Experimental Investigation on CIRCE-HERO for the EU DEMO PbLi/Water Heat Exchanger Development
Abstract
:1. Introduction
2. CIRCE-HERO Layout
- The helium chamber (ex-vessel), for pressurizing the AISI316L powder gap with inert gas;
- The steam chamber (ex-vessel), collecting the steam arising from the bayonet tubes (BTs);
- The tube bundle, composed of 7 BTs with an active length of 6000 mm, arranged with a triangular pitch in a hexagonal shroud; and
- The top flange on the top of the main vessel, which sustains the steam and helium chambers, the BTs, and the hexagonal shell.
- Five TCs located in the central tube, named T0 and set at different levels (+500 mm, +1500 mm, +3000 mm, +4200 mm, +6000 mm, assuming the bottom part of the bayonet tube is 0 mm), aiming to characterize water vaporization;
- Seven TCs at the exit of each bayonet tube annular riser;
- Three TCs at the steam chamber outlet to detect eventual condensation and radial stratification; and
- Four differential pressure transmitters to measure the pressure across 4 BTs in order to characterize pressure drops in single- and two-phases flow conditions.
3. EUROfusion Experimental Campaign
4. Experimental Tests Results
4.1. Primary Side Outcomes
4.2. Secondary Side Outcomes
- xt is the thermodynamic quality;
- is the average specific enthalpy of the mixture liquid/steam;
- hv is the enthalpy of the steam in saturation conditions at the pressure of the system; and
- hl is the enthalpy of the liquid water in saturation conditions at the pressure of the system.
5. RELAP5 Post-Test Analysis
6. Analysis of the Experimental Data in Case of PbLi Working Fluid
6.1. Method #1
- Nu is the Nusselt number;
- P/D is the pitch-to-diameter ratio (in HERO geometry, P/D = 1.42) of the rods; and
- Pe is the Peclet number.
6.2. Method #2
7. Conclusions
- During each test, the steady state conditions and the designed boundary conditions needed to test the SG were achieved. In the LBE side (primary side), the FPS managed to supply the thermal power necessary to balance the power removed by the SGBT and the fraction of power lost from the CIRCE pool toward the environment, keeping the LBE temperature at the SG inlet section as close as possible to the target values (maximum discrepancy ~4 °C).
- A dedicated argon injection device was used to perform a gas-enhanced circulation regime, achieving the designed values of LBE mass flow rate in each SS. Small discrepancies were observed in some cases, where the experimental LBE mass flow rate achieved was lower than the designed values. The average velocity of the LBE along the shell side of the SGBT was in the range of 0.5 m/s (EF-T1, SS1) and 0.05 m/s (EF-T3, SS5) and this was coherent with the PbLi velocities expected in the DCLL BB PbLi loop (for velocities in range 0.5–0.1 m/s) and the WCLL BB PbLi loop (velocity lower than 0.1 m/s).
- A secondary loop was realized in order to feed the HERO SGBT. The main components (i.e., volumetric pump, regulation valves, helical heater) were managed in order to achieve the water conditions foreseen for the tests.
- At the SG outlet, the LBE temperatures reached the maximum average values during SS1 of each test. Then they decreased in the following steady states, in accordance with the LBE mass flow rates reduction, and achieved the minimum values during SS5.
- In EF-T5 the steam outlet temperature was well above the saturation limit of 311 °C (i.e., ~337 °C in SS2 and ~390 °C in SS3, up to the final value of ~422 °C in SS4). These results demonstrate that the SGBT is capable of reaching high degrees of superheating, producing high temperature steam suitable for the inlet in a turbine.
- The thermal power removed by HERO for each SS and for all the tests was assessed by applying the thermal balance equation: The highest fraction was achieved in EF-T2-SS1 (~520 kW), whereas the lowest fraction was achieved in EF-T3-SS5 (~100 kW).
- A numerical post-test analysis using the STH codes RELAP5-3D© Ver. 4.3.4 and RELAP5/Mod3.3 was performed by exploiting the outcomes of the experimental tests. Both versions of the code were demonstrated to have the capability to simulate this type of component, in particular as regards the liquid metal side. Minor differences (~0.5–1.5 °C) were observed between the two codes. The most relevant discrepancies were observed from the comparison of the SGBT wall temperatures calculated by the codes and the experimental ones. The reasons for such discrepancies could be found in the numerical model setup, which could not reproduce the LBE sub-channel effects and possible unbalance in the LBE flow. The analysis of the results also highlighted a possible source of uncertainty in the powder + He gap and its thermal conductivity, which was influenced by different factors (i.e., powder compaction, grain size and growth, thermal cycling) during the HERO SGBT operation. The eventual formation of LBE compounds around the HERO tubes and the consequent increase of thermal resistance could also enhance such discrepancies. Verification of this last hypothesis will be made when the HERO SGBT is dismantled.
- Two scaling analysis approaches were proposed to find an equivalence between LBE and PbLi. RELAP5-3D code was applied to recalculate the data of the experiments using PbLi as the working fluid. Considering method #1, which preserves the convective heat transfer, and comparing experimental and calculated values, it emerged that the errors in terms of Nu were in the range of 26.1–33.6% for EF-T1 and 24.1–38.2% for EF-T2. These discrepancies could be partially due to the uncertainty related to the correlation used by RELAP5-3D for the calculation of Nu and to the differences of the thermo-physical proprieties between the ones from RELAP5-3D and the most updated values. Neglecting the contribution of the fluid properties, the errors decreased in the range of 18–29% for EF-T1 and 15.7–28.7% for EF-T2. Considering method #2 and thus preserving the thermal power and the difference of temperature, the code predicted differences in the range of 4–6 °C on the outlet temperatures, thus neglecting the contribution of the PbLi properties. The errors of the code results were in range of −1.8 °C and 0.6 °C. The same differences were found by applying the scaling methods to the other tests. Of the two methods, method #2 seemed to be more appropriate for the purposes of the present activity, since it preserved the thermal power exchanged, and thus the main figure of merit, which represented the efficiency of the component.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
BB | breeding blanket |
BT | bayonet tube |
CIRCE | CIRColazione Eutettico |
DCLL | dual coolant lithium lead |
EF-T | EUROfusion-Test |
ENEA | Agenzia nazionale per le nuove tecnologie, l’energia e lo sviluppo economico sostenibile |
FPS | fuel pin simulator |
HERO | Heavy Liquid mEtal pRessurized water cOoled tubes |
HEX | heat exchanger |
LBE | lead–bismuth eutectic |
Nu | Nusselt number |
PbLi | lithium–lead |
Pe | Peclet number |
P&ID | procedures and instrumentation description |
RC | Research Centre |
SG | steam generator |
SGBT | steam generator bayonet tube |
SS | steady state |
STH | system thermal-hydraulic |
TC | thermocouple |
TFM | turbine flow meter |
TS | test section |
VFM | Venturi flow meter |
WCLL | water cooled lithium lead |
References
- Boccaccini, L.; Aiello, G.; Aubert, J.; Bachmann, C.; Barrett, T.; Del Nevo, A.; Demange, D.; Forest, L.; Hernandez, F.; Norajitra, P.; et al. Objectives and status of EUROfusion DEMO blanket studies. Fusion Eng. Des. 2016, 109–111, 1199–1206. [Google Scholar] [CrossRef]
- Rapisarda, D.; Fernández-Berceruelo, I.; Palermo, I.; Urgorri, F.R.; Maqueda, L.; Alonso, D.; Melichar, T.; Frýbort, O.; Vála, L.; González, M.; et al. Status of the engineering activities carried out on the European DCLL. Fusion Eng. Des. 2017, 124, 876–881. [Google Scholar] [CrossRef]
- Del Nevo, A.; Arena, P.; Caruso, G.; Chiovaro, P.; Di Maio, P.A.; Eboli, M.; Edemetti, F.; Forgione, N.; Forte, R.; Froio, A.; et al. Recent progress in developing a feasible and integrated conceptual design of the WCLL BB in EUROfusion project. Fusion Eng. Des. 2019, 146, 1805–1809. [Google Scholar] [CrossRef] [Green Version]
- Martelli, E.; Del Nevo, A.; Lorusso, P.; Giannetti, F.; Narcisi, V. Conceptual Design of a PbLi/Water Heat Exchanger and Design of the Experimental Campaign; EC H2020 EUROfusion Project, WPBoP BOP-4.1.1-T001-D001, IDM Ref. 2N3VXE v1.0; European Commission: Brussels, Belgium, 10 April 2019. [Google Scholar]
- Eboli, M.; Moghanaki, S.K.; Martelli, D.; Forgione, N.; Porfiri, M.T.; Del Nevo, A. Experimental activities for in-box LOCA of WCLL BB in LIFUS5/Mod3 facility. Fusion Eng. Des. 2019, 146, 914–919. [Google Scholar] [CrossRef]
- Di Maio, P.A.; Arena, P.; D’Aleo, F.; Del Nevo, A.; Eboli, M.; Forte, R.; Pesetti, A. Thermal-hydraulic and thermo-mechanical simulations of Water-Heavy Liquid Metal interactions towards the DEMO WCLL breeding blanket design. Fusion Eng. Des. 2019, 146, 2712–2716. [Google Scholar] [CrossRef]
- Eboli, M.; Del Nevo, A.; Pesetti, A.; Forgione, N.; Sardain, P. Simulation study of pressure trends in the case of loss of coolant accident in Water Cooled Lithium Lead blanket module. Fusion Eng. Des. 2015, 98–99, 1763–1766. [Google Scholar] [CrossRef]
- DeFur, D.D. LMFBR Steam Generator Development: Duplex Bayonet Tube Steam Generator Volume II; CENC1238; Combustion Engineering Incorporated: Chattanooga, TN, USA, 1975. [Google Scholar] [CrossRef] [Green Version]
- Caramello, M.; Gregorini, M.; Bertani, C.; De Salve, M.; Alemberti, A.; Panella, B. Thermal hydraulic analysis of a passively controlled DHR system. Prog. Nucl. Energy 2017, 99, 127–139. [Google Scholar] [CrossRef]
- Narcisi, V.; Giannetti, F.; Caramello, M.; Caruso, G. Preliminary evaluation of ALFRED revised concept under station blackout. Nucl. Eng. Des. 2020, 364, 110648. [Google Scholar] [CrossRef]
- Alemberti, A.; Caramello, M.; Frignani, M.; Grasso, G.; Merli, F.; Morresi, G.; Tarantino, M. ALFRED reactor coolant system design. Nucl. Eng. Des. 2020, 370, 110884. [Google Scholar] [CrossRef]
- Lorusso, P.; Martelli, E.; Del Nevo, A.; Tarantino, M. PbLi Heat Exchanger and Fluid Technology—As built PbLi/H2O HX Test Facility Report; EC H2020 EUROfusion Project, WPBOP-4-T002-D001, IDM Ref. 2N6K97 v1.2; European Commission: Brussels, Belgium, 3 October 2019. [Google Scholar]
- Martelli, E.; Del Nevo, A.; Lorusso, P.; Giannetti, F.; Narcisi, V.; Tarantino, M. Investigation of heat transfer in a steam generator bayonet tube for the development of PbLi technology for EU DEMO fusion reactor. Fusion Eng. Des. 2020, 159, 111772. [Google Scholar] [CrossRef]
- Lorusso, P.; Martelli, E.; Del Nevo, N.V.; Giannetti, F. Development of a PbLi heat exchanger for EU DEMO fusion reactor: Experimental test and system code assessment. In Proceedings of the 31st Symposium on Fusion Technology (SOFT2020), Virtual Conference. Dubrovnik, Croatia, 20–25 September 2020. [Google Scholar]
- Lorusso, P.; Pesetti, A.; Tarantino, M. ALFRED steam generator assessment: Design and pre-test analysis of HERO experiment. In Volume 6B: Thermal-Hydraulics and Safety Analyses, Proceedings of the 2018 26th International Conference on Nuclear Engineering, London, UK, 22–26 July 2018; ASME: New York, NY, USA, 2018. [Google Scholar] [CrossRef]
- Lorusso, P.; Tarantino, M.; Pesetti, A.; Narcisi, V. Protected loss of flow accident simulation in CIRCE-HERO facility: Experimental test and system code assessment. In Proceedings of the 27th International Conference on Nuclear Engineering (ICONE 2019), Tsukuba, Japan, 19–24 May 2019. paper 150404. [Google Scholar]
- The RELAP5-3D Code Development Team. RELAP5-3D© Code Manual; Idaho National Engineering Laboratory, Lockheed-Martin Idaho Technologies Company: Idaho Falls, ID, USA, 2013; INEEL-EXT-98-00834. Available online: https://relap53d.inl.gov/SitePages/RELAP5-3D%20Manuals.aspx (accessed on 22 January 2021).
- Martelli, E.; Giannetti, F.; Ciurluini, C.; Caruso, G.; Del Nevo, A. Thermal-hydraulic modeling and analyses of the water-cooled EU DEMO using RELAP5 system code. Fusion Eng. Des. 2019, 146, 1121–1125. [Google Scholar] [CrossRef]
- Martelli, E.; Giannetti, F.; Caruso, G.; Tarallo, A.; Polidori, M.; Barucca, L.; Del Nevo, A. Study of EU DEMO WCLL breeding blanket and primary heat transfer system integration. Fusion Eng. Des. 2018, 136, 828–833. [Google Scholar] [CrossRef]
- Lorusso, P.; Bassini, S.; Del Nevo, A.; Di Piazza, I.; Giannetti, F.; Tarantino, M.; Utili, M. GEN-IV LFR development: Status and perspectives. Prog. Nucl. Energy 2018, 105, 318–331. [Google Scholar] [CrossRef]
- Tarantino, M.; Agostini, P.; Benamati, G.; Coccoluto, G.; Gaggini, P.; Labanti, V.; Venturi, G.; Class, A.; Liftin, K.; Forgione, N.; et al. Integral circulation experiment: Thermal–hydraulic simulator of a heavy liquid metal reactor. J. Nucl. Mater. 2011, 415, 433–448. [Google Scholar] [CrossRef]
- Lorusso, P.; Pesetti, A.; Tarantino, M.; Narcisi, V.; Giannetti, F.; Forgione, N.; Del Nevo, A. Experimental analysis of stationary and transient scenarios of alfred steam generator bayonet tube in circe-hero facility. Nucl. Eng. Des. 2019, 352, 110169. [Google Scholar] [CrossRef]
- Lorusso, P.; Pesetti, A.; Barone, G.; Castelliti, D.; Caruso, G.; Forgione, N.; Giannetti, F.; Martelli, D.; Rozzia, D.; Van Tichelen, K.; et al. MYRRHA primary heat exchanger experimental simulations on CIRCE-HERO. Nucl. Eng. Des. 2019, 353. [Google Scholar] [CrossRef] [Green Version]
- Castelliti, D.; Hamidouche, T.; Lorusso, P.; Tarantino, M. H2020 MYRTE CIRCE-HERO experimental campaign post-test activity and code validation. In Proceedings of the 18th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-18), Portland, OR, USA, 18–23 August 2019. [Google Scholar]
- Narcisi, V.; Giannetti, F.; Del Nevo, A.; Tarantino, M.; Caruso, G. Post-test simulation of a PLOFA transient test in the CIRCE-HERO facility. Nucl. Eng. Des. 2019, 355, 110321. [Google Scholar] [CrossRef] [Green Version]
- Francesco, G.; Barone, G.; Martelli, D.; Pucciarelli, A.; Lorusso, P.; Tarantino, M.; Forgione, N. Simulation of operational conditions of HX-HERO in the CIRCE facility with CFD/STH coupled codes. Nucl. Eng. Des. 2020, 361, 110552. [Google Scholar] [CrossRef]
- Martelli, D.; Forgione, N.; Di Piazza, I.; Tarantino, M. HLM fuel pin bundle experiments in the CIRCE pool facility. Nucl. Eng. Des. 2015, 292, 76–86. [Google Scholar] [CrossRef]
- Ambrosini, W.; Azzati, M.; Benamati, G.; Bertacci, G.; Cinotti, L.; Forgione, N.; Oriolo, F.; Scaddozzo, G.; Tarantino, M. Testing and qualification of CIRCE instrumentation based on bubble tubes. J. Nucl. Mater. 2004, 335, 293–298. [Google Scholar] [CrossRef]
- Tarantino, M.; Martelli, D.; Del Nevo, A.; Utili, M.; Di Piazza, I.; Eboli, M.; Diamanti, D.; Tincani, A.; Miccichè, G.; Bernardi, D.; et al. Fusion technologies development at ENEA Brasimone Research Centre: Status and perspectives. Fusion Eng. Des. 2020, 160, 112008. [Google Scholar] [CrossRef]
- Utili, M.; Bassini, S.; Boccaccini, L.V.; Bühler, L.; Cismondi, F.; Del Nevo, A.; Eboli, M.; Difonzo, F.; Hernandez, T.; Wulf, S.; et al. Status of Pb-16Li technologies for European DEMO fusion reactor. Fusion Eng. Des. 2019, 146, 2676–2681. [Google Scholar] [CrossRef]
- Venturini, A.; Papa, F.; Utili, M.; Forgione, N. Experimental qualification of new instrumentation for lead-lithium eutectic in IELLLO facility. Fusion Eng. Des. 2020, 156, 111683. [Google Scholar] [CrossRef]
- Narcisi, V.; Giannetti, F.; Martelli, E.; Del Nevo, A.; Tarantino, M.; Caruso, G. Steam generator mock-up preliminary design suitable for Pb-Li technology demonstration and code assessment. Fusion Eng. Des. 2019, 146, 1126–1130. [Google Scholar] [CrossRef] [Green Version]
- OECD/NEA Nuclear Science Committee. Handbook on Lead-bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal Hydraulics and Technologies; OECD: Paris, France, 2015; Available online: https://www.oecd-nea.org/jcms/pl_14972 (accessed on 22 January 2021).
- The RELAP5 Development Team. RELAP5 Code Manual, RELAP5/Mod3.3 Code Manual: Code Structure, System Models, and Solution Methods; Nuclear Safety Analysis Division, Information Systems Laboratories: Idaho Falls, ID, USA, 2001; Volume 1. [Google Scholar]
- Oriolo, F.; De Varti, A.; Fruttuoso, G.; Leonardi, M.; Bocci, S.; Forasassi, G. Modifiche del Codice RELAP5 Versione MOD3.2 per la Simulazione di Sistemi Refrigerati con Leghe di Pb o Pb-Bi; RL 031/00; Università di Pisa: Pisa, Italy, 2000. [Google Scholar]
- Tarantino, M.; Del Nevo, A.; Forgione, N.; Bandini, G. Post test analysis of ICE tests. In Volume 2: Plant Systems, Structures, and Components; Safety and Security; Next Generation Systems; Heat Exchangers and Cooling Systems, Proceedings of the 2012 20th International Conference on Nuclear Engineering, Anaheim, CA, USA, 30 July–3 August 2012; ASME: New York, NY, USA, 2012; pp. 703–712. [Google Scholar] [CrossRef]
- Davis, C.B. Applicability of RELAP5-3D for Thermal-Hydraulic Analyses of a Sodium-Cooled Actinide Burner Test Reactor; INL/EXT-06-11518; Idaho National Laboratory: Idaho Falls, ID, USA, 2006. [Google Scholar]
- The RELAP5-3D Code Development Team. RELAP5-3D© Code Manual Volume IV: Models and Correlations; INEEL-EXT-98-00834; Information Systems Laboratories: Idaho Falls, ID, USA, 2006; Volume 4. [Google Scholar]
- Rozzia, D.; Fasano, G.; Di Piazza, I.; Tarantino, M. Experimental investigation on powder conductivity for the application to double wall heat exchanger (NACIE-UP). Nucl. Eng. Des. 2015, 283, 100–113. [Google Scholar] [CrossRef]
- Rozzia, D.; Fasano, G.; Tarantino, M.; Del Nevo, A.; Forgione, N.; Alemberti, A. Experimental investigation on powder conductivity for the application to double wall bayonet tube bundle steam generator. In Proceedings of the 24th International Conference on Nuclear Engineering for New Europe (NENE), Portoroz, Slovenia, 14–17 September 2015; pp. 214.1–214.9. [Google Scholar]
- Shin, Y.; Gladinez, K.; Lim, J.; Marino, A.; Rosseel, K.; Aerts, A.; Van Tichelen, K. Fouling effect of lead oxide crystallization on heat transfer in LBE. In Proceedings of the 18th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, NURETH 2019, Portland, OR, USA, 18–23 August 2019; pp. 1346–1359. [Google Scholar]
- Martelli, D.; Venturini, A.; Utili, M. Literature review of lead-lithium thermophysical properties. Fusion Eng. Des. 2019, 138, 183–195. [Google Scholar] [CrossRef]
Test ID | LBE m. Flow Rate (kg/s) | LBE Tin SG (°C) | H2O Flow Rate (kg/s) | H2O Tin SG (°C) | H2O Pout SG (MPa) |
---|---|---|---|---|---|
EF-T1 | 40/33/27/20/10 | 450.0 | 0.31 | 280 | 8 |
EF-T2 | 40/33/27/20/10 | 480.0 | 0.31 | 300 | 10 |
EF-T3 | 40/33/27/20/10 | 480.0 | 0.31 | 300 | 12 |
EF-T4 | 40/33/27/20/10 | 430.0 | 0.31 | 250 | 6 |
EF-T5 | 27 | 480.0 | 0.275/0.245/0.21/0.175 | 300 | 10 |
Test ID | LBE m. Flow Rate (kg/s) | LBE Tin SG (°C) | H2O Flow Rate (kg/s) | H2O Tin SG (°C) | H2O Pout SG (MPa) |
---|---|---|---|---|---|
EF-T1 | 37.5/31.5/26.0/20.0/9.0 | 454 | 0.33 | 280.8 | 8.0 |
EF-T2 | 38.3/32.2/27.9/21.0/8.3 | 483.0 | 0.33 | 295.2 | 10.0 |
EF-T3 | 38.5/31.4/24.3/19.6/4.5 | 480.5 | 0.32 | 295.7 | 12.0 |
EF-T4 | 30.5/25.0/19.5/14.0/5.5 | 432 | 0.31 | 250.0 | 6.0 |
EF-T5 | 27.0 | 480.0 | 0.28/0.24/0.21/0.17 | 300.0 | 10.0 |
R5-3D Simulation Results | ||||||||
R5-Mod3.3 Simulation Results | ||||||||
Coolant Temperature SG [°C] | Wall Temperature [°C] | |||||||
EF-T# | SS_# | +4200 mm | +3000 mm | +1500 mm | Out | +4200 mm | +3000 mm | +1500 mm |
EF-T3 | SS_1 | 448.4 | 429.5 | 410.3 | 394.3 | 422.3 | 407.6 | 392.7 |
447.4 | 428.2 | 408.9 | 392.7 | 422.1 | 407.2 | 392.0 | ||
SS_2 | 440.8 | 420.1 | 399.8 | 383.1 | 414.0 | 398.4 | 383.0 | |
439.8 | 418.8 | 398.4 | 381.6 | 413.9 | 398.0 | 382.3 | ||
SS_3 | 430.9 | 408.1 | 386.9 | 369.5 | 403.8 | 387.1 | 371.5 | |
429.7 | 406.7 | 385.4 | 367.9 | 403.7 | 386.6 | 370.8 | ||
SS_4 | 423.2 | 398.6 | 376.9 | 358.8 | 396.0 | 378.5 | 362.8 | |
422.0 | 397.2 | 375.5 | 357.4 | 396.0 | 378.1 | 362.3 | ||
SS_5 | 358.4 | 330.5 | 311.8 | 302.4 | 342.9 | 321.7 | 307.3 | |
356.0 | 328.4 | 310.5 | 301.6 | 341.8 | 320.5 | 306.5 |
ID | W | Pe LBE | mf PbLi | v PbLi | Nu Exp | Nu PbLi R5-3D | Error |
---|---|---|---|---|---|---|---|
[kW] | ---- | [kg/s] | [m/s] | ---- | ---- | [%] | |
T1_SS1 | 464.4 | 1387.48 | 32.5 | 0.44 | 16.93 | 21.36 | 26.1 |
T1_SS2 | 451.4 | 1172.43 | 27.4 | 0.37 | 15.31 | 19.49 | 27.3 |
T1_SS3 | 414.8 | 973.46 | 22.8 | 0.31 | 13.78 | 17.71 | 28.5 |
T1_SS4 | 348.2 | 754.16 | 17.6 | 0.24 | 12.03 | 15.66 | 30.2 |
T1_SS5 | 196.1 | 344.82 | 8.1 | 0.11 | 8.55 | 11.43 | 33.6 |
T2_SS1 | 521 | 1367 | 32.0 | 0.43 | 16.78 | 20.84 | 24.1 |
T2_SS2 | 504.7 | 1158 | 27.1 | 0.36 | 15.20 | 19.79 | 30.1 |
T2_SS3 | 474.2 | 1019 | 23.8 | 0.32 | 14.13 | 18.46 | 30.6 |
T2_SS4 | 395.3 | 770 | 18.0 | 0.24 | 12.16 | 16.04 | 31.8 |
T2_SS5 | 199.4 | 299 | 7.0 | 0.09 | 8.13 | 11.24 | 38.2 |
Test ID | W | DTexp LBE | cp _PbLi | mf_pbli | Tin | Texp Out | T R5-3D PbLi Out | Error |
---|---|---|---|---|---|---|---|---|
---- | (kW) | (°C) | (J/kgK) | (kg/s) | (°C) | (°C) | (°C) | (°C) |
T1_SS1 | 464.4 | 88.9 | 187.8 | 27.8 | 454.2 | 365.3 | 360.1 | 5.1 |
T1_SS2 | 451.4 | 99.2 | 187.8 | 24.2 | 454.2 | 355 | 350.7 | 4.2 |
T1_SS3 | 414.8 | 109.4 | 187.8 | 20.2 | 454.2 | 344.8 | 340.9 | 3.8 |
T1_SS4 | 348.2 | 121.6 | 187.8 | 15.2 | 454.2 | 332.6 | 328.1 | 4.4 |
T1_SS5 | 196.1 | 148.6 | 187.8 | 7.0 | 454.2 | 305.6 | 297.7 | 7.8 |
T2_SS1 | 521 | 97.9 | 187.8 | 28.3 | 483.3 | 385.4 | 382.6 | 6.4 |
T2_SS2 | 504.7 | 108.4 | 187.8 | 24.8 | 483.3 | 374.9 | 371.1 | 3.8 |
T2_SS3 | 474.2 | 118.1 | 187.8 | 21.4 | 483.3 | 365.2 | 362.8 | 2.4 |
T2_SS4 | 395.3 | 132.3 | 187.8 | 15.9 | 483.3 | 351 | 347.2 | 3.8 |
T2_SS5 | 199.4 | 165.4 | 187.8 | 6.4 | 483.3 | 317.9 | 310.7 | 7.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lorusso, P.; Martelli, E.; Del Nevo, A.; Narcisi, V.; Giannetti, F.; Tarantino, M. Experimental Investigation on CIRCE-HERO for the EU DEMO PbLi/Water Heat Exchanger Development. Energies 2021, 14, 628. https://doi.org/10.3390/en14030628
Lorusso P, Martelli E, Del Nevo A, Narcisi V, Giannetti F, Tarantino M. Experimental Investigation on CIRCE-HERO for the EU DEMO PbLi/Water Heat Exchanger Development. Energies. 2021; 14(3):628. https://doi.org/10.3390/en14030628
Chicago/Turabian StyleLorusso, Pierdomenico, Emanuela Martelli, Alessandro Del Nevo, Vincenzo Narcisi, Fabio Giannetti, and Mariano Tarantino. 2021. "Experimental Investigation on CIRCE-HERO for the EU DEMO PbLi/Water Heat Exchanger Development" Energies 14, no. 3: 628. https://doi.org/10.3390/en14030628
APA StyleLorusso, P., Martelli, E., Del Nevo, A., Narcisi, V., Giannetti, F., & Tarantino, M. (2021). Experimental Investigation on CIRCE-HERO for the EU DEMO PbLi/Water Heat Exchanger Development. Energies, 14(3), 628. https://doi.org/10.3390/en14030628