Experimental and Theoretical Investigation of the Natural Convection Heat Transfer Coefficient in Phase Change Material (PCM) Based Fin-and-Tube Heat Exchanger
Abstract
:1. Introduction
2. Experimental Setup
3. Theoretical Approach to Evaluate Natural Convection Heat Transfer Coefficient in PCM
4. Experimental and Theoretical Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Latin letters | |
APCM | total heat transfer surface area to the PCM (fins and pipes) [m2] |
cp | specific heat capacity at constant pressure [J/kgK] |
g | gravitational acceleration [m/s2] |
h | heat transfer coefficient [W/m2K] |
k | thermal conductivity [W/mK] |
L | characteristic length of the geometry (height of vertical fin) [m] |
m | mass flow rate [kg/s] |
Nu | Nusselt number [–] |
Pr | Prandtl number [–] |
heat transfer rate [W] | |
Ra | Rayleigh number [–] |
S | characteristic length of the geometry (distance between two vertical fins) [m] |
T | Temperature [K], [°C] |
Greek | |
α | thermal diffusivity [m2/s] |
β | thermal expansion coefficient [1/K] |
ηfin | fin efficiency |
µ | dynamic viscosity [Pa∙s] |
ρ | density [kg/m3] |
v | kinematic viscosity [m2/s] |
Subscripts | |
1, 2, … | position No |
AVE | average |
CW | cold water |
HW | hot water |
HX | heat exchanger |
IN | inlet |
L | height of vertical fin |
l | liquid |
OUT | outlet |
PCM | phase change material |
S | distance between to vertical fins |
Abbreviations | |
C | cold water cooler |
EV | expansion vessel |
EXP | experimental |
H | hot water heater |
HTF | heat transfer fluid |
HX | heat exchanger |
LHS | latent heat storage |
MF | flowmeter |
P | circulating pump |
PCM | phase change material |
PCM-HX | phase change material-based heat exchanger |
T | temperature sensor or tank for water storage |
TES | thermal energy storage |
V | valve |
References
- Sarbu, I.; Sebarchievici, C. A Comprehensive Review of Thermal Energy Storage. Sustainability 2018, 10, 191. [Google Scholar] [CrossRef] [Green Version]
- Da Cunha, J.P.; Eames, P.C. Thermal Energy Storage for Low and Medium Temperature Applications Using Phase Change Materials—A Review. Appl. Energy 2016, 177, 227–238. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.; Deshmukh, S. An Overview: Applications of Thermal Energy Storage Using Phase Change Materials. Mater. Today: Proc. 2020, 26, 1231–1237. [Google Scholar] [CrossRef]
- Liu, L.; Su, D.; Tang, Y.; Fang, G. Thermal Conductivity Enhancement of Phase Change Materials for Thermal Energy Storage: A Review. Renew. Sustain. Energy Rev. 2016, 62, 305–317. [Google Scholar] [CrossRef]
- Wu, S.; Yan, T.; Kuai, Z.; Pan, W.-G. Thermal Conductivity Enhancement on Phase Change Materials for Thermal Energy Storage: A Review. Energy Storage Mater. 2020, 25, 251–295. [Google Scholar] [CrossRef]
- Pakalka, S.; Valančius, K.; Streckienė, G. Experimental Comparison of the Operation of PCM-Based Copper Heat Exchangers with Different Configurations. Appl. Therm. Eng. 2020, 172, 115138. [Google Scholar] [CrossRef]
- Nitsas, M.; Koronaki, I.P. Thermal Analysis of Pure and Nanoparticle-Enhanced PCM—Application in Concentric Tube Heat Exchanger. Energies 2020, 13, 3841. [Google Scholar] [CrossRef]
- Zayed, M.E.; Zhao, J.; Li, W.; Elsheikh, A.H.; Elbanna, A.M.; Jing, L.; Geweda, A. Recent Progress in Phase Change Materials Storage Containers: Geometries, Design Considerations and Heat Transfer Improvement Methods. J. Energy Storage 2020, 30, 101341. [Google Scholar] [CrossRef]
- Ibrahim, N.I.; Al-Sulaiman, F.A.; Rahman, S.; Yilbas, B.S.; Sahin, A.Z. Heat Transfer Enhancement of Phase Change Materials for Thermal Energy Storage Applications: A Critical Review. Renew. Sustain. Energy Rev. 2017, 74, 26–50. [Google Scholar] [CrossRef]
- Zhang, S.; Pu, L.; Xu, L.; Liu, R.; Li, Y. Melting Performance Analysis of Phase Change Materials in Different Finned Thermal Energy Storage. Appl. Therm. Eng. 2020, 176, 115425. [Google Scholar] [CrossRef]
- Kalapala, L.; Devanuri, J.K. Influence of Operational and Design Parameters on the Performance of a PCM Based Heat Exchanger for Ther-Mal Energy Storage—A Review. J. Energy Storage 2018, 20, 497–519. [Google Scholar] [CrossRef]
- Han, G.-S.; Ding, H.-S.; Huang, Y.; Tong, L.; Ding, Y. A Comparative Study on the Performances of Different Shell-and-Tube Type Latent Heat Thermal Energy Storage Units Including the Effects of Natural Convection. Int. Commun. Heat Mass Transf. 2017, 88, 228–235. [Google Scholar] [CrossRef]
- Mahdi, M.S.; Hasan, A.F.; Mahood, H.B.; Campbell, A.N.; Khadom, A.A.; Karim, A.M.A.; Sharif, A.O. Numerical Study and Experimental Validation of the Effects of Orientation and Configuration on Melting in a Latent Heat Thermal Storage Unit. J. Energy Storage 2019, 23, 456–468. [Google Scholar] [CrossRef]
- Hosseini, M.; Ranjbar, A.; Rahimi, M.; Bahrampoury, R. Experimental and Numerical Evaluation of Longitudinally Finned Latent Heat Thermal Storage Systems. Energy Build. 2015, 99, 263–272. [Google Scholar] [CrossRef]
- Pakalka, S.; Valančius, K.; Čiuprinskas, K.; Pum, D.; Hinteregger, M. Analysis of Possibilities to Use Phase Change Materials in Heat Exchangers-Accumulators. In Proceedings of the 10th International Conference “Environmental Engineering”, Vilnius Gediminas Technical University, Vilnius, Lithuania, 27–28 April 2017. [Google Scholar]
- Mosaffa, A.; Talati, F.; Tabrizi, H.B.; Rosen, M.A. Analytical Modeling of PCM Solidification in a Shell and Tube Finned Thermal Storage for Air Conditioning Systems. Energy Build. 2012, 49, 356–361. [Google Scholar] [CrossRef]
- Castell, A.; Solé, C.; Medrano, M.; Roca, J.; Cabeza, L.F.; García, D. Natural Convection Heat Transfer Coefficients in Phase Change Material (PCM) Modules with External Vertical Fins. Appl. Therm. Eng. 2008, 28, 1676–1686. [Google Scholar] [CrossRef] [Green Version]
- Szekely, J.; Chhabra, P.S. The Effect of Natural Convection on the Shape and Movement of the Melt-Solid Interface in the Controlled Solidification of Lead. Met. Mater. Trans. A 1970, 1, 1195–1203. [Google Scholar] [CrossRef]
- Hale, N.; Viskanta, R. Photographic Observation of the Solid-Liquid Interface Motion during Melting of a Solid Heated from an Iso-Thermal Vertical Wall. Lett. Heat Mass Transf. 1978, 5, 329–337. [Google Scholar] [CrossRef]
- Stritih, U. An Experimental Study of Enhanced Heat Transfer in Rectangular PCM Thermal Storage. Int. J. Heat Mass Transf. 2004, 47, 2841–2847. [Google Scholar] [CrossRef]
- Fadl, M.; Eames, P. Thermal Performance Analysis of the Charging/Discharging Process of a Shell and Horizontally Oriented Multi-Tube Latent Heat Storage System. Energies 2020, 13, 6193. [Google Scholar] [CrossRef]
- Souayfane, F.; Biwole, P.H.; Fardoun, F. Melting of a Phase Change Material in Presence of Natural Convection and Radiation: A Simplified Model. Appl. Therm. Eng. 2018, 130, 660–671. [Google Scholar] [CrossRef]
- Gadgil, A.; Gobin, D. Analysis of Two-Dimensional Melting in Rectangular Enclosures in Presence of Convection. J. Heat Transf. 1984, 106, 20–26. [Google Scholar] [CrossRef]
- Akgün, M.; Aydın, O.; Kaygusuz, K. Experimental Study on Melting/Solidification Characteristics of a Paraffin as PCM. Energy Convers. Manag. 2007, 48, 669–678. [Google Scholar] [CrossRef]
- Avci, M.; Yazici, M.Y. Experimental Study of Thermal Energy Storage Characteristics of a Paraffin in a Horizontal Tube-in-Shell Storage Unit. Energy Convers. Manag. 2013, 73, 271–277. [Google Scholar] [CrossRef]
- Deng, S.; Nie, C.; Wei, G.; Ye, W.-B. Improving the Melting Performance of a Horizontal Shell-Tube Latent-Heat Thermal Energy Storage Unit Using Local Enhanced Finned Tube. Energy Build. 2019, 183, 161–173. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, Q.; Medina, M.A.; Lee, K.O. Experimental Observations on the Heat Transfer Enhancement Caused by Natural Convection during Melting of Solid–Liquid Phase Change Materials (PCMs). Appl. Energy 2016, 162, 1453–1461. [Google Scholar] [CrossRef]
- Sun, X.; Chu, Y.; Mo, Y.; Fan, S.; Liao, S. Experimental Investigations on the Heat Transfer of Melting Phase Change Material (PCM). Energy Procedia 2018, 152, 186–191. [Google Scholar] [CrossRef]
- Lacroix, M.; Benmadda, M. Numerical Simulation of Natural Convection-Dominated Melting and Solidification from a Finned Vertical Wall. Numer. Heat Transfer Part A Appl. 1997, 31, 71–86. [Google Scholar] [CrossRef]
- Hosseini, M.; Ranjbar, A.; Sedighi, K.; Rahimi, M. A Combined Experimental and Computational Study on the Melting Behavior of a Medium Temperature Phase Change Storage Material inside Shell and Tube Heat Exchanger. Int. Commun. Heat Mass Transf. 2012, 39, 1416–1424. [Google Scholar] [CrossRef]
- Hosseini, M.; Rahimi, M.; Bahrampoury, R. Experimental and Computational Evolution of a Shell and Tube Heat Exchanger as a PCM Thermal Storage System. Int. Commun. Heat Mass Transf. 2014, 50, 128–136. [Google Scholar] [CrossRef]
- Seddegh, S.; Wang, X.; Henderson, A.D. A Comparative Study of Thermal Behaviour of a Horizontal and Vertical Shell-and-Tube Energy Storage Using Phase Change Materials. Appl. Therm. Eng. 2016, 93, 348–358. [Google Scholar] [CrossRef]
- Seddegh, S.; Joybari, M.M.; Wang, X.; Haghighat, F. Experimental and Numerical Characterization of Natural Convection in a Vertical Shell-and-Tube Latent Thermal Energy Storage System. Sustain. Cities Soc. 2017, 35, 13–24. [Google Scholar] [CrossRef]
- Vogel, J.; Felbinger, J.; Johnson, M. Natural Convection in High Temperature Flat Plate Latent Heat Thermal Energy Storage Systems. Appl. Energy 2016, 184, 184–196. [Google Scholar] [CrossRef] [Green Version]
- Joybari, M.M.; Haghighat, F.; Seddegh, S. Natural Convection Characterization during Melting of Phase Change Materials: Development of a Simplified Front Tracking Method. Sol. Energy 2017, 158, 711–720. [Google Scholar] [CrossRef]
- Banerjee, J.; Solanki, K.; Rathod, M.K.; Banerjee, J. Thermal Performance of Shell and Tube Latent Heat Storage Unit: Comparative Assessment of Horizontal and Vertical Orientation. J. Energy Storage 2019, 23, 344–362. [Google Scholar] [CrossRef]
- Mostafavi, A.; Parhizi, M.; Jain, A. Semi-Analytical Thermal Modeling of Transverse and Longitudinal Fins in a Cylindrical Phase Change Energy Storage System. Int. J. Therm. Sci. 2020, 153, 106352. [Google Scholar] [CrossRef]
- Lamberg, P. Approximate Analytical Model for Two-Phase Solidification Problem in a Finned Phase-Change Material Storage. Appl. Energy 2004, 77, 131–152. [Google Scholar] [CrossRef]
- Bechiri, M.; Mansouri, K. Analytical Solution of Heat Transfer in a Shell-and-Tube Latent Thermal Energy Storage System. Renew. Energy 2015, 74, 825–838. [Google Scholar] [CrossRef]
- Mazzeo, D.; Oliveti, G.; De Gracia, A.; Coma, J.; Solé, A.; Cabeza, L.F. Experimental Validation of the Exact Analytical Solution to the Steady Periodic Heat Transfer Problem in a PCM Layer. Energy 2017, 140, 1131–1147. [Google Scholar] [CrossRef] [Green Version]
- Fornarelli, F.; Camporeale, S.; Fortunato, B. Simplified Theoretical Model to Predict the Melting Time of a Shell-and-Tube LHTES. Appl. Therm. Eng. 2019, 153, 51–57. [Google Scholar] [CrossRef]
- Vogel, J.; Johnson, M. Natural Convection during Melting in Vertical Finned Tube Latent Thermal Energy Storage Systems. Appl. Energy 2019, 246, 38–52. [Google Scholar] [CrossRef]
- Mostafavi, A.; Parhizi, M.; Jain, A. Theoretical Modeling and Optimization of Fin-Based Enhancement of Heat Transfer into a Phase Change Material. Int. J. Heat Mass Transf. 2019, 145, 118698. [Google Scholar] [CrossRef]
- Soni, V.; Kumar, A.; Jain, V.K. Modeling of PCM Melting: Analysis of Discrepancy between Numerical and Experimental Results and Energy Storage Performance. Energy 2018, 150, 190–204. [Google Scholar] [CrossRef]
- Pakalka, S.; Valančius, K.; Damonskis, M. Effect of Open and Closed Operation Modes on the Performance of Phase Change Ma-Terial Based Copper Heat Exchanger. In Proceedings of the the 11th International Conference Environmental Engineering 11th Icee Selected Papers, Vilnius Gediminas Technical University, Vilnius, Lithuania, 21–22 May 2020; p. 2020611. [Google Scholar]
- Pakalka, S.; Valančius, K.; Damonskis, M. Šilumnešio Debito Itakos Fazinio Virsmo Medžiagos Veikimui Tyrimas. Moksl. Liet. Ateitis/Sci.—Futur. Lith. 2018, 10, 1–6. [Google Scholar] [CrossRef]
- Mat, S.; Al-Abidi, A.A.; Sopian, K.; Sulaiman, M.; Mohammad, A.T. Enhance Heat Transfer for PCM Melting in Triplex Tube with Internal–External Fins. Energy Convers. Manag. 2013, 74, 223–236. [Google Scholar] [CrossRef]
- Mahdi, J.M.; Lohrasbi, S.; Ganji, D.D.; Nsofor, E.C. Simultaneous Energy Storage and Recovery in the TriplEx-tube Heat Exchanger with PCM, Copper Fins and Al2O3 Nanoparticles. Energy Convers. Manag. 2019, 180, 949–961. [Google Scholar] [CrossRef]
- Churchill, S.W.; Chu, H.H. Correlating Equations for Laminar and Turbulent Free Convection from a Vertical Plate. Int. J. Heat Mass Transf. 1975, 18, 1323–1329. [Google Scholar] [CrossRef]
- Bar-Cohen, A.; Rohsenow, W.M. Thermally Optimum Spacing of Vertical, Natural Convection Cooled, Parallel Plates. J. Heat Transf. 1984, 106, 116–123. [Google Scholar] [CrossRef]
- Kandasamy, R.; Wang, X.-Q.; Mujumdar, A.S. Transient Cooling of Electronics Using Phase Change Material (PCM)-Based Heat Sinks. Appl. Therm. Eng. 2008, 28, 1047–1057. [Google Scholar] [CrossRef]
- Xie, J.; Choo, K.F.; Xiang, J.; Lee, H.M. Characterization of Natural Convection in a PCM-Based Heat Sink with Novel Conductive Structures. Int. Commun. Heat Mass Transf. 2019, 108, 104306. [Google Scholar] [CrossRef]
Fin quantity, units | 35 |
Fin spacing, mm | 10 |
Fin thickness, mm | 1.5 |
Tube diameter (OD), mm | 15 |
Tube thickness, mm | 1.5 |
HX weight, kg | 6.9 |
HX heat transfer area, m2 | 0.89 |
PCM weight, kg | 4.34 |
Heat transfer fluid (HTF) | Water |
Property | RT82 |
---|---|
Melting area, °C | 77–82 |
Congealing area, °C | 82–77 |
Heat storage capacity (±7.5 %), kJ/kg | 170 |
Specific heat capacity at constant pressure, kJ/kg K | 2 |
Density solid at 15 °C, kg/L | 0.88 |
Density liquid at 90 °C, kg/L | 0.77 |
Heat conductivity (both phases), W/mK | 0.2 |
Thermal expansion coefficient, 1/K [47,48] | 0.001 |
Dynamic viscosity, kg/ms [47,48] | 0.03499 |
Volume expansion, % | 12.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pakalka, S.; Valančius, K.; Streckienė, G. Experimental and Theoretical Investigation of the Natural Convection Heat Transfer Coefficient in Phase Change Material (PCM) Based Fin-and-Tube Heat Exchanger. Energies 2021, 14, 716. https://doi.org/10.3390/en14030716
Pakalka S, Valančius K, Streckienė G. Experimental and Theoretical Investigation of the Natural Convection Heat Transfer Coefficient in Phase Change Material (PCM) Based Fin-and-Tube Heat Exchanger. Energies. 2021; 14(3):716. https://doi.org/10.3390/en14030716
Chicago/Turabian StylePakalka, Saulius, Kęstutis Valančius, and Giedrė Streckienė. 2021. "Experimental and Theoretical Investigation of the Natural Convection Heat Transfer Coefficient in Phase Change Material (PCM) Based Fin-and-Tube Heat Exchanger" Energies 14, no. 3: 716. https://doi.org/10.3390/en14030716
APA StylePakalka, S., Valančius, K., & Streckienė, G. (2021). Experimental and Theoretical Investigation of the Natural Convection Heat Transfer Coefficient in Phase Change Material (PCM) Based Fin-and-Tube Heat Exchanger. Energies, 14(3), 716. https://doi.org/10.3390/en14030716