–diffusion experiments on coal: Upscaling and modeling. Int. J. Coal Geol. 2004, 60, 151–168. [Google Scholar] [CrossRef]
- Li, D.; Liu, Q.; Weniger, P.; Gensterblum, Y.; Busch, A.; Krooss, B.M. High-pressure sorption isotherms and sorption kinetics of CH4 and CO2 on coals. Fuel 2010, 89, 569–580. [Google Scholar] [CrossRef]
- Clarkson, C.R.; Bustin, R.M. The effect of pore structure and gas pressure upon the transport properties of coal: A laboratory and modeling study. 2. Adsorption rate modeling. Fuel 1999, 78, 1345–1362. [Google Scholar] [CrossRef]
- Pan, Z.; Connell, L.D.; Camilleri, M.; Connelly, L. Efects of matrix moisture on gas diffusion and flow in coal. Fuel 2010, 89, 3207–3217. [Google Scholar] [CrossRef]
- Dang, W.; Zhang, J.; Wei, X.; Tang, X.; Wang, C.; Chen, Q.; Lei, Y. Methane Adsorption Rate and Diffusion Characteristics in Marine Shale Samples from Yangtze Platform, South China. Energies 2017, 10, 626. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Nie, Y.; Tian, J.; Zhao, Y.; Zhang, X. The Impact of Equilibrium Gas Pressure and Coal Particle Size on Gas Dynamic Diffusion in Coal. Processes 2019, 7, 571. [Google Scholar] [CrossRef] [Green Version]
- Cui, X.; Bustin, R.M.; Dipple, G. Selective transport of CO2, CH4, and N2 in coals: Insights from modeling of experimental gas adsorption data. Fuel 2004, 83, 293–303. [Google Scholar] [CrossRef]
- Krause, E.; Wierzbiński, K. Studies on sorption kinetics of coals from seams threatened by methane and rock outbursts. In Proceedings of the XIII International Scientific and Technical Conference GZN, Ustroń, Poland, 7–8 November 2006. [Google Scholar]
- Wierzbicki, M.; Skoczylas, N.; Kudasik, M. The Use of a Unipore Diffusion Model to Describe the Kinetics of Methane Release from Coal Spoil in the Longwall Environment. Studia Geotech. Et Mech. 2017, 39, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Pillalamarry, M.; Harpalani, S.; Liu, S. Gas diffusion behavior of coal and its impact on production from coalbed methane reservoirs. Int. J. Coal Geol. 2011, 86, 342–348. [Google Scholar] [CrossRef]
- Jian, X.; Guan, P.; Zhang, W. Carbon dioxide sorption and diffusion in coals: Experimental investigation and modeling. Sci. China Earth Sci. 2012, 55, 633–643. [Google Scholar] [CrossRef]
- Švábová, M.; Weishauptová, Z.; Přibyl, O. The effect of moisture on the sorption process of CO2 on coal. Fuel 2012, 92, 187–196. [Google Scholar] [CrossRef]
- Pone, J.D.N.; Halleck, P.M.; Mathews, J.P. Sorption capacity and sorption kinetic measurements of CO2 and CH4 in confined and unconfined bituminous coal. Energy Fuels 2009, 23, 4688–4695. [Google Scholar] [CrossRef]
- Yang, X.; Wang, G.; Zhang, J.; Ren, T. The Influence of Sorption Pressure on Gas Diffusion in Coal Particles: An Experimental Study. Processes 2019, 7, 219. [Google Scholar] [CrossRef] [Green Version]
- Timofiejew, D.P. Adsprptionskinetik; VEB: Leipzig, Germany, 1967. [Google Scholar]
- Ruckenstein, E.; Vaidyanathan, A.S.; Youngquist, G.R. Sorption by solids with bidisperse pore structure. Chem. Eng. Sci. 1971, 26, 1305–1318. [Google Scholar] [CrossRef]
- Shi, J.Q.; Durucan, S. A bidisperse pore diffusion model for methane displacement desorption in coal by CO2 injection. Fuel 2003, 82, 1219–1229. [Google Scholar] [CrossRef]
- Siemons, N.; Wolf, K.H.A.A.; Bruining, J. Interpretation of carbon dioxide diffusion behavior in coals. Int. J. Coal Geol. 2007, 72, 315–324. [Google Scholar] [CrossRef]
- Wang, G.D.; Ren, T.; Qi, Q.X.; Zhang, L.; Liu, Q.Q. Prediction of Coalbed Methane (CBM) Production Considering Bidisperse Diffusion: Model Development, Experimental Test, and Numerical Simulation. Energy Fuels 2017, 31, 5785–5797. [Google Scholar] [CrossRef]
- Czerw, K.; Ćwik, A.; Baran, P.; Zarębska, K. Kinetics of methane and carbon dioxide sorption and sorption–induced expansion of coal—kinetic equations assessment. E3S Web Conf. 2016, 10, 1–7. [Google Scholar] [CrossRef]
- Ceglarska-Stefańska, G.; Nodzeński, A.; Hołda, S. Studies on coal-gas system in the aspect of methane extraction and CO2 sequestration. Gospod. Surowcami Miner. 2007, 23, 51–59. [Google Scholar]
- ISO 7404-2:2009; Methods for the Petrographic Analysis of Coals—Part 2: Methods of preparing Coal Samples; ISO: Geneva, Switzerland, 2009.
- ISO 7404-3:2009; Methods for the Petrographic Analysis of Coals—Part 3: Method of Determining Maceral Group Composition; ISO: Geneva, Switzerland, 2009.
- SO 7404-5:2009; Methods for the Petrographic Analysis of Coals—Part 5: Method of Determining Microscopically the Reflectance of Vitrinite; ISO: Geneva, Switzerland, 2009.
- PL-PKN. PN-G-04516:1998 Solid Fuels—Determination of Volatile Matter Content by Balance Method; PL-PKN: Warszawa, Poland, 1998. [Google Scholar]
- Mianowski, A.; Marecka, A. The isokinetic effect as related to the activation energy for the gases diffusion in coal at ambient temperatures. J. Therm. Anal. Calorim. 2009, 96, 285–292. [Google Scholar] [CrossRef]
- Stach, E.; Mackowsky, M.T.; Teichmuller, M.; Taylor, G.H.; Chandra, D.; Teichmuller, R. Stach’s Textbook of Coal Petrology; Gebruder Borntraeger: Berlin, Germany, 1982. [Google Scholar]
- Probierz, K.; Marcisz, M.; Sobolewski, A. From Peat to Coking Coals in the Zofiówka Monocline in the Jastrzębie Area (South-Western Part of the Upper Silesian Coal Basin); Publishing House of the Institute for Chemical Processing of Coal: Zabrze, Poland, 2012. [Google Scholar]
- Crosdale, P.J.; Beamish, B.B. Methane diffusivity at South Bulli (NSW) and Central (Qld) collieries in relation to coal maceral composition. In Proceedings of the International Symposium-Cum-Workshop On Management and Control of High Gas Emissions and Outbursts in Underground Coal Mines, Wollongong, Australia, 20–24 March 1995; pp. 363–367. [Google Scholar]
- Olajossy, A. On the effects of maceral content on methane sorption capacity in coals. Arch. Min. Sci. 2013, 58, 1221–1228. [Google Scholar] [CrossRef] [Green Version]
- Godyń, K.; Dutka, B. Sorption and Micro-Scale Strength Properties of Coals usceptible to Outburst Caused by Changes in Degree of Coalification. Materials 2021, 14, 5807. [Google Scholar] [CrossRef]
- Song, W.; Yao, B.; Yao, J.; Li, Y.; Sun, H.; Yang, Y.; Zhang, L. Methane surface diffusion capacity in carbon-based capillary with application to organic-rich shale gas reservoir. Chem. Eng. J. 2018, 352, 644–654. [Google Scholar] [CrossRef]
- Zhu, Q.; Song, W.; Yang, Y.; Lu, X.; Liu, L.; Zhang, Y.; Sun, H.; Yao, J. An Advection-diffusion-mechanical deformation integral model to predict coal matrix methane permeability combining digital rock physics with laboratory measurements. Appl. Geochem. 2021, 126, 104861. [Google Scholar] [CrossRef]
- Yuan, W.; Pan, Z.; Xiao, L.; Yang, Y.; Zhao, C.; Connell, L.D.; Li, S.; He, J. Experimental study and modelling of methane adsorption and diffusion in shale. Fuel 2014, 117, 509–519. [Google Scholar] [CrossRef]
- Roberts, P.V.; York, R. Adsorption of Normal Paraffins from Binary Liquid Solutions by 5A Molecular Sieve. Ind. Eng. Chem. Process Des. Dev. 1967, 6, 516–525. [Google Scholar] [CrossRef]
Low-Rank Coal Samples | Medium-Rank Coal Samples | High-Rank Coal Samples |
---|---|---|
Sobieski D-25 | Borynia D-6 | ČR-Věřňovice Cz. 4006 |
Sobieski D-24 | Zofiówka D-22 | |
Piast D-34 | Pniówek D-7 | ČR-Věřňovice Cz. 4032 |
Mysłowice-Wesoła D-37 | Zofiówka D-23 |
No. | Sample | Wa (%) | A (%) | Vdaf (%) | R0 (%) | Wt mmf (%) | I mmf (%) | L mmf (%) | Minerals (%) |
---|---|---|---|---|---|---|---|---|---|
Low rank coals | |||||||||
1. | D-25 | 11.59 | 8.63 | 35.12 | 0.435 | 58.69 | 32.27 | 9.04 | 1.64 |
2. | D-24 | 8.04 | 8.03 | 36.73 | 0.47 | 47.56 | 39.68 | 12.75 | 5.68 |
3. | D-34 | 3.49 | 5.92 | 38.58 | 0.716 | 58.32 | 24.27 | 17.41 | 1.95 |
4. | D-37 | 3.17 | 12.08 | 38.96 | 0.735 | 64.99 | 28.89 | 6.12 | 6.60 |
Medium rank coals | |||||||||
5. | D-6 | 1.53 | 4.01 | 25.05 | 1.076 | 87.65 | 9.53 | 2.82 | 0.53 |
6. | D-22 | 1.12 | 5.80 | 25.37 | 1.113 | 81.55 | 15.87 | 2.57 | 3.28 |
7. | D-7 | 1.47 | 29.35 | 27.07 | 1.116 | 80.20 | 18.60 | 1.20 | 21.7 |
8. | D-23 | 0.99 | 6.21 | 19.80 | 1.361 | 73.82 | 24.09 | 2.09 | 6.83 |
High rank coals | |||||||||
9. | Cz. 4006 | 0.62 | 7.54 | 13.62 | 1.94 | 91.29 | 8.71 | 0 | 3.11 |
10. | Cz. 4032 | 0.60 | 9.02 | 13.51 | 2.01 | 88.18 | 11.82 | 0 | 2.62 |
No. | Sample | Rz (cm) | De (cm2/s) | MSE | |
---|---|---|---|---|---|
Low-rank coals | |||||
1. | D-25 | 1.793 × 10−4 | 0.011157 | 2.232 × 10−8 | 0.00514 |
2. | D-24 | 2.714 × 10−4 | 0.011157 | 3.379 × 10−8 | 0.00730 |
3. | D-34 | 5.990 × 10−6 | 0.011157 | 7.457 × 10−10 | 0.00243 |
4. | D-37 | 6.840 × 10−6 | 0.011157 | 8.515 × 10−10 | 0.00293 |
Medium-rank coals | |||||
5. | D-6 | 5.087 × 10−6 | 0.011157 | 6.333 × 10−10 | 0.00033 |
6. | D-22 | 2.344 × 10−6 | 0.011157 | 2.918 × 10−10 | 0.00215 |
7. | D-7 | 9.287 × 10−6 | 0.011157 | 1.156 × 10−9 | 0.00092 |
8. | D-23 | 4.791 × 10−6 | 0.011157 | 5.964 × 10−10 | 0.00043 |
High-rank coals | |||||
9. | Cz. 4006 | 1.758 × 10−6 | 0.011157 | 2.188 × 10−10 | 0.00066 |
10. | Cz. 4032 | 2.559 × 10−6 | 0.011157 | 3.185 × 10−10 | 0.00018 |
No. | Sample | MSE | ||||
---|---|---|---|---|---|---|
Low-rank coals | ||||||
1. | D-25 | 1.923 × 10−4 | 7.192 × 10−7 | 0.788472 | 0.0682 | 0.00503 |
2. | D-24 | 2.836 × 10−4 | 2.244 × 10−7 | 0.014057 | 0.0392 | 0.00721 |
3. | D-34 | 3.725 × 10−5 | 7.137 × 10−6 | 0.386631 | 6.1462 | 0.00017 |
4. | D-37 | 3.471 × 10−5 | 5.273 × 10−6 | 0.492207 | 4.6148 | 0.00033 |
Medium-rank coals | ||||||
5. | D-6 | 1.330 × 10−5 | 3.289 × 10−3 | 0.001063 | 7.2988 | 0.00014 |
6. | D-22 | 2.115 × 10−5 | 2.197 × 10−3 | 0.006380 | 20.3650 | 0.00010 |
7. | D-7 | 1.841 × 10−5 | 8.396 × 10−4 | 0.004401 | 2.2815 | 0.00042 |
8. | D-23 | 1.486 × 10−5 | 8.205 × 10−4 | 0.003880 | 7.7398 | 0.00011 |
High-rank coals | ||||||
9. | Cz. 4006 | 3.295 × 10−5 | 1.237 × 10−3 | 0.001090 | 38.9386 | 5.152 × 10−6 |
10. | Cz. 4032 | 1.695 × 10−5 | 1.970 × 10−3 | 0.001132 | 33.0460 | 6.649 × 10−6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karbownik, M.; Krawczyk, J.; Godyń, K.; Schlieter, T.; Ščučka, J. Analysis of the Influence of Coal Petrography on the Proper Application of the Unipore and Bidisperse Models of Methane Diffusion. Energies 2021, 14, 8495. https://doi.org/10.3390/en14248495
Karbownik M, Krawczyk J, Godyń K, Schlieter T, Ščučka J. Analysis of the Influence of Coal Petrography on the Proper Application of the Unipore and Bidisperse Models of Methane Diffusion. Energies. 2021; 14(24):8495. https://doi.org/10.3390/en14248495
Chicago/Turabian StyleKarbownik, Marcin, Jerzy Krawczyk, Katarzyna Godyń, Tomasz Schlieter, and Jiří Ščučka. 2021. "Analysis of the Influence of Coal Petrography on the Proper Application of the Unipore and Bidisperse Models of Methane Diffusion" Energies 14, no. 24: 8495. https://doi.org/10.3390/en14248495
APA StyleKarbownik, M., Krawczyk, J., Godyń, K., Schlieter, T., & Ščučka, J. (2021). Analysis of the Influence of Coal Petrography on the Proper Application of the Unipore and Bidisperse Models of Methane Diffusion. Energies, 14(24), 8495. https://doi.org/10.3390/en14248495