Numerical Modelling of Various Aspects of Pipe Pile Static Load Test
Abstract
:1. Introduction
2. New Method of Pipe Piles Bi-Directional Static Load Test
3. Field Investigations
3.1. Testing Procedure
3.2. Results
4. Numerical Simulations
4.1. Assumptions for Calculations
4.2. Model Parameters
4.3. Consideration of Pile Installation in Numerical Calculations
- Installation process;
- Resetting of displacements (updated mesh option in Plaxis v. 7.2), combined with removal of redundant areas.
- Activation of tubular elements and simulation of static load tests.
4.3.1. Modelling of the Pile Base Installation
4.3.2. Selection of the Parameter R of the Contact Layer
4.4. Results of Simulations
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baca, M.; Brząkała, W.; Rybak, J. Bi-Directional Static Load Tests of Pile Models. Appl. Sci. 2020, 10, 5492. [Google Scholar] [CrossRef]
- Baca, M.; Rybak, J. Pile Base and Shaft Capacity under Various Types of Loading. Appl. Sci. 2021, 11, 3396. [Google Scholar] [CrossRef]
- Yang, Z.X.; Gao, Y.Y.; Jardine, R.J.; Guo, W.B.; Wang, D. Large Deformation Finite-Element Simulation of Displacement-Pile Installation Experiments in Sand. J. Geotech. Geoenviron. Eng. 2020, 146, 04020044. [Google Scholar] [CrossRef]
- Heins, E.; Bienen, B.; Randolph, M.F.; Grabe, J. Effect of installation method on static and dynamic load test response for piles in sand. Int. J. Phys. Model. Geotech. 2020, 20, 1–23. [Google Scholar] [CrossRef]
- Engin, H.K. Modelling Pile Installation Effects: A Numerical Approach. Ph.D. Thesis, The Hong Kong Polytechnic University, Hong Kong, 2013. [Google Scholar] [CrossRef]
- Dijkstra, J. On the Modelling of Pile Installation; Delft University of Technology: Delft, The Netherlands, 2009. [Google Scholar]
- Randolph, M.F. Science and empiricism in pile foundation design. Geotechnique 2003, 53, 847–874. [Google Scholar] [CrossRef]
- Broere, W.; van Tol, A.F. Modelling the bearing capacity of displacement piles in sand. Proc. Inst. Civil Eng.-Geotech. Eng. 2006, 159, 195–206. [Google Scholar] [CrossRef]
- Krasinski, A. Numerical simulation of screw displacement pile interaction with non-cohesive soil. Arch. Civil Mech. Eng. 2014, 14, 122–133. [Google Scholar] [CrossRef]
- Mabsout, M.E.; Tassoulas, J.L. A finite element model for the simulation of pile driving. Int. J. Numer. Methods Eng. 1994, 37, 257–278. [Google Scholar] [CrossRef]
- Qiu, G.; Henke, S.; Grabe, J. Application of a Coupled Eulerian-Lagrangian approach on geomechanical problems involving large deformations. Comp. Geotech. 2011, 38, 30–39. [Google Scholar] [CrossRef]
- Konkol, J.; Balachowski, L. Influence of Installation Effects on Pile Bearing Capacity in Cohesive Soils—Large Deformation Analysis Via Finite Element Method. Studia Geotech. Mech 2017, 39, 27–38. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Gadala, M.S. Formulation and survey of ALE method in nonlinear solid mechanics. Finite Elem. Anal. Design 1997, 24, 253–269. [Google Scholar] [CrossRef]
- Bigler, J.; Guilkey, J.; Gribble, C.P.; Hansen, C.D.; Parker, S.G. A Case Study: Visualizing Material Point Method Data. In Proceedings of the Eurographics/IEEE-VGTC Symposium on Visualization, Lisbon, Portugal, 8 May 2006; Ertl, T., Joy, K., Santos, B., Eds.; pp. 299–306. [Google Scholar] [CrossRef]
- Lobo-Guerrero, S.; Vallejo, L.E. DEM analysis of crushing around driven piles in granular materials. Geotechnique 2005, 55, 617–623. [Google Scholar] [CrossRef]
- Duan, N.; Cheng, Y.P.; Liu, J.W. DEM analysis of pile installation effect: Comparing a bored and a driven pile. Granular Matter 2018, 20, 36. [Google Scholar] [CrossRef] [Green Version]
- Fall, M.; Gao, Z.; Ndiaye, B.C. Driven Pile Effects on Nearby Cylindrical and Semi-Tapered Pile in Sandy Clay. Appl. Sci. 2021, 11, 2919. [Google Scholar] [CrossRef]
- Jayasinghe, L.B.; Waldmann, D.; Shang, J. Impact of Pile Punching on Adjacent Piles: Insights from a 3D Coupled SPH-FEM Analysis. Appl. Mech. 2020, 1, 47–58. [Google Scholar] [CrossRef] [Green Version]
- Fragassa, C.; Topalovic, M.; Pavlovic, A.; Vulovic, S. Dealing with the Effect of Air in Fluid Structure Interaction by Coupled SPH-FEM Methods. Materials 2019, 12, 1162. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, T.; Matsuzawa, K.; Kitiyodom, P. A role of pile load test—Pile load test as element test for design of foundation system. In The Application of Stress-Wave Theory to Piles: Science, Technology and Practice: Proceedings of the 8th International Conference, Lisbon, Portugal, 8–10 September 2008; dos Santos, A.J., Ed.; IOS Press, Cop.: Amsterdam, the Netherlands, 2008; pp. 39–58. [Google Scholar]
- Osterberg, J.O. The Osterberg load test method for bored and driven piles the first ten years. In Proceedings of the 7th International Conference and Exhibition on Piling and Deep Foundations, Vienna, Austria, 15–17 June 1998; pp. 1–28. [Google Scholar]
- Dai, G.L.; Gong, W.M.; Zhao, X.L.; Zhou, X.Q. Static Testing of Pile-Base Post-Grouting Piles of the Suramadu Bridge. Geotech. Test. J. 2011, 34, 34–49. [Google Scholar]
- Hayden, M. Pile HAY-Proof-System: New Test Method for Static Load Tests of Slender Piles. Ground Eng. 2013, 12, 25–28. [Google Scholar]
- Mišove, P.; Velič, P. (Projekt Zaťažovacej Skúšky Pilóty Systémom VUIS-P). Private communication, 2010. [Google Scholar]
- Berisavljević, D.; Filipović, V.; Stanisavljević, N.; Berisavljević, Z. Experimental analysis of bi-directional pile static load test. ce/papers 2018, 2, 415–420. [Google Scholar] [CrossRef]
- Rybak, J.; Baca, M.; Żyrek, T. Practical Aspects of Tubular Pile Axial Capacity Testing. In Proceeding of the 15th International Multidisciplinary Scientific GeoConference, SGEM 2015: Science and Technologies in Geology, Exploration and Mining: Conference proceedings, Albena, Bulgaria, 18–24 June 2015; Volume 2, pp. 549–554. [Google Scholar]
- Baca, M.; Rybak, J.; Tamrazyan, A.G.; Żyrek, T. Pile Foot Capacity Testing In Various Cases of Pile Shaft Displacement. In Proceeding of the 16th International Multidisciplinary Scientific GeoConference SGEM 2016: Science and Technologies in Geology, Exploration and Mining: Conference Proceedings, Albena, Bulgaria, 30 June–6 July 2016; Volume 1, pp. 945–950. [Google Scholar]
- Majcher-Pisarska, M.; Stelmach, K.; Szczurek, W.J. (Geotechnical Documentation Specifying Groundwater Conditions at the Test Plot in Bojszowy Nowe). Private communication, 2012. (in Polish). [Google Scholar]
- Muszyński, Z.; Rybak, J. Application of Geodetic Measuring Methods for Reliable Evaluation of Static Load Test Results of Foundation Piles. Remote Sens. 2021, 13, 3082. [Google Scholar] [CrossRef]
- Muszyński, Z.; Rybak, J.; Kaczor, P. Accuracy Assessment of Semi-Automatic Measuring Techniques Applied to Displacement Control in Self-Balanced Pile Capacity Testing Appliance. Sensors 2018, 18, 4067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Borst, R.; Vermeer, P. Finite element analysis of static penetration tests. Géotechnique 1984, 34, 199–210. [Google Scholar] [CrossRef]
- Wehnert, M.; Vermeer, P. Numerical analyses of load tests on bored piles. In Proceedings of the Numer. Methods Geomechan. NUMOG 9th, Ottawa, ON, Canada, 25–27 August 2004; pp. 505–511. [Google Scholar]
- Brinkgreve, R.; Vermeer, P. Plaxis manual. Version 1998, 7, 5.1–5.18. Available online: https://www.civil.iitb.ac.in/~ajuneja/Plaxis%20program/Version%208%20Introductory/Manuals/English/V84-4_MaterialModels.pdf (accessed on 10 December 2021).
- Schanz, T.; Vermeer, P.A.; Bonnier, P.G. The hardening soil model: Formulation and verification. In Beyond 2000 in Computational Geotechnics: 10 Years of Plaxis International; Routledge: Abingdon, UK, 1999; pp. 281–296. [Google Scholar]
- Truty, A.; Obrzud, R. The Hardening Soil Model a Practical Guidebook; Zace Services Ltd., Software Engineering: Lausanne, Switzerland, 2011. [Google Scholar]
- Paik, K.; Salgado, R.; Lee, J.; Kim, B. Behavior of open- and closed-ended piles driven into sands. J. Geotech. Geoenviron. Eng. 2003, 129, 296–306. [Google Scholar] [CrossRef]
- Altaee, A.; Fellenius, B.; Evgin, E. Axial load transfer for piles in sand. I. Tests on an instrumented precast pile. Can. Geotech. J. 1992, 29, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Liu, X.; Sang, S.; Zhang, M.; Wang, P. A Model Test for the Influence of Lateral Pressure on Vertical Bearing Characteristics in Pile Jacking Process Based on Optical Sensors. Sensors 2020, 20, 1733. [Google Scholar] [CrossRef] [Green Version]
- Muszyński, Z.; Wyjadłowski, M. Assessment of the shear strength of pile-to-soil interfaces based on pile surface topography using laser scanning. Sensors 2019, 1, 1012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, D.J.; Lehane, B.M. Friction fatigue on displacement piles in sand. Geotechnique 2004, 54, 645–658. [Google Scholar] [CrossRef]
- Phuong, N.T.V.; van Tol, A.F.; Elkadi, A.S.K.; Rohe, A. Numerical investigation of pile installation effects in sand using material point method. Comp. Geotech. 2016, 73, 58–71. [Google Scholar] [CrossRef]
- Phuong, N.T.V.; van Tol, A.F.; Elkadi, A.S.K.; Rohe, A. Modelling of pile installation using the material point method (MPM). In Proceedings of the 8th European Conference on Numerical Methods in Geotechnical Engineering (NUMGE), Delft, The Netherslands, 18–20 June 2014; Hicks, M., Brinkgreve, R., Rohe, A., Eds.; pp. 271–276. [Google Scholar]
- Tehrani, F.S.; Nguyen, P.; Brinkgreve, R.B.J.; van Tol, A.F. Comparison of Press-Replace Method and Material Point Method for analysis of jacked piles. Comp. Geotech. 2016, 78, 38–53. [Google Scholar] [CrossRef] [Green Version]
- Monforte, L.; Arroyo, M.; Carbonell, J.M.; Gens, A. Coupled effective stress analysis of insertion problems in geotechnics with the Particle Finite Element Method. Comp. Geotech. 2018, 101, 114–129. [Google Scholar] [CrossRef]
- Gavin, K.G.; Igoe, D.J.P.; Kirwan, L. The effect of ageing on the axial capacity of piles in sand. Proc. Inst. Civil Eng.-Geotech. Eng. 2013, 166, 122–130. [Google Scholar] [CrossRef]
Soil | Soil Layer Location | CPTU Tip Resistance | Shear Strength Parameters | ID | IL | Eoed | ||||
---|---|---|---|---|---|---|---|---|---|---|
Symbol | Name | Top | Bottom | qc | φ’ | C’ | Cu | |||
- | - | m | m | MPa | O | kPa | kPa | - | - | MPa |
H | Humus | 0.0 | 0.2 | 3.0 | 29.8 | - | - | 0.30 | - | 12.1 |
FSa | Fine Sand | 0.2 | 0.8 | 3.5 | 30.5 | - | - | 0.35 | - | 15.4 |
MSa | Medium Sand | 0.8 | 2.4 | 12.8 | 36.0 | - | - | 0.75 | - | 63.8 |
Or | Organic | 2.4 | 3.3 | 0.8 | 18.0 | 5.0 | 40.0 | - | 0.32 | 3.4 |
siCl | Silty Clay | 3.3 | 4.2 | 1.1 | 19.2 | 10.0 | 69.0 | - | 0.44 | 8.6 |
MSa | Medium Sand | 4.2 | 5.8 | 10.7 | 34.7 | - | - | 0.60 | - | 53.1 |
MSa | Medium Sand | 5.8 | 8.1 | 8.0 | 32.7 | - | - | 0.45 | - | 35.5 |
MSa | Medium Sand | 8.1 | 10.0 | 18.6 | 36.2 | - | - | 0.75 | - | 92.2 |
LP | Soil | γ | φ | ψ | c | Eoedref | σoedref | K0NC | m | E50ref | Eurref |
---|---|---|---|---|---|---|---|---|---|---|---|
kN/m3 | o | o | kPa | MPa | kPa | - | - | MPa | MPa | ||
1 | - | 18.5 | 29.8 | 0.0 | 1 | 12.1 | 5 | 0.5 | 0.591 | 18.2 | 54.5 |
2 | FSa | 16.6 | 30.5 | 0.5 | 1 | 15.4 | 10 | 0.5 | 0.591 | 23.4 | 70.2 |
3 | MSa | 17.7 | 36.0 | 6.0 | 1 | 63.8 | 20 | 0.4 | 0.466 | 96.4 | 289.3 |
4 | Or | 16.7 | 18.0 | 0.0 | 5 | 3.4 | 30 | 0.7 | 1.000 | 4.9 | 14.8 |
5 | siCl | 19.1 | 19.2 | 0.0 | 16 | 8.6 | 40 | 0.7 | 0.850 | 12.1 | 36.2 |
6 | MSa | 17.7 | 34.7 | 4.7 | 1 | 53.1 | 60 | 0.4 | 0.513 | 81.7 | 245.2 |
7 | MSa | 17.7 | 32.7 | 2.7 | 1 | 35.5 | 80 | 0.5 | 0.559 | 54.8 | 164.3 |
8 | MSa | 17.7 | 36.2 | 6.2 | 1 | 92.2 | 110 | 0.4 | 0.466 | 139.7 | 419.1 |
EA | EI | w | ν | |
---|---|---|---|---|
kN/m | kNm2/m | kN/m/m | - | |
pipe | 1.05 × 107 | 2187.5 | 3.9 | 0.3 |
pile shoe | 6.30 × 107 | 4.30 × 105 | 7.7 | 0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baca, M.; Ivannikov, A.L.; Rybak, J. Numerical Modelling of Various Aspects of Pipe Pile Static Load Test. Energies 2021, 14, 8598. https://doi.org/10.3390/en14248598
Baca M, Ivannikov AL, Rybak J. Numerical Modelling of Various Aspects of Pipe Pile Static Load Test. Energies. 2021; 14(24):8598. https://doi.org/10.3390/en14248598
Chicago/Turabian StyleBaca, Michał, Alexander L. Ivannikov, and Jarosław Rybak. 2021. "Numerical Modelling of Various Aspects of Pipe Pile Static Load Test" Energies 14, no. 24: 8598. https://doi.org/10.3390/en14248598
APA StyleBaca, M., Ivannikov, A. L., & Rybak, J. (2021). Numerical Modelling of Various Aspects of Pipe Pile Static Load Test. Energies, 14(24), 8598. https://doi.org/10.3390/en14248598