Heavy-Ion Fusion Reaction Calculations: Establishing the Theoretical Frameworks for 111In Radionuclide over the Coupled Channel Model
Abstract
:1. Introduction
2. Coupled Channel (CC) Model
3. Results of The Heavy-Ion Fusion Cross-Sections, Barrier Distributions, and Potential Energies on Mutual Orientations in the Reactions Planes
3.1. Reaction System Outputs
3.2. , , and Reaction Systems Outputs
3.2.1. Reaction System Outputs
3.2.2. Reaction System Outputs
3.2.3. Reaction System Outputs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zagrebaev, V. Heavy Ion. Reactions at Low Energies; Springer: Singapore, 2019; pp. 99–144. [Google Scholar]
- Lépine-Szily, A.; Lichtenthäler, R. Coupled channels effects in heavy ion reactions. Eur. Phys. J. A 2021, 57, 99. [Google Scholar] [CrossRef]
- Deb, N.K.; Kalita, K.; Al Rashid, H.; Nath, S.; Gehlot, J.; Madhavan, N.; Biswas, R.; Sahoo, R.N.; Giri, P.K.; Das, A.; et al. Role of neutron transfer in the sub-barrier fusion cross section in 18O + 116Sn. Phys. Rev. C 2020, 102, 034603. [Google Scholar] [CrossRef]
- Gharaei, R.; Hasanzade, H. Sub-barrier fusion of 34,36S + 204,206,208Pb: Signature of isotopic dependence of repulsive core potential in heavy-ion fusion reactions. Nucl. Phys. A 2021, 1013, 122223. [Google Scholar] [CrossRef]
- Stefanini, A.M.; Montagnoli, G.; D’Andrea, M.; Giacomin, M.; Dehman, C.; Somasundaram, R.; Vijayan, V.; Zago, L.; Colucci, G.; Galtarossa, F.; et al. New insights into sub-barrier fusion of 28Si + 100Mo. J. Phys. G Nucl. Part. Phys. 2021, 48, 055101. [Google Scholar] [CrossRef]
- Vijay, C.; Chahal, R.P.; Gautam, M.S.; Duhan, S.; Khatri, H. Fusion cross sections and barrier distributions for O16 + Ge70,72,73,74,76 and O18 + Ge74 reactions at energies near and below the Coulomb barrier. Phys. Rev. C 2021, 103, 024607. [Google Scholar] [CrossRef]
- Baby, L.T.; Tripathi, V.; Das, J.J.; Sugathan, P.; Madhavan, N.; Sinha, A.K.; Radhakrishna, M.C.; Rao, P.V.M.; Hui, S.K.; Hagino, K. Role of28Siexcitations in the sub-barrier fusion of 28Si + 120Sn. Phys. Rev. C 2000, 62, 014603. [Google Scholar] [CrossRef]
- Wilkinson, J.T.; Barrett, K.E.; Ferran, S.J.; McGuinness, S.R.; McIntosh, L.A.; McCarthy, M.; Yennello, S.J.; Engle, J.W.; Lapi, S.E.; Peaslee, G.F. A heavy-ion production channel of 149Tb via 63Cu bombardment of 89Y. Appl. Radiat. Isot. 2021, 178, 109935. [Google Scholar] [CrossRef]
- McGuinness, S.R.; Wilkinson, J.T.; Peaslee, G.F. Heavy-ion production of 77Br and 76Br. Sci. Rep. 2021, 11, 15749. [Google Scholar] [CrossRef]
- Colucci, G.; Montagnoli, G.; Stefanini, A.M.; Hagino, K.; Caciolli, A.; Čolović, P.; Corradi, L.; Fioretto, E.; Galtarossa, F.; Goasduff, A.; et al. Study of sub-barrier fusion of 36S + 50Ti,51V systems. EPJ Web Conf. 2019, 223, 01013. [Google Scholar] [CrossRef] [Green Version]
- Erol, B.; Cinan, Z.; Baskan, T.; Yilmaz, A. Investigating medium and heavy mass heavy-ion fusion reactions and barrier distributions with coupled-channel analyzes. Acta Phys. Pol. B 2021, 52, 1117. [Google Scholar] [CrossRef]
- Mei, B.; Balabanski, D.L.; Hua, W.; Zhang, Y.-H.; Zhou, X.-H.; Yuan, C.-X.; Su, J. Fusion reactions around the barrier for Be + 238U. Chin. Phys. C 2021, 45, 054001. [Google Scholar] [CrossRef]
- Mohammadi, J.; Ghodsi, O.N. Study of the dinuclear system for 296119 superheavy compound nucleus in fusion reactions. Chin. Phys. C 2021, 45, 044107. [Google Scholar] [CrossRef]
- Asher, B.W.; Almaraz-Calderon, S.; Tripathi, V.; Kemper, K.W.; Baby, L.T.; Gerken, N.; Lopez-Saavedra, E.; Morelock, A.B.; Perello, J.F.; Wiedenhöver, I.; et al. Experimental study of the F17 + C12 fusion reaction and its implications for fusion of proton-halo systems. Phys. Rev. C 2021, 103, 044615. [Google Scholar] [CrossRef]
- Gautam, M.S.; Vinod, K.; Kumar, H. Role of barrier modification and nuclear structure effects in sub-barrier fusion dynamics of various heavy ion fusion reactions. Braz. J. Phys. 2017, 47, 461–472. [Google Scholar] [CrossRef]
- Jiang, C.L.; Back, B.B.; Rehm, K.E.; Hagino, K.; Montagnoli, G.; Stefanini, A.M. Heavy-ion fusion reactions at extreme sub-barrier energies. Eur. Phys. J. A 2021, 57, 235. [Google Scholar] [CrossRef]
- Abd Madhi, M.H.; Majeed, F.A. Fusion reaction study of halo system by quantum mechanical-based model for 6He + 64Zn, 8B + 58Ni and 8He + 197Au systems. Bull. Pol. Acad. Sci. Tech. Sci. 2021, 69, 4. [Google Scholar] [CrossRef]
- Rong, C.H.; Rangel, J.; Wu, Y.S.; Zhang, G.L.; Lin, C.J.; Cardozo, E.N.; Wang, X.Y.; Yang, L.; Ma, N.R.; Wang, D.X.; et al. Study of quasi-elastic scattering of 17F + 208Pb17F + 208Pb at energies around Coulomb barrier. Eur. Phys. J. A 2021, 57, 1–18. [Google Scholar] [CrossRef]
- Zagrebaev, V.I.; Aritomo, Y.; Itkis, M.G.; Oganessian, Y.T.; Ohta, M. Synthesis of superheavy nuclei: How accurately can we describe it and calculate the cross sections? Phys. Rev. C 2001, 65, 014607. [Google Scholar] [CrossRef] [Green Version]
- Rowley, N.; Satchler, G.; Stelson, P. On the “distribution of barriers” interpretation of heavy-ion fusion. Phys. Lett. B 1991, 254, 25–29. [Google Scholar] [CrossRef]
- Rowley, N. Sub-barrier fusion: Probing reaction dynamics with barrier distributions. Nucl. Phys. A 1992, 538, 205–220. [Google Scholar] [CrossRef]
- Hagino, K.; Rowley, N.; Kruppa, A. A program for coupled-channel calculations with all order couplings for heavy-ion fusion reactions. Comput. Phys. Commun. 1999, 123, 143–152. [Google Scholar] [CrossRef] [Green Version]
- Zagrebaev, V.I.; Samarin, V.V. Near-barrier fusion of heavy nuclei: Coupling of channels. Phys. At. Nucl. 2004, 67, 1462–1477. [Google Scholar] [CrossRef]
- Zagrebaev, V.I.; Kozhin, A. Nuclear reactions video (knowledge base on low energy nuclear physics). JINR Rep. 1999, E10, 99–151. [Google Scholar]
- Fernández-Niello, J.; Dasso, C.H.; Landowne, S. CCDEF—A simplified coupled-channel code for fusion cross sections including static nuclear deformations. Comput. Phys. Commun. 1989, 54, 409–412. [Google Scholar] [CrossRef]
- Wong, C.Y. Interaction barrier in charged-particle nuclear reactions. Phys. Rev. Lett. 1973, 31, 766–769. [Google Scholar] [CrossRef]
- Urazbekov, A.B.; Denikin, A.S.; Lukyanov, S.M.; Itaco, N.; Janseitov, D.; Mendibayev, K.; Burjan, V.; Kroha, V.; Mrazek, J.; Trzaska, W.; et al. Clusterization and strong coupled-channels effects in deuteron interaction with 9Be nuclei. J. Phys. G Nucl. Part. Phys. 2019, 46, 105110. [Google Scholar] [CrossRef]
- Hagino, K.; Takigawa, N. Subbarrier fusion reactions and many-particle quantum tunneling. Prog. Theor. Phys. 2012, 128, 1061–1106. [Google Scholar] [CrossRef] [Green Version]
- Hill, D.L.; Wheeler, J.A. Nuclear constitution and the interpretation of fission phenomena. Phys. Rev. 1953, 89, 1102–1145. [Google Scholar] [CrossRef]
- Martínez-Quiroz, E.; Aguilera, E.F.; Kolata, J.J.; Zahar, M. Sub-barrier fusion of 37Cl + 70,72,73,74,76Ge. Phys. Rev. C 2001, 63, 054611. [Google Scholar] [CrossRef]
- National Nuclear Data Center, Brookhaven National Laboratory. NuDat (Nuclear Structure and Decay Data). Available online: https://advlabs.aapt.org/items/Load.cfm?ID=6648 (accessed on 18 March 2008).
- Kibedi, T.; Spear, R. Reduced electric-octupole transition probabilities, B(E3;01+→31−)—An update. At. Data Nucl. Data Tables 2002, 80, 35–82. [Google Scholar] [CrossRef]
- Moller, P.; Sierk, A.; Ichikawa, T.; Sagawa, H. Nuclear ground-state masses and deformations: FRDM(2012). At. Data Nucl. Data Tables 2016, 109, 1–204. [Google Scholar] [CrossRef] [Green Version]
- Pritychenko, B.; Birch, M.; Singh, B.; Horoi, M. Tables of E2 transition probabilities from the first 2+ states in even-even nuclei. At. Data Nucl. Data Tables 2016, 107, 1–139. [Google Scholar] [CrossRef] [Green Version]
- Raghavan, P. Table of nuclear moments. At. Data Nucl. Data Tables 1989, 42, 189–291. [Google Scholar] [CrossRef]
- Akyuz, R.O.; Winther, A. Course on Nuclear Structure and Heavy-Ion Reactions; Broglia, R.A., Dasso, C.H., Ricci, R., Eds.; Enrico Fermi School of Physics: Amsterdam, The Netherlands, 1981; p. 491. [Google Scholar]
Vibrational Nucleus States | |||||
---|---|---|---|---|---|
Nucleus | References | ||||
1.7266 | 0.1400 | [30,31,32,33,34,35] | |||
3.0861 | 0.2400 | [30,31,32,33,34,35] | |||
3.1035 | 0.3200 | [30,31,32,33,34,35] | |||
4.0100 | 0.3300 | [30,31,32,33,34,35] | |||
1.3460 | 0.1468 | [30,31,32,33,34,35] | |||
3.6140 | 0.2040 | [30,31,32,33,34,35] | |||
Rotational (Deformed) Nucleus States | |||||
Nucleus | References | ||||
0.5959 | –0.2370 | –0.0360 | [30,31,32,33,34,35] | ||
1.8087 | –0.3510 | 0.1620 | [30,31,32,33,34,35] | ||
0.1512 | 0.0640 | –0.0100 | [30,31,32,33,34,35] | ||
2.2353 | –0.2360 | 0.0400 | [30,31,32,33,34,35] | ||
0.2760 | 0.1400 | –0.0300 | [30,31,32,33,34,35] | ||
1.4818 | –0.1250 | –0.0050 | [30,31,32,33,34,35] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cinan, Z.M.; Erol, B.; Baskan, T.; Yilmaz, A.H. Heavy-Ion Fusion Reaction Calculations: Establishing the Theoretical Frameworks for 111In Radionuclide over the Coupled Channel Model. Energies 2021, 14, 8594. https://doi.org/10.3390/en14248594
Cinan ZM, Erol B, Baskan T, Yilmaz AH. Heavy-Ion Fusion Reaction Calculations: Establishing the Theoretical Frameworks for 111In Radionuclide over the Coupled Channel Model. Energies. 2021; 14(24):8594. https://doi.org/10.3390/en14248594
Chicago/Turabian StyleCinan, Zehra Merve, Burcu Erol, Taylan Baskan, and Ahmet Hakan Yilmaz. 2021. "Heavy-Ion Fusion Reaction Calculations: Establishing the Theoretical Frameworks for 111In Radionuclide over the Coupled Channel Model" Energies 14, no. 24: 8594. https://doi.org/10.3390/en14248594
APA StyleCinan, Z. M., Erol, B., Baskan, T., & Yilmaz, A. H. (2021). Heavy-Ion Fusion Reaction Calculations: Establishing the Theoretical Frameworks for 111In Radionuclide over the Coupled Channel Model. Energies, 14(24), 8594. https://doi.org/10.3390/en14248594