Photovoltaic Solar Energy from Urban Sprawl: Potential for Poland
Abstract
:1. Introduction
2. Literature Review
3. The Characteristics of Poland’s Energy Sector and Energy Policy
4. Methods and Results
4.1. Research Area
4.2. Spatial Data Used in the Analysis
4.3. Limitations of the Set of Data
4.4. The Weather Data
4.5. Energy Correction Algorithm Related to Roof Geometry
4.6. Basic Statistics of Solar Energy
4.7. ROI Calculation
- the decrease in PV cell efficiency over time was not considered;
- price changes of electricity over time were not considered (the wholesale market price of 383 PLN per MWh was assumed for all three analysed areas, valid as of November 2021), and therefore the annual cash flow from a solar PV installation was assumed constant;
- the discount rate (r) was set at 1.25%;
- no subsidies or discounts were considered;
- the lifetime of the PV installation was assumed to be 25 years;
- the initial PV installation cost (I0) was divided into three parts:
- 1.
- PV panel cost (avg. roof surface area/1.7 * 1900 PLN),
- 2.
- PV inverter price dependent on the max. nominal power of PV installation (40 kW—13,350 PLN or 25 kW—10,700 PLN),
- 3.
- cost of installation and wiring dependent on the max. nominal power of PV installation.
4.8. Results
5. Discussion
6. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Uhel, R. Urban Sprawl in Europe: The Ignored Challenge; European Commission: Copenhagen, Denmark, 2006; p. 56. [Google Scholar]
- Inostroza, L.; Baur, R.; Csaplovics, E. Urban sprawl and fragmentation in Latin America: A dynamic quantification and characterization of spatial patterns. J. Environ. Manag. 2013, 115, 87–97. [Google Scholar] [CrossRef]
- Salvati, L.; Gargiulo Morelli, V. Unveiling Urban Sprawl in the Mediterranean Region: Towards a Latent Urban Transformation? Int. J. Urban Reg. Res. 2014, 38, 1935–1953. [Google Scholar] [CrossRef]
- Arribas-Bel, D.; Nijkamp, P.; Scholten, H. Multidimensional urban sprawl in Europe: A self-organizing map approach. Comput. Environ. Urban Syst. 2011, 35, 263–275. [Google Scholar] [CrossRef] [Green Version]
- Ewing, R.H. Characteristics, causes, and effects of sprawl: A literature review. In Urban Ecology: An International Perspective on the Interaction between Humans and Nature; Marzluff, J.M., Shulenberger, E., Endlicher, W., Alberti, M., Bradley, G., Ryan, C., Simon, U., ZumBrunnen, C., Eds.; Springer: New York, NY, USA, 2008; pp. 519–535. [Google Scholar]
- Galster, G.; Hanson, R.; Ratcliffe, M.R.; Wolman, H.; Coleman, S.; Freihage, J. Wrestling sprawl to the ground: Defining and measuring an elusive concept. Hous. Policy Debate 2001, 12, 681–717. [Google Scholar] [CrossRef]
- Petrisor, A.-I.; Mierzejewska, L.; Mitrea, A.; Drachal, K.; Tache, A.V. Dynamics of Open Green Areas in Polish and Romanian Cities during 2006–2018: Insights for Spatial Planners. Remote Sens. 2021, 13, 4041. [Google Scholar] [CrossRef]
- Poelmans, L.; Van Rompaey, A. Detecting and modelling spatial patterns of urban sprawl in highly fragmented areas: A case study in the Flanders–Brussels region. Landsc. Urban Plan. 2009, 93, 10–19. [Google Scholar] [CrossRef]
- Mumford, L. The City in History: Its Origins, Its Transformations, and Its Prospects; Houghton Mifflin Harcourt: Boston, MA, USA, 1961; Volume 67. [Google Scholar]
- McHarg, I.L. Design with Nature; Natural History Press: Garden City, NY, USA, 1969. [Google Scholar]
- Anas, A. Discovering the efficiency of urban sprawl. In The Oxford Handbook of Urban Economics and Planning; Brooks, N., Donaghy, K., Knaap, G.-J., Eds.; Oxford University Press: Oxford, UK, 2011; p. 123. [Google Scholar]
- Onilude, O.O.; Vaz, E. Urban Sprawl and Growth Prediction for Lagos Using GlobeLand30 Data and Cellular Automata Model. Science 2021, 3, 23. [Google Scholar] [CrossRef]
- Burchell, R.; Lowenstein, G.; Dolphin, W.; Galley, C.; Downs, A.; Seskin, S. The benefits of sprawl. In The Costs of Sprawl—Revisited; Transportation Research Board and National Research Council: Washington, DC, USA, 2000. [Google Scholar]
- Majewska, A.; Denis, M.; Krupowicz, W. Urbanization Chaos of Suburban Small Cities in Poland:‘Tetris Development’. Land 2020, 9, 461. [Google Scholar] [CrossRef]
- Wnęk, A.; Kudas, D.; Stych, P. National level land-use changes in functional urban areas in Poland, Slovakia, and Czechia. Land 2021, 10, 39. [Google Scholar] [CrossRef]
- Śleszyński, P.; Kowalewski, A.; Markowski, T.; Legutko-Kobus, P.; Nowak, M. The contemporary economic costs of spatial chaos: Evidence from Poland. Land 2020, 9, 214. [Google Scholar] [CrossRef]
- Heffner, K. Proces suburbanizacji a polityka miejska w Polsce. In Miasto–Region–Gospodarka w Badaniach Geograficznych. W Stulecie Urodzin Profesora Ludwika Straszewicza; Marszał, T., Ed.; Wydawnictwo Uniwersytetu Łódzkiego: Łódź, Poland, 2016; pp. 75–110. [Google Scholar]
- Lityński, P. The Intensity of Urban Sprawl in Poland. ISPRS Int. J. Geo-Inf. 2021, 10, 95. [Google Scholar] [CrossRef]
- Kaczmarek, T. Różne oblicza suburbanizacji. Od przedmieść w cieniu miasta do post-suburbiów. Prace Studia Geogr. 2020, 65, 103–113. [Google Scholar]
- Ma, S.; Long, Y. Identifying spatial cities in China at the community scale. J. Urban Reg. Plan. 2019, 11, 37–50. [Google Scholar]
- Qi, W.; Wang, K. City administrative area and physical area in China: Spatial differences and integration strategies. Geogr. Res. 2019, 38, 207–220. [Google Scholar]
- Wassmer, R.W. An Economic Perspective on Urban Sprawl: With an Application to the American West and a Test of the Efficacy of Urban Growth Boundaries. 2002. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.542.5805&rep=rep1&type=pdf (accessed on 26 October 2021).
- Hughes, M.A. A mobility strategy for improving opportunity. Hous. Policy Debate 1995, 6, 271–297. [Google Scholar] [CrossRef]
- Parysek, J. The socio-economic and spatial transformation of Polish cities after 1989. Dela 2004, 21, 109–119. [Google Scholar] [CrossRef]
- Churski, P. Rola wielkich miast w rozwoju społeczno-gospodarczym Polski-poznańskie releksje (The Role of Big Cities in the Socio-Economic Development of Poland—Poznań Reflections). In Rola Wielkich Miast W Rozwoju SpołEczno-Gospodarczym Polski; Szlachta, J.W., Ed.; Studia KPZK PAN: Warszawa, Poland, 2018; pp. 129–143. [Google Scholar]
- Kowalewski, A.; Markowski, T.; Śleszyński, P. Studia nad Chaosem Przestrzennym; Studia KPZK PAN: Warszawa, Poland, 2018. [Google Scholar]
- Śleszyński, P.; Nowak, M.; Sudra, P.; Załęczna, M.; Blaszke, M. Economic Consequences of Adopting Local Spatial Development Plans for the Spatial Management System: The Case of Poland. Land 2021, 10, 112. [Google Scholar] [CrossRef]
- Mankiw, G. Principles of Microeconomics, 5th ed.; South-Western Cengage Learning: Mason, OH, USA, 2009. [Google Scholar]
- Mankiw, N.G.; Romer, D.; Weil, D.N. A contribution to the empirics of economic growth. Q. J. Econ. 1992, 107, 407–437. [Google Scholar] [CrossRef]
- Nowak, M.; Cotella, G.; Śleszyński, P. The Legal, Administrative, and Governance Frameworks of Spatial Policy, Planning, and Land Use: Interdependencies, Barriers, and Directions of Change. Land 2021, 10, 1119. [Google Scholar] [CrossRef]
- Bromley, R.D.; Tallon, A.R.; Roberts, A.J. New populations in the British city centre: Evidence of social change from the census and household surveys. Geoforum 2007, 38, 138–154. [Google Scholar] [CrossRef]
- Hołuj, A. Externalities in the Light of Selected Spatial Economy Issues-Contribution to the Discussion. Eur. Res. Stud. 2021, 24, 3–21. [Google Scholar] [CrossRef]
- Bhatta, B. Analysis of Urban Growth and Sprawl from Remote Sensing Data; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Anas, A.; Rhee, H.-J. Curbing excess sprawl with congestion tolls and urban boundaries. Reg. Sci. Urban Econ. 2006, 36, 510–541. [Google Scholar] [CrossRef] [Green Version]
- Lityński, P. Ekonomiczne konsekwencje przestrzennej decentralizacji i centralizacji miasta na podstawie literatury zagranicznej. Zeszyty Naukowe Uniwersytetu Ekonomicznego W Krakowie 2014, 936, 45–61. [Google Scholar] [CrossRef] [Green Version]
- Cheshire, P.; Sheppard, S. The welfare economics of land use planning. J. Urban Econ. 2002, 52, 242–269. [Google Scholar] [CrossRef]
- Barker, K. Review of Housing Supply: Delivering Stability: Securing Our Future Housing Needs: Final Report: Recommendations; HM Treasury London: London, UK, 2004. [Google Scholar]
- Troy, P.N. The evolution of government housing policy: The case of new south Wales 1901–41. Hous. Stud. 1992, 7, 216–233. [Google Scholar] [CrossRef]
- OECD. Compact City Policies: A Comparative Assessment; OECD Publishing: Paris, France, 2012. [Google Scholar]
- Guy, S.; Marvin, S. Models and pathways: The diversity of sustainable urban futures. In Achieving Sustainable Urban Form; Williams, K., Burton, E., Jenks, M., Eds.; E&FN Spoon: London, UK, 2000; pp. 9–18. [Google Scholar]
- Thomas, L.; Cousins, W. The compact city: A successful, desirable and achievable urban form. In The Compact City: A Sustainable Urban Form? E&FN Spoon: London, UK, 1996; pp. 53–65. [Google Scholar]
- Williams, K. Urban intensification policies in England: Problems and contradictions. Land Use Policy 1999, 16, 167–178. [Google Scholar] [CrossRef]
- OECD. Rethinking Urban Sprawl: Moving towards Sustainable Cities; OECD Publishing: Paris, France, 2018. [Google Scholar]
- Litman, T. Understanding Smart Growth Savings; Victoria Transport Policy Institute: Victoria, BC, Canada, 2015. [Google Scholar]
- Sturm, R.; Cohen, D.A. Suburban sprawl and physical and mental health. Public Health 2004, 118, 488–496. [Google Scholar] [CrossRef]
- Plantinga, A.J.; Bernell, S. The association between urban sprawl and obesity: Is it a two-way street? J. Reg. Sci. 2007, 47, 857–879. [Google Scholar] [CrossRef]
- Yan, Y.; Liu, H.; He, C. How Does Urban Sprawl Affect Public Health? Evidence from Panel Survey Data in Urbanizing China. Int. J. Environ. Res. Public Health 2021, 18, 10181. [Google Scholar] [CrossRef]
- Johnson, M.P. Environmental impacts of urban sprawl: A survey of the literature and proposed research agenda. Environ. Plan. 2001, 33, 717–735. [Google Scholar] [CrossRef] [Green Version]
- Stone, B., Jr. Urban sprawl and air quality in large US cities. J. Environ. Manag. 2008, 86, 688–698. [Google Scholar] [CrossRef]
- Frumkin, H. Urban sprawl and public health. Public Health Rep. 2002, 117, 201–217. [Google Scholar] [CrossRef]
- Weng, Q.; Liu, H.; Lu, D. Assessing the effects of land use and land cover patterns on thermal conditions using landscape metrics in city of Indianapolis, United States. Urban Ecosyst. 2007, 10, 203–219. [Google Scholar] [CrossRef]
- Zawilińska, B.; Mika, M. National parks and local development in Poland: A municipal perspective. Hum. Geogr.—J. Stud. Res. Hum. Geogr. 2013, 7, 43–52. [Google Scholar] [CrossRef] [Green Version]
- MacDonald, K.; Rudel, T.K. Sprawl and forest cover: What is the relationship? Appl. Geogr. 2005, 25, 67–79. [Google Scholar] [CrossRef]
- Hedblom, M.; Söderström, B. Woodlands across Swedish urban gradients: Status, structure and management implications. Landsc. Urban Plan. 2008, 84, 62–73. [Google Scholar] [CrossRef]
- Rayne, T.W.; Bradbury, K.R. Evaluating impacts of subdivision density on shallow groundwater in southeastern Wisconsin, USA. J. Environ. Plan. Manag. 2011, 54, 559–575. [Google Scholar] [CrossRef]
- Berke, P.R.; MacDonald, J.; White, N.; Holmes, M.; Line, D.; Oury, K.; Ryznar, R. Greening development to protect watersheds: Does new urbanism make a difference? J. Am. Plan. Assoc. 2003, 69, 397–413. [Google Scholar] [CrossRef]
- Jackson, K.T. Crabgrass Frontier: The Suburbanization of the United States; Oxford University Press: Oxford, UK, 1987. [Google Scholar]
- Downs, A. New Visions for Metropolitan America; The Brookings Institution: Washington, DC, USA, 1994. [Google Scholar]
- Fulton, W. Beyond Sprawl: New Patterns of Growth to Fit the New California; The California Resources: San Francisco, USA, 1995. [Google Scholar]
- Fulton, W.B.; Pendall, R.; Nguyẽn, M.; Harrison, A. Who Sprawls Most?: How Growth Patterns Differ across the US; Brookings Institution, Center on Urban and Metropolitan Policy: Washington, DC, USA, 2001. [Google Scholar]
- Frenkel, A.; Ashkenazi, M. Measuring urban sprawl: How can we deal with it? Environ. Plan. B Plan. Des. 2008, 35, 56–79. [Google Scholar] [CrossRef] [Green Version]
- Brueckner, J.K.; Largey, A.G. Social interaction and urban sprawl. J. Urban Econ. 2008, 64, 18–34. [Google Scholar] [CrossRef] [Green Version]
- Daneshpour, A.; Shakibamanesh, A. Compact city dose it create an obligatory context for urban sustainability? Int. J. Archit. Eng. Urban Plan. 2011, 21, 110–118. [Google Scholar]
- Burchell, R.W.; Lowenstein, G.; Dolphin, W.R.; Galley, C.C.; Downs, A.; Seskin, S.; Still, K.G.; Moore, T. The Costs of Sprawl; National Academy Press: Washington, DC, USA, 2002; Volume 74. [Google Scholar]
- Heimlich, R.E.; Anderson, W.D. Development at the Urban Fringe and Beyond: Impacts on Agriculture and Rural Land; Economic Research Service, U.S. Department of Agriculture: Washington, DC, USA, 2001.
- Dwyer, J.F.; Childs, G.M. Movement of people across the landscape: A blurring of distinctions between areas, interests, and issues affecting natural resource management. Landsc. Urban Plan. 2004, 69, 153–164. [Google Scholar] [CrossRef]
- Newman, P.G.; Kenworthy, J.R. Cities and Automobile Dependence: An International Sourcebook; Gower: London, UK, 1989. [Google Scholar]
- Young, M.; Tanguay, G.A.; Lachapelle, U. Transportation costs and urban sprawl in Canadian metropolitan areas. Res. Transp. Econ. 2016, 60, 25–34. [Google Scholar] [CrossRef]
- Nordhaus, W.D. Question of Balance: Weighing the Options on Global Warming Policies; Yale University Press: New Haven, CT, USA, 2008. [Google Scholar]
- Nordhaus, W.D.; Boyer, J. Warming the World: Economic Models of Global Warming; MIT Press: Cambridge, UK, 2000; p. 244. [Google Scholar]
- Stern, N.; Stern, N.H. The Economics of Climate Change: The Stern Review; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Chichilnisky, G.; Eisenberger, P. Asteroids: Assessing catastrophic risks. J. Probab. Stat. 2010, 2010, 954750. [Google Scholar] [CrossRef] [Green Version]
- Rezai, A.; Foley, D.K.; Taylor, L. Global warming and economic externalities. In The Economics of the Global Environment; Chichilnisky, G., Rezai, A., Eds.; Springer: New York, NY, USA, 2016; Volume 29, pp. 447–470. [Google Scholar]
- Krugman, P.; Wells, R. Economics, 2nd ed.; Worth Publishers: New York, NY, USA, 2009. [Google Scholar]
- Laffont, J.-J. The New Palgrave Dictionary of Economics; Palgrave Macmillan: London, UK, 2017. [Google Scholar]
- Bairoch, P. Cities and Economic Development: From the Dawn of History to the Present; University of Chicago Press: Chicago, IL, USA, 1988. [Google Scholar]
- Jacobs, J. The Economy of Cities; Vintage: New York, NY, USA, 1969. [Google Scholar]
- Kapp, W. Social Costs and Social Benefits—A Contribution to Normative Economics. In Probleme der Normativen öKonomik und der Wirtschaftspolitischen Beratung; Beckerath, E., Giersch, H., Eds.; Duncker & Humblot: Berlin, Germany, 1963; pp. 183–210. [Google Scholar]
- Verhoef, E.T.; Nijkamp, P. Externalities in the Urban Economy; Tinbergen Institute: Rotterdam, The Netherlands, 2003. [Google Scholar]
- Lucas, R.E., Jr. On the mechanics of economic development. J. Monet. Econ. 1988, 22, 3–42. [Google Scholar] [CrossRef]
- Romer, P.M. Increasing returns and long-run growth. J. Polit. Econ. 1986, 94, 1002–1037. [Google Scholar] [CrossRef] [Green Version]
- Dasgupta, P.; Stiglitz, J. Uncertainty, industrial structure, and the speed of R&D. Bell J. Econ. 1980, 11, 1–28. [Google Scholar]
- Foley, D.L. One-Tenth of a Nation: National Forces in the Economic Growth of the New York Region. J. Am. Stat. Assoc. 1961, 56, 463–465. [Google Scholar] [CrossRef]
- Krugman, P.R. Cities in Space: Three Simple Models; National Bureau of Economic Research: Cambridge, MA, USA, 1991. [Google Scholar]
- Murphy, K.M.; Shleifer, A.; Vishny, R.W. Industrialization and the big push. J. Polit. Econ. 1989, 97, 1003–1026. [Google Scholar] [CrossRef]
- Li, M.M.; Brown, H.J. Micro-neighborhood externalities and hedonic housing prices. Land Econ. 1980, 56, 125–141. [Google Scholar] [CrossRef]
- Jewtuchowicz, A. Efekty Zewnętrzne w Procesach Urbanizacji i Uprzemysłowienia; Uniwersytet Łódzki: Łódź, Poland, 1987. [Google Scholar]
- Padi, S.P.; Khokhar, M.Q.; Chowdhury, S.; Cho, E.-C.; Yi, J. Nanoscale SiOx Tunnel Oxide Deposition Techniques and Their Influence on Cell Parameters of TOPCon Solar Cells. Trans. Electr. Electr. Mater. 2021, 22, 557–566. [Google Scholar] [CrossRef]
- Bódis, K.; Kougias, I.; Jäger-Waldau, A.; Taylor, N.; Szabó, S. A high-resolution geospatial assessment of the rooftop solar photovoltaic potential in the European Union. Renew. Sustain. Energy Rev. 2019, 114, 109309. [Google Scholar] [CrossRef]
- Gooding, J.; Crook, R.; Tomlin, A.S. Modelling of roof geometries from low-resolution LiDAR data for city-scale solar energy applications using a neighbouring buildings method. Appl. Energy 2015, 148, 93–104. [Google Scholar] [CrossRef] [Green Version]
- Jakubiec, J.A.; Reinhart, C.F. A method for predicting city-wide electricity gains from photovoltaic panels based on LiDAR and GIS data combined with hourly Daysim simulations. Solar Energy 2013, 93, 127–143. [Google Scholar] [CrossRef]
- Szabó, S.; Enyedi, P.; Horváth, M.; Kovács, Z.; Burai, P.; Csoknyai, T.; Szabó, G. Automated registration of potential locations for solar energy production with Light Detection and Ranging (LiDAR) and small format photogrammetry. J. Clean. Product. 2016, 112, 3820–3829. [Google Scholar] [CrossRef]
- Kouhestani, F.M.; Byrne, J.; Johnson, D.; Spencer, L.; Hazendonk, P.; Brown, B. Evaluating solar energy technical and economic potential on rooftops in an urban setting: The city of Lethbridge, Canada. Int. J. Energy Environ. Eng. 2019, 10, 13–32. [Google Scholar] [CrossRef] [Green Version]
- Prieto, I.; Izkara, J.L.; Usobiaga, E. The application of lidar data for the solar potential analysis based on urban 3D model. Remote Sens. 2019, 11, 2348. [Google Scholar] [CrossRef] [Green Version]
- Mohajeri, N.; Assouline, D.; Guiboud, B.; Bill, A.; Gudmundsson, A.; Scartezzini, J.-L. A city-scale roof shape classification using machine learning for solar energy applications. Renew. Energy 2018, 121, 81–93. [Google Scholar] [CrossRef]
- Assouline, D.; Mohajeri, N.; Scartezzini, J.-L. Quantifying rooftop photovoltaic solar energy potential: A machine learning approach. Solar Energy 2017, 141, 278–296. [Google Scholar] [CrossRef]
- Wei, C.-C. Predictions of surface solar radiation on tilted solar panels using machine learning models: A case study of Tainan city, Taiwan. Energies 2017, 10, 1660. [Google Scholar] [CrossRef] [Green Version]
- Castagno, J.; Atkins, E. Roof shape classification from LiDAR and satellite image data fusion using supervised learning. Sensors 2018, 18, 3960. [Google Scholar] [CrossRef] [Green Version]
- Wieland, M.; Nichersu, A.; Murshed, S.M.; Wendel, J. Computing Solar Radiation on CityGML Building Data. In Proceedings of the 18th AGILE International Conference on Geographic Informaton Science, Lisbon, Portugal, 9–12 June 2015. [Google Scholar]
- Śleszyński, P. Ekonomiczne Straty i Społeczne Koszty Niekontrolowanej Urbanizacji w Polsce. In Proceedings of the Konferencja Kongresu Budownictwa i Fundacji Rozwoju Demokracji Lokalnej, Warszawa, Poland, 30 June 2014; pp. 164–169. [Google Scholar]
- Huld, T.; Müller, R.; Gambardella, A. A new solar radiation database for estimating PV performance in Europe and Africa. Solar Energy 2012, 86, 1803–1815. [Google Scholar] [CrossRef]
- Martins, F. PV sector in the European Union countries–Clusters and efficiency. Renew. Sustain. Energy Rev. 2017, 74, 173–177. [Google Scholar] [CrossRef] [Green Version]
- Photovoltaic Barometer—EurObserv’ER-April 2020. Available online: https://www.eurobserv-er.org/photovoltaic-barometer-2020/ (accessed on 25 October 2021).
- Marks-Bielska, R.; Bielski, S.; Pik, K.; Kurowska, K. The importance of renewable energy sources in Poland’s energy mix. Energies 2020, 13, 4624. [Google Scholar] [CrossRef]
- Eurostat. Final Consumption of Electricity. Available online: https://ec.europa.eu/eurostat (accessed on 26 October 2021).
- Agencja Rynku Energii S.A (ARE). Statistical Information on Electricity. December 2020. Available online: https://www.are.waw.pl/component/phocadownload/category/4-informacja-statystyczna-o-energii-elektrycznej?download=56:informacja-statystyczna-o-energii-elektrycznej-nr-12-324-grudzien-2020 (accessed on 26 October 2021).
- Power Plant Capacity in Poland Exceeded 50, GW. Available online: https://wysokienapiecie.pl/35674-moc-elektrowni-w-polsce-przekroczyla-50-gw/ (accessed on 26 October 2021).
- How to Save the Polish Energy System. Available online: https://wysokienapiecie.pl/40481-jak-ratowac-polski-system-energetyczny/ (accessed on 26 October 2021).
- Polskie Sieci Energetyczne (PSE). Polish Power System. System in General. Available online: https://www.pse.pl/web/pse-eng/areas-of-activity/polish-power-system/system-in-general (accessed on 26 October 2021).
- Polish Power Transmission and Distribution Association (PTPiREE). Data on the Electricity Transmission and Distribution Subsector in 2017. Available online: http://www.ptpiree.pl/documents/2018/fakty_2017.pdf (accessed on 26 October 2021).
- Polskie Sieci Energetyczne (PSE). Development Plan for Meeting the Current and Future Electricity Demand for 2021–2030. Available online: https://www.pse.pl/web/pse-eng/documents (accessed on 26 October 2021).
- Sobik, B. Analiza funkcjonowania KSE w okresach upalnych w latach 2015–2019. Czy fotowoltaika może pełnić rolę źródła szczytowego w okresie letnim? Elektroenergetyka Współczesność Rozwój 2019, 2, 33–40. [Google Scholar]
- Śleszyński, P. Delimitacja Miejskich Obszarów Funkcjonalnych stolic województw. Delimitation of the Functional Urban Areas around Poland’s voivodship capital cities. Przegląd Geograficzny 2013, 85, 173–197. [Google Scholar] [CrossRef] [Green Version]
- Resolution No. 239 of the Council of Ministers of 13 December 2011 on the Adoption of the National Spatial Development Concept of the Country 2030. Available online: https://www.monitorpolski.gov.pl/M2012000025201.pdf (accessed on 26 October 2021).
- Lityński, P.; Hołuj, A. Urban sprawl risk delimitation: The concept for spatial planning policy in Poland. Sustainability 2020, 12, 2637. [Google Scholar] [CrossRef] [Green Version]
- Kolbe, T.H.; Gröger, G.; Plümer, L. CityGML: Interoperable Access to 3D City Models. In Geo-Information for Disaster Management; Springer: New York, NY, USA, 2005; pp. 883–899. [Google Scholar]
- Poland’s Open Data Portal. 3D Building Models—WMS Service. Available online: https://dane.gov.pl/pl/dataset/2186/resource/31330,modele-3d-budynkow-usuga-wms/table (accessed on 26 October 2021).
- Gagnon, P.; Margolis, R.; Melius, J.; Phillips, C.; Elmore, R. Rooftop Solar Photovoltaic Technical Potential in the United States. A Detailed Assessment; National Renewable Energy Lab.(NREL): Golden, CO, USA, 2016. [Google Scholar]
- Huang, Y.; Chen, Z.; Wu, B.; Chen, L.; Mao, W.; Zhao, F.; Wu, J.; Wu, J.; Yu, B. Estimating roof solar energy potential in the downtown area using a GPU-accelerated solar radiation model and airborne LiDAR data. Remote Sens. 2015, 7, 17212–17233. [Google Scholar] [CrossRef] [Green Version]
- Buriak, J. Ocena warunków nasłonecznienia i projektowanie elektrowni słonecznych z wykorzystaniem dedykowanego oprogramowania oraz baz danych. Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej 2014, 40, 29–32. [Google Scholar]
- Narowski, P. Dane klimatyczne do obliczeń energetycznych w budownictwie. Ciepłownictwo Ogrzewnictwo Wentylacja 2006, 37, 22–27. [Google Scholar]
- Joe, Y.; Fenxian, H.; Seo, D.; Krarti, M. Development of 3012 IWEC2 Weather Files for International Locations (RP-1477). Ashrae Trans. 2014, 120, 340–355. [Google Scholar]
- Ministry of Infrastructure and Construction. Data for Building Energy Calculations. Available online: https://www.gov.pl/web/archiwum-inwestycje-rozwoj/dane-do-obliczen-energetycznych-budynkow (accessed on 26 October 2021).
- Duffie, J.A.; Beckman, W.A.; Blair, N. Solar Engineering of Thermal Processes, Photovoltaics and Wind; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Davies, J.; Hay, J. Calculation of the Solar Radiation Incident on an Inclined Surface. In Proceedings of the First Canadian Solar Radiation Data Workshop, Toronto, ON, Canada, 17–19 April 1978; Hay, J.E., Won, T.K., Eds.; Minister of Supply and Services Canada: Toronto, ON, Canada, 1978; pp. 32–58. [Google Scholar]
- Reindl, D.; Beckman, W.; Duffie, J. Evaluation of hourly tilted surface radiation models. Solar Energy 1990, 45, 9–17. [Google Scholar] [CrossRef]
- Cooper, P. The absorption of radiation in solar stills. Solar Energy 1969, 12, 333–346. [Google Scholar] [CrossRef]
- Python Official Website. Available online: https://www.python.org/ (accessed on 26 October 2021).
- QGIS Official Website. Available online: https://qgis.org/ (accessed on 26 October 2021).
- Strzalka, A.; Alam, N.; Duminil, E.; Coors, V.; Eicker, U. Large scale integration of photovoltaics in cities. Appl. Energy 2012, 93, 413–421. [Google Scholar] [CrossRef]
- Martínez-Rubio, A.; Sanz-Adan, F.; Santamaría-Peña, J.; Martínez, A. Evaluating solar irradiance over facades in high building cities, based on LiDAR technology. Appl. Energy 2016, 183, 133–147. [Google Scholar] [CrossRef]
- Soltech Online Store Website. Available online: https://sklepsoltech.pl/pl/p/Panel-fotowoltaiczny-Sunpower-SPR-MAX3-400/980 (accessed on 25 October 2021).
- Solarne Online Store Website. Available online: https://www.solarne.info/falowniki-inwertery-on-grid-o-mocy-powyzej-10kw-c-3_47.html (accessed on 25 October 2021).
- Fotowoltaikaonline Official Website. Available online: https://fotowoltaikaonline.pl/ceny-paneli-slonecznych (accessed on 25 October 2021).
- Central Statistical Office. Bank Danych Lokalnych (Local Data Bank). Available online: https://bdl.stat.gov.pl/ (accessed on 26 October 2021).
- Amrouche, S.O.; Rekioua, D.; Rekioua, T.; Bacha, S. Overview of energy storage in renewable energy systems. Int. J. Hydrogen Energy 2016, 41, 20914–20927. [Google Scholar] [CrossRef]
- Koohi-Fayegh, S.; Rosen, M.A. A review of energy storage types, applications and recent developments. J. Energy Storage 2020, 27, 101047. [Google Scholar] [CrossRef]
- Olabi, A.; Onumaegbu, C.; Wilberforce, T.; Ramadan, M.; Abdelkareem, M.A.; Al–Alami, A.H. Critical review of energy storage systems. Energy 2021, 214, 118987. [Google Scholar] [CrossRef]
- Muhammad-Sukki, F.; Ramirez-Iniguez, R.; Abu-Bakar, S.H.; McMeekin, S.G.; Stewart, B.G. An evaluation of the installation of solar photovoltaic in residential houses in Malaysia: Past, present, and future. Energy Policy 2011, 39, 7975–7987. [Google Scholar] [CrossRef]
- Formica, T.; Pecht, M. Return on investment analysis and simulation of a 9.12 kilowatt (kW) solar photovoltaic system. Solar Energy 2017, 144, 629–634. [Google Scholar] [CrossRef]
- Lemence, A.L.G.; Tamayao, M.-A.M. Energy consumption profile estimation and benefits of hybrid solar energy system adoption for rural health units in the Philippines. Renew. Energy 2021, 178, 651–668. [Google Scholar] [CrossRef]
- Energy Regulatory Office. Report on Electricity Generated from RES in Micro-Installations and Incorporated into the Distribution Network in 2020. Available online: https://bip.ure.gov.pl/bip/o-urzedzie/zadania-prezesa-ure/raport-oze-art-6a-ustaw/3793,Raport-dotyczacy-energii-elektrycznej-wytworzonej-z-OZE-w-mikroinstalacji-i-wpro.html (accessed on 30 October 2021).
- Tomaszewski, K.; Sekściński, A. Odnawialne źródła energii w Polsce—Perspektywa lokalna i regionalna. Rynek Energii 2020, 4, 10–19. [Google Scholar]
- Motowidlak, T. Dylematy Polski w zakresie wdrażania polityki energetycznej Unii Europejskiej. Polityka Energetyczna 2018, 21, 5–20. [Google Scholar]
- Ministry of Climate and Environment. Energy Policy of Poland until 2040. Available online: https://monitorpolski.gov.pl/M2021000026401.pdf (accessed on 30 October 2021).
- Act of 20 May, 2016 on Investments in Wind Power Plants, Journal of Laws, Item 961. Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20160000961/U/D20160961Lj.pdf (accessed on 30 October 2021).
- Act of 20 February, 2015 on Renewable Energy Sources, Journal of Laws, Item 478. Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20150000478/U/D20150478Lj.pdf (accessed on 30 October 2021).
Urban Area | Number of Buildings (Total) | Number of Unique Roof Surfaces (Total) | Number of Buildings as at 2014 | Increase in the Number of Buildings until 2017 |
---|---|---|---|---|
Krakow | 297,114 | 1,125,463 | 293,372 | 3742 (+1.2%) |
Warsaw | 648,974 | 2,419,421 | 590,203 | 58,771 (+9.9%) |
Olsztyn | 42,453 | 164,058 | 40,308 | 2145 (+5.3%) |
Urban Area | Minimum Observed Annual Sunlight (kWh/m2) | Maximum Observed Annual Sunlight (kWh/m2) | Average Observed Annual Sunlight (kWh/m2) | Sum of the Potential of Solar Energy Output for One Year (GWh) |
---|---|---|---|---|
Krakow | 525 | 1111 | 962 | 8962.8 |
Warsaw | 525 | 1032 | 920 | 20,693.6 |
Olsztyn | 442 | 947 | 813 | 1390.6 |
Area | Solar Energy Potential until 2014 (GWh) | Solar Energy Potential until 2017 (GWh) | Difference in Potential (GWh) |
---|---|---|---|
The city of Krakow | 3887.0 | 3969.7 | 82.7 (2.1%) |
GOMOF * Krakow | 4960.4 | 4993.1 | 32.7 (0.7%) |
The city of Warsaw | 6674.1 | 7022.8 | 348.7 (5.2%) |
GOMOF Warsaw | 12,206.2 | 13,670.8 | 1464.6 (2.0%) |
The city of Olsztyn | 706.5 | 716.3 | 9.8 (1.4%) |
GOMOF Olsztyn | 637.5 | 674.2 | 36.7 (5.6%) |
City | Potential Solar Energy (GWh) | Energy Consumed by Households (GWh) |
---|---|---|
Krakow | 3969 | 785 |
Warsaw | 7022 | 1841 |
Olsztyn | 716 | 133 |
Urban Sprawl Area | Voivodeship | Use of Energy in the Entire Voivodeship (GWh) | Sum of the Values of Potential Solar Energy Output for One Year (GWh) |
---|---|---|---|
Krakow | Małopolskie | 13,508 | 8962.8 |
Warsaw | Mazowieckie | 26,610 | 20,693.6 |
Olsztyn | Warmińsko–Mazurskie | 3917 | 1390.6 |
Urban Sprawl Area. | Total | Single-Family Houses | |||
---|---|---|---|---|---|
Average Roof Surface Area (m2) | Average Roof Surface Area [m2] | Average Inclination (°) | Average Azimuth (°) | Potential Solar Energy (GWh) | |
Krakow | 147.1 | 104.7 | 31.8 | 181.6 | 3194.2 |
Warsaw | 163.4 | 104.9 | 26.2 | 177.7 | 7483.8 |
Olsztyn | 188.1 | 104.5 | 32.2 | 180.4 | 380.7 |
Urban Sprawl Areas | Annual Energy Output Generated by Average Building (MWh) | Annual Average Energy Output Generated by Average Single-Family House (MWh) | Annual Profit for First Year CFt [PLN] | Return on Investment Time (Discounted) [Years] | ||
---|---|---|---|---|---|---|
Average Building Total | Average Single-Family House | Average Building Total | Average Single-Family House | |||
Krakow | 30.4 | 21.0 | 11,652 | 8033 | 20 | 21 |
Warsaw | 32.3 | 20.2 | 12,365 | 7719 | 21 | 22 |
Olsztyn | 33.1 | 17.6 | 12,663 | 6742 | 23 | 25 |
Urban Sprawl Areas | Return on Investment (25 Years) | |||
---|---|---|---|---|
Average Building Total (%) | Average Single-Family House (%) | Average Building Total (PLN) | Average Single-Family House (PLN) | |
Krakow | 36.4 | 21.1 | 50,903 | 29,509 |
Warsaw | 32.7 | 16.2 | 45,817 | 22,684 |
Olsztyn | 15.5 | 1.8 | 21,673 | 2546 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hołuj, A.; Ilba, M.; Lityński, P.; Majewski, K.; Semczuk, M.; Serafin, P. Photovoltaic Solar Energy from Urban Sprawl: Potential for Poland. Energies 2021, 14, 8576. https://doi.org/10.3390/en14248576
Hołuj A, Ilba M, Lityński P, Majewski K, Semczuk M, Serafin P. Photovoltaic Solar Energy from Urban Sprawl: Potential for Poland. Energies. 2021; 14(24):8576. https://doi.org/10.3390/en14248576
Chicago/Turabian StyleHołuj, Artur, Mateusz Ilba, Piotr Lityński, Karol Majewski, Marcin Semczuk, and Piotr Serafin. 2021. "Photovoltaic Solar Energy from Urban Sprawl: Potential for Poland" Energies 14, no. 24: 8576. https://doi.org/10.3390/en14248576
APA StyleHołuj, A., Ilba, M., Lityński, P., Majewski, K., Semczuk, M., & Serafin, P. (2021). Photovoltaic Solar Energy from Urban Sprawl: Potential for Poland. Energies, 14(24), 8576. https://doi.org/10.3390/en14248576