P2PEdge: A Decentralised, Scalable P2P Architecture for Energy Trading in Real-Time
Abstract
:1. Introduction
- We propose a novel architecture which combines emerging technologies such as 5G and edge computing to handle dynamic complex conditions better.
- We propose a DLT-enabled P2P marketplace model.
- In order to counter the scalability issues of DLT, we propose an off-chain state channel during the energy contract negotiation and payment processes [17].
- We perform a STRIDE (spoofing, tampering, repudiation, information disclosure, denial of service, elevation of privilege) threat analysis to illustrate the importance of security-aware environments. For the analysis, we consider the model from the perspective of a remote attacker who pursues capital gain by attacking the confidentiality, integrity or availability of the P2P model.
2. Related Work
3. Methodology
4. The P2PEdge Model Architecture
4.1. Agent Preferences and Contract Selection
- Trader agents distributor , prosumer , consumer , producer .
- A set of buyers , where each buyer defines his trading price .
- A set of sellers , where each seller defines his trading price .
- Agent systems as Home Energy Management System (HEMS), Data Management Systems (DMSs) for data collection, aggregation and group management, and a manager system as a marketplace manager (see Figure 1).
- A smart contract with offers from buyers and bids from sellers .
- Energy amounts (to buy) and (to sell) which are estimated by the agents of and using the data of their smart meters.
Algorithm 1 Market trading buyer and seller selection procedure |
|
4.1.1. Distributors
4.1.2. Prosumers
4.1.3. Consumers
4.1.4. Producers
4.2. The Agent System
4.3. The Data Management System
4.4. The Manager System
4.5. Learning Model
- (1)
- it must be applicable to computational constraint devices;
- (2)
- it must be adaptive—i.e., it should take various inputs (e.g., weather data) and include current consumption information;
- (3)
- it must be able to consume large datasets (e.g., historical datasets).
5. Energy Trading Model
5.1. Selection Procedure
Algorithm 2 Market trading negotiation procedure |
|
5.2. Trading Negotiation
6. Trading Mechanism
6.1. Ledger Technology
6.2. The State Channel
7. Security
- (1)
- Spoofing: The breach of user’s authentication information by a third party.
- (2)
- Tampering: The adversarial alteration of system or user data.
- (3)
- Repudiation: A not-trusted third party user engages in activities without the ability to be traced.
- (4)
- Information disclosure: Information is exposed to unprivileged third party individuals.
- (5)
- Denial of Service: The attacker makes the system temporarily unavailable.
- (6)
- Elevation of privilege: Privileged access by an unprivileged third party that then has the ability to damage or destroy the entire system.
- Modelling: First, a decomposition of the model is necessary for the development of a Data Flow Diagram (DFD). The DFD is used to visualise internal entities and external entities (EE), processes (P), data flow (DF) and data stores (DS).
- Categorisation: All elements identified in the modelling phase are sorted into at least one of the six threat categories.
- Threat elicitation: The previously identified and categorised threats are investigated to reveal any possible causes of vulnerabilities.
- Risk management: Vulnerabilities are documented to allow further measures (e.g., risk assessment) and act appropriately according to a mitigation plan.
7.1. Use Case
7.2. Threat Modelling
7.3. Categorisation
7.3.1. Spoofing
7.3.2. Tampering
7.3.3. Repudiation
7.3.4. Information Disclosure
7.3.5. Denial of Service
7.3.6. Elevation of Privilege
7.4. Threat Elicitation
8. Privacy
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fang, X.; Misra, S.; Xue, G.; Yang, D. Smart Grid—The New and Improved Power Grid: A Survey. IEEE Commun. Surv. Tutor. 2012, 14, 944–980. [Google Scholar] [CrossRef]
- Sigrist, L.; May, K.; Morch, A.; Verboven, P.; Vingerhoets, P.; Rouco, L. On Scalability and Replicability of Smart Grid Projects—A Case Study. Energies 2016, 9, 195. [Google Scholar] [CrossRef] [Green Version]
- Hines, P.; Bongard, J.; Burkins, M.B. A Scalable Approach to Smart-Grid Technology or A Smarter Smart Grid; Technical Report; UVM, College of Engineering and Mathematical Sciences: Burlington, MA, USA, 2009. [Google Scholar]
- Siano, P.; De Marco, G.; Rolan, A.; Loia, V. A Survey and Evaluation of the Potentials of Distributed Ledger Technology for Peer-to-Peer Transactive Energy Exchanges in Local Energy Markets. IEEE Syst. J. 2019, 13, 3454–3466. [Google Scholar] [CrossRef]
- Andoni, M.; Robu, V.; Flynn, D.; Abram, S.; Geach, D.; Jenkins, D.; McCallum, P.; Peacock, A. Blockchain Technology in the Energy Sector: A Systematic Review of Challenges and Opportunities. Renew. Sustain. Energy Rev. 2019, 100, 143–174. [Google Scholar] [CrossRef]
- Armbrust, M.; Fox, A.; Griffith, R.; Joseph, A.D.; Katz, R.; Konwinski, A.; Lee, G.; Patterson, D.; Rabkin, A.; Stoica, I.; et al. A View of Cloud Computing. Commun. ACM 2010, 53, 50–58. [Google Scholar] [CrossRef] [Green Version]
- Kshetri, N.; Voas, J. Hacking Power Grids: A Current Problem. Computer 2017, 50, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Münsing, E.; Mather, J.; Moura, S. Blockchains for Decentralized Optimization of Energy Resources in Microgrid Networks. In Proceedings of the IEEE CCTA, Mauna Lani, HI, USA, 27–30 August 2017; pp. 2164–2171. [Google Scholar]
- Zhang, M.; Eliassen, F.; Taherkordi, A.; Jacobsen, H.A.; Chung, H.M.; Zhang, Y. Energy Trading with Demand Response in a Community-Based P2P Energy Market. In Proceedings of the IEEE SmartGridComm, Beijing, China, 21–23 October 2019. [Google Scholar]
- Li, Z.; Kang, J.; Yu, R.; Ye, D.; Deng, Q.; Zhang, Y. Consortium Blockchain for Secure Energy Trading in Industrial Internet of Things. IEEE Trans. Ind. Inf. 2017, 14, 3690–3700. [Google Scholar] [CrossRef] [Green Version]
- Gai, K.; Wu, Y.; Zhu, L.; Xu, L.; Zhang, Y. Permissioned Blockchain and Edge Computing Empowered Privacy-Preserving Smart Grid Networks. IEEE Internet Things J. 2019, 6, 7992–8004. [Google Scholar] [CrossRef]
- Luo, F.; Dong, Z.Y.; Liang, G.; Murata, J.; Xu, Z. A Distributed Electricity Trading System in Active Distribution Networks Based on Multi-Agent Coalition and Blockchain. IEEE Trans. Power Syst. 2019, 34, 4097–4108. [Google Scholar] [CrossRef]
- Guerrero, J.; Chapman, A.C.; Verbič, G. Decentralized P2P Energy Trading under Network Constraints in a Low-Voltage Network. IEEE Trans. Smart Grid 2019, 10, 5163–5173. [Google Scholar] [CrossRef] [Green Version]
- Mohsin, A.H.; Zaidan, A.A.; Zaidan, B.B.; Albahri, O.S.; Albahri, A.S.; Alsalem, M.A.; Mohammed, K.I. Blockchain Authentication of Network Applications: Taxonomy, Classification, Capabilities, Open Challenges, Motivations, Recommendations and Future Directions. Comp. Stand. Interf. 2019, 64, 41–60. [Google Scholar] [CrossRef]
- Kantamneni, A.; Brown, L.E.; Parker, G.; Weaver, W.W. Survey of Multi-Agent Systems for Microgrid Control. Eng. Appl. Artif. Intell. 2015, 45, 192–203. [Google Scholar] [CrossRef]
- Lin, I.C.; Liao, T.C. A Survey of Blockchain Security Issues and Challenges. Int. J. Netw. Secur. 2017, 19, 653–659. [Google Scholar] [CrossRef]
- Zheng, Z.; Xie, S.; Dai, H.; Chen, X.; Wang, H. An Overview of Blockchain Technology: Architecture, Consensus, and Future Trends. In Proceedings of the 2017 IEEE International Congress on Big Data (BigData Congress), Honolulu, HI, USA, 11–14 December 2017; pp. 557–564. [Google Scholar]
- Back, A.; Corallo, M.; Dashjr, L.; Friedenbach, M.; Maxwell, G.; Miller, A.; Poelstra, A.; Timón, J.; Wuille, P. Enabling Blockchain Innovations with Pegged Sidechains; Technical Report; Blockstream Corp. Inc.: Victoria, BC, Canada, 2014. [Google Scholar]
- McCorry, P.; Buckland, C.; Bakshi, S.; Wüst, K.; Miller, A. You Sank My Battleship! A Case Study to Evaluate State Channels as a Scaling Solution for Cryptocurrencies; LNCS; Financial Cryptography and Data Security; Bracciali, A., Clark, J., Pintore, F., Rønne, P.B., Sala, M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 35–49. [Google Scholar]
- Chin, W.L.; Li, W.; Chen, H.H. Energy Big Data Security Threats in IoT-Based Smart Grid Communications. IEEE Commun. Mag. 2017, 55, 70–75. [Google Scholar] [CrossRef]
- Taleb, T.; Samdanis, K.; Mada, B.; Flinck, H.; Dutta, S.; Sabella, D. On Multi-Access Edge Computing: A Survey of the Emerging 5G Network Edge Cloud Architecture and Orchestration. IEEE Commun. Surv. Tutor. 2017, 19, 1657–1681. [Google Scholar] [CrossRef] [Green Version]
- An, B.; Lesser, V.R.; Irwin, D.E.; Zink, M. Automated Negotiation with Decommitment for Dynamic Resource Allocation in Cloud Computing. In Proceedings of the AAMAS, Toronto, ON, Canada, 10–14 May 2010; Volume 10, pp. 981–988. [Google Scholar]
- Zhang, C.; Wu, J.; Long, C.; Cheng, M. Review of Existing Peer-to-Peer Energy Trading Projects. Energy Procedia 2017, 105, 2563–2568. [Google Scholar] [CrossRef]
- Kang, J.; Yu, R.; Huang, X.; Maharjan, S.; Zhang, Y.; Hossain, E. Enabling Localized Peer-to-Peer Electricity Trading among Plug-in Hybrid Electric Vehicles Using Consortium Blockchains. IEEE Trans. Ind. Inf. 2017, 13, 3154–3164. [Google Scholar] [CrossRef]
- Li, C.; Palanisamy, B.; Xu, R. Scalable and Privacy-Preserving Design of On/Off-Chain Smart Contracts. In Proceedings of the 2019 IEEE ICDEW, Macao, China, 8–12 April 2019; pp. 7–12. [Google Scholar]
- Aitzhan, N.Z.; Svetinovic, D. Security and Privacy in Decentralized Energy Trading Through Multi-Signatures, Blockchain and Anonymous Messaging Streams. IEEE TDSC 2018, 15, 840–852. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, X.; Mu, Y.; Jia, H. A Distributed Peer-to-Peer Energy Transaction Method for Diversified Prosumers in Urban Community Microgrid System. Appl. Energy 2020, 260, 114327. [Google Scholar] [CrossRef]
- Van Saberhagen, N. CryptoNote v 2.0. Technical Report. 2013. Available online: https://cryptonote.org/whitepaper.pdf (accessed on 16 January 2021).
- Dimitriou, T.; Karame, G. Privacy-Friendly Tasking and Trading of Energy in Smart Grids; ACM SAC; ACM Press: New York, NY, USA, 2013. [Google Scholar]
- Abidin, A.; Aly, A.; Cleemput, S.; Mustafa, M.A. Secure and Privacy-Friendly Local Electricity Trading and Billing in Smart Grid. arXiv 2018, arXiv:1801.08354. [Google Scholar]
- Jawurek, M.; Johns, M.; Kerschbaum, F. Plug-in Privacy for Smart Metering Billing. arXiv 2011, arXiv:1012.2248. [Google Scholar]
- Hussain, S.; Kamal, A.; Ahmad, S.; Rasool, G.; Iqbal, S. Threat modelling methodologies: A survey. Sci. Int. 2014, 26, 1607–1609. [Google Scholar]
- Scandariato, R.; Wuyts, K.; Joosen, W. A Descriptive Study of Microsoft’s Threat Modeling Technique. Requir. Eng. 2015, 20, 163–180. [Google Scholar] [CrossRef] [Green Version]
- Izakian, H.; Abraham, A.; Ladani, B.T. An Auction Method for Resource Allocation in Computational Grids. Future Gener. Comput. Syst. 2010, 26, 228–235. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Q.; Zhou, N.; Chi, Y. A Novel Electricity Transaction Mode of Microgrids Based on Blockchain and Continuous Double Auction. Energies 2017, 10, 1971. [Google Scholar] [CrossRef] [Green Version]
- Chaggar, S.; Noble, J.; Cliff, D. The Effects of Periodic and Continuous Market Environments on the Performance of Trading Agents. In Proceedings of the Artificial Life XI: Proceedings of the Eleventh International Conference on the Simulation and Synthesis of Living Systems, Winchester, UK, 5–8 August 2008; MIT Press: Cambridge, MA, USA, 2008; pp. 110–117. [Google Scholar]
- Antoniadou-Plytaria, K.E.; Kouveliotis-Lysikatos, I.N.; Georgilakis, P.S.; Hatziargyriou, N.D. Distributed and Decentralized Voltage Control of Smart Distribution Networks: Models, Methods, and Future Research. IEEE Trans. Smart Grid 2017, 8, 2999–3008. [Google Scholar] [CrossRef]
- Omran, W.A.; Kazerani, M.; Salama, M.M.A. Investigation of Methods for Reduction of Power Fluctuations Generated From Large Grid-Connected Photovoltaic Systems. IEEE Trans. Energy Convers. 2011, 26, 318–327. [Google Scholar] [CrossRef]
- Ozdemir, S.; Xiao, Y. Secure Data Aggregation in Wireless Sensor Networks: A Comprehensive Overview. Comput. Netw. 2009, 53, 2022–2037. [Google Scholar] [CrossRef]
- Erkin, Z.; Troncoso-pastoriza, J.R.; Lagendijk, R.L.; Perez-Gonzalez, F. Privacy-Preserving Data Aggregation in Smart Metering Systems: An Overview. IEEE Signal Process Mag. 2013, 30, 75–86. [Google Scholar] [CrossRef]
- Almalaq, A.; Edwards, G. A Review of Deep Learning Methods Applied on Load Forecasting. In Proceedings of the 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), Cancun, Mexico, 18–21 December 2017; pp. 511–516. [Google Scholar]
- Miao, Z.; Xu, L.; Disfani, V.R.; Fan, L. An SOC-Based Battery Management System for Microgrids. IEEE Trans. Smart Grid 2014, 5, 966–973. [Google Scholar] [CrossRef]
- Faisal, M.; Hannan, M.A.; Ker, P.J.; Hussain, A.; Mansor, M.B.; Blaabjerg, F. Review of Energy Storage System Technologies in Microgrid Applications: Issues and Challenges. IEEE Access 2018, 6, 35143–35164. [Google Scholar] [CrossRef]
- Soloveichik, G.L. Battery Technologies for Large-Scale Stationary Energy Storage. Annu. Rev. Chem. Biomol. Eng. 2011, 2, 503–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horling, B.; Lesser, V. A Survey of Multi-Agent Organizational Paradigms. Knowl. Eng. Rev. 2004, 19, 281–316. [Google Scholar] [CrossRef] [Green Version]
- Al-Bassam, M.; Sonnino, A.; Bano, S.; Hrycyszyn, D.; Danezis, G. Chainspace: A Sharded Smart Contracts Platform. arXiv 2017, arXiv:170803778. [Google Scholar]
- Hellings, J.; Hughes, D.P.; Primero, J.; Sadoghi, M. Cerberus: Minimalistic Multi-Shard Byzantine-Resilient Transaction Processing. arXiv 2020, arXiv:200804450. [Google Scholar]
- Kim, S.; Kwon, Y.; Cho, S. A Survey of Scalability Solutions on Blockchain. In Proceedings of the 2018 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Korea, 17–19 October 2018; pp. 1204–1207. [Google Scholar]
- Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008. Available online: https://github.com/poanetwork/wiki/wiki/POA-Network-Whitepaper (accessed on 16 January 2021).
- Peters, G.W.; Panayi, E. Understanding Modern Banking Ledgers Through Blockchain Technologies: Future of Transaction Processing and Smart Contracts on the Internet of Money. Bank. Beyond Banks Money 2016. [Google Scholar] [CrossRef] [Green Version]
- Schletz, M.; Cardoso, A.; Prata Dias, G.; Salomo, S. How Can Blockchain Technology Accelerate Energy Efficiency Interventions? A Use Case Comparison. Energies 2020, 13, 5869. [Google Scholar] [CrossRef]
- Arasev, V. POA Network Whitepaper. 2018. Available online: https://bitcoin.org/bitcoin.pdf (accessed on 16 January 2021).
- Noether, S.; Mackenzie, A.; Monero Core Team. Ring Confidential Transactions; Technical Report MRL-0005. Monero Research Lab, 2016. Available online: https://eprint.iacr.org/2015/1098 (accessed on 16 January 2021).
- Sun, S.F.; Au, M.H.; Liu, J.K.; Yuen, T.H. RingCT 2.0: A Compact Accumulator-Based (Linkable Ring Signature) Protocol for Blockchain Cryptocurrency Monero. In Computer Security—ESORICS 2017; Foley, S.N., Gollmann, D., Snekkenes, E., Eds.; Springer International Publishing: Cham, Switzerland, 2017; Volume 10493, pp. 456–474. [Google Scholar] [CrossRef]
- Yuen, T.H.; Sun, S.F.; Liu, J.K.; Au, M.H.; Esgin, M.F.; Zhang, Q.; Gu, D. RingCT 3.0 for Blockchain Confidential Transaction: Shorter Size and Stronger Security. In Financial Cryptography and Data Security; Bonneau, J., Heninger, N., Eds.; Springer International Publishing: Cham, Switzerland, 2020; Volume 12059, pp. 464–483. [Google Scholar] [CrossRef]
- Bünz, B.; Bootle, J.; Boneh, D.; Poelstra, A.; Wuille, P.; Maxwell, G. Bulletproofs: Short Proofs for Confidential Transactions and More. In Proceedings of the 2018 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, May 2018; pp. 319–338. [Google Scholar]
- Howard, M.; LeBlanc, D. Writing Secure Code: Practical Strategies and Proven Techniques for Building Secure Applications in a Networked World, 2nd ed.; Microsoft Press: Redmond, WA, USA, 2003. [Google Scholar]
- Khan, R.; McLaughlin, K.; Laverty, D.; Sezer, S. STRIDE-Based Threat Modeling for Cyber-Physical Systems. In Proceedings of the 2017 IEEE PES ISGT-Europe, Torino, Italy, 26–29 September 2017; pp. 1–6. [Google Scholar]
- Azmoodeh, A.; Dehghantanha, A.; Conti, M.; Choo, K.K.R. Detecting Crypto-Ransomware in IoT Networks Based on Energy Consumption Footprint. J. Ambient Intell. Hum. Comput. 2018, 9, 1141–1152. [Google Scholar] [CrossRef]
- Al-rimy, B.A.S.; Maarof, M.A.; Shaid, S.Z.M. Ransomware Threat Success Factors, Taxonomy, and Countermeasures: A Survey and Research Directions. Comput. Secur. 2018, 74, 144–166. [Google Scholar] [CrossRef]
- Jelacic, B.; Rosic, D.; Lendak, I.; Stanojevic, M.; Stoja, S. STRIDE to a Secure Smart Grid in a Hybrid Cloud; Computer Security; Katsikas, S.K., Cuppens, F., Cuppens, N., Lambrinoudakis, C., Kalloniatis, C., Mylopoulos, J., Antón, A., Gritzalis, S., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 77–90. [Google Scholar]
- Hebert, C.; Di Cerbo, F. Secure Blockchain in the Enterprise: A Methodology. Pervasive Mob. Comput. 2019, 59, 101038. [Google Scholar] [CrossRef]
- Liang, G.; Zhao, J.; Luo, F.; Weller, S.R.; Dong, Z.Y. A Review of False Data Injection Attacks against Modern Power Systems. IEEE Trans. Smart Grid 2017, 8, 1630–1638. [Google Scholar] [CrossRef]
- Chakraborty, D.; Hanzlik, L.; Bugiel, S. simTPM: User-Centric TPM for Mobile Devices; USENIX Security; USENIX Association: Santa Clara, CA, USA, 2019. [Google Scholar]
- Gao, Y.L.; Chen, X.B.; Chen, Y.L.; Sun, Y.; Niu, X.X.; Yang, Y.X. A Secure Cryptocurrency Scheme Based on Post-Quantum Blockchain. IEEE Access 2018, 6, 27205–27213. [Google Scholar] [CrossRef]
- Arute, F.; Arya, K.; Babbush, R.; Bacon, D.; Bardin, J.C.; Barends, R.; Biswas, R.; Boixo, S.; Brandao, F.G.S.L.; Buell, D.A.; et al. Quantum Supremacy Using a Programmable Superconducting Processor. Nature 2019, 574, 505–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heilman, E.; Baldimtsi, F.; Goldberg, S. Blindly Signed Contracts: Anonymous on-Blockchain and off-Blockchain Bitcoin Transactions. In Financial Cryptography and Data Security; Clark, J., Meiklejohn, S., Ryan, P.Y., Wallach, D., Brenner, M., Rohloff, K., Eds.; LNCS; Springer: Berlin/Heidelberg, Germany, 2016; Volume 9604, pp. 43–60. [Google Scholar]
- Basin, D.; Dreier, J.; Hirschi, L.; Radomirovic, S.; Sasse, R.; Stettler, V. A Formal Analysis of 5G Authentication; ACM CCS; ACM: Toronto, ON, Canada, 2018; pp. 1383–1396. [Google Scholar]
- Rogaway, P.; Shrimpton, T. Cryptographic Hash-Function Basics: Definitions, Implications, and Separations for Preimage Resistance, Second-Preimage Resistance, and Collision Resistance. In Fast Software Encryption; Kanade, T., Kittler, J., Kleinberg, J.M., Mattern, F., Mitchell, J.C., Naor, M., Nierstrasz, O., Pandu Rangan, C., Steffen, B., Sudan, M., et al., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3017, pp. 371–388. [Google Scholar] [CrossRef] [Green Version]
Risk Identifier | Description | Consequence |
---|---|---|
TR-1 | Inability to communicate with agent system | - |
TR-2 | Inability to communicate with DMS | - |
TR-3 | Inability to communicate with manager system | - |
TR-4 | Inability to communicate with smart grid | C-2 |
TR-5 | Inability to connect to 4G/5G cell tower | - |
TR-6 | Disclosure of communication secrets (e.g., keys, protocols, algorithms) | C-1 |
TR-7 | Disclosure of system state or secrets | C-1 |
TR-8 | Inability to meet local power demand | C-2 |
TR-9 | Disclosure of information in the state channel | - |
TR-10 | Termination of state channel | - |
STRIDE | DFD Elements | Threat Risks |
---|---|---|
S | P-2, P-4 - P-6, P-9, EE-2, EE-4 P-2 P-4, P-6, P-9 EE-2 P-5 P-8 EE-4 | TR-6, TR-7 TR-2 TR-9 TR-1, TR-2 TR-1, TR-3, TR-5 TR-2, TR-4 TR-3 |
T | EE-1, P-1, DS-1 P-1, DS-3 P-3, P-7, P-10, DF-5 - DF-7, ... DS-2, DS-7 DF-1 - DF-3 DS-1 - DS-3 DF-4, DS-3 DS-1 DS-5 | TR-8 TR-1 TR-10 TR-1, TR-2, TR-3 TR-5 TR-3 TR-2, TR-5 TR-2, TR-4 |
R | P-4, P-6, P-2, P-5 P-8 | TR-10 TR-3, TR-7 TR-4, TR-7 |
I | DS-1 - DS-3, DS-5, DS-7, P-2, ... P-5, P-8, EE-2, EE-4 DS-1, DS-3, DS-4, DS-6, EE-4, ... DF-1 - DF-4 P-4, DF-5 | TR-6 TR-7 TR-9 |
D | P-2, EE-1, DS-1 DS-1, P-2, P-8, DS-5 DF-1, DF-2 EE-2 P-5, DS-3 DF-3 DF-4 EE-4 | TR-8 TR-2, TR-4 TR-1, TR-2, TR-5 TR-1, TR-2 TR-1, TR-3 - TR-5 TR-2, TR-3, TR-4 TR-3, TR-4 TR-4 |
E | P-2 P-4, P-6, P-9 EE-2 P-5 P-8 EE-4 | TR-2, TR-5, TR-4 TR-10 TR-1, TR-2 TR-1, TR-3 - TR-5 TR-2, TR-4 TR-3, TR-4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalbantner, J.; Markantonakis, K.; Hurley-Smith, D.; Akram, R.N.; Semal, B. P2PEdge: A Decentralised, Scalable P2P Architecture for Energy Trading in Real-Time. Energies 2021, 14, 606. https://doi.org/10.3390/en14030606
Kalbantner J, Markantonakis K, Hurley-Smith D, Akram RN, Semal B. P2PEdge: A Decentralised, Scalable P2P Architecture for Energy Trading in Real-Time. Energies. 2021; 14(3):606. https://doi.org/10.3390/en14030606
Chicago/Turabian StyleKalbantner, Jan, Konstantinos Markantonakis, Darren Hurley-Smith, Raja Naeem Akram, and Benjamin Semal. 2021. "P2PEdge: A Decentralised, Scalable P2P Architecture for Energy Trading in Real-Time" Energies 14, no. 3: 606. https://doi.org/10.3390/en14030606
APA StyleKalbantner, J., Markantonakis, K., Hurley-Smith, D., Akram, R. N., & Semal, B. (2021). P2PEdge: A Decentralised, Scalable P2P Architecture for Energy Trading in Real-Time. Energies, 14(3), 606. https://doi.org/10.3390/en14030606