Improvement of Transverse-Flux Machine Characteristics by Finding an Optimal Air-Gap Diameter and Coil Cross-Section at the Given Magneto-Motive Force of the PMs
Abstract
:1. Introduction
2. Computer and Experimental Investigation of the Single-Phase TFM with an Inner Rotor
3. Parametric Investigation of the Single-Phase and Three-Phase TFM
3.1. Varying Air-Gap Radius for Cogging Torque Reduction
3.2. Varying Coil Dimensions for Improving the Machine’s Characteristics
3.3. Comparison of the Dynamic Characteristics of the Three-Phase TFM with an External and an Internal Rotor
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, C.; Zhu, J.; Wang, Y.; Lei, G.; Guo, Y. Design Considerations of PM Transverse Flux Machines With Soft Magnetic Composite Cores. IEEE Trans. Appl. Supercond. 2016, 26, 1–5. [Google Scholar] [CrossRef]
- Dobzhanskyi, O.; Gouws, R.; Amiri, E. Comparison analysis of PM transverse flux outer rotor machines with and without magnetic shunts. In Proceedings of the 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, 18–22 September 2016; pp. 1–8. [Google Scholar]
- Ahmed, A.; Husain, I. Power factor improvement of a transverse flux machine with high torque density. In Proceedings of the 2017 IEEE International Electric Machines and Drives Conference (IEMDC), Miami, FL, USA, 21–24 May 2017; pp. 1–6. [Google Scholar]
- Bao, G.Q.; Wang, J.K.; Zhang, D.; Jiang, J.Z. An Investigation of Multi-phase Transverse Flux Permanent Magnet Machine. In Proceedings of the 2006 CES/IEEE 5th International Power Electronics and Motion Control Conference, Shanghai, China, 14–16 August 2006; pp. 1–4. [Google Scholar]
- Golatgaonkar, P.; Chaudhari, B.; Ugale, R. Torque ripple reduction in homopolar poly-phase transverse flux machine. J. Eng. 2019, 2019, 3553–3558. [Google Scholar] [CrossRef]
- Hodge, C.; Mattick, D. The electric warship VI. A Paper for the Institute of Marine Engineers (IMarE), 12 December 2000. [Google Scholar]
- Dobzhanskyi, O.; Gouws, R. Magnetic Circuit Analysis of the Low Cost in Wheel Switching Flux Motor for HEV Applications. In Proceedings of the 2019 IEEE International Electric Machines & Drives Conference (IEMDC), San Diego, CA, USA, 12–15 May 2019. [Google Scholar]
- Dobzhanskyi, O.; Gouws, R.; Amiri, E. Optimal Switching-Flux Motor Design and its Cogging Effect Reduction. In Proceedings of the 2017 IEEE 58th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), Riga, Latvia, 12–13 October 2017. [Google Scholar]
- Dobzhanskyi, O.; Gouws, R.; Amiri, E. On the role of magnetic shunts on increasing performance of transverse-flux machines. IEEE Trans. Magn. 2016, 53, 1–9. [Google Scholar] [CrossRef]
- Rahman, K.M.; Patel, N.R.; Ward, T.G.; Nagashima, J.M.; Caricchi, F.; Crescimbini, F. Application of direct-drive wheel motor for fuel cell electric and hybrid electric vehicle propulsion system. IEEE Trans. Ind. Appl. 2006, 42, 1185–1192. [Google Scholar] [CrossRef]
- Chang, J.; Kang, D.; Lee, J.; Hong, J. Development of transverse flux linear motor with permanent-magnet excitation for direct-drive applications. IEEE Trans. Magn. 2005, 41, 1936–1939. [Google Scholar] [CrossRef]
- Kang, D.H.; Chun, Y.H.; Weh, H. Analysis and optimal design of transverse flux linear motor with PM excitation for railway traction. IEEE Proc. Electr. Power Appl. 2003, 150, 493–499. [Google Scholar] [CrossRef]
- Caricchi, F.; Crescimbini, F.; Honorati, O. Modular axial-flux permanent-magnet motor for ship propulsion drives. IEEE Trans. Energy Convers. 1999, 14, 673–679. [Google Scholar] [CrossRef]
- Dobzhanskyi, O.; Gouws, R.; Amiri, E. Performance analysis of the TF machine with double coil. In Proceedings of the IEEE 58th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), Riga, Latvia, 12–13 October 2017. [Google Scholar]
- Dobzhanskyi, O. Study on Transverse-Flux Machine. Ph.D. Thesis, Louisiana State University, Baton Rouge, LA, USA, 2009. [Google Scholar]
- Patterson, G.; Koseki, T.; Aoyama, Y.; Sako, K. Simple modeling and prototype experiments for a new high-thrust low-speed permanent-magnet disk rotor. IEEE Trans. Ind. Appl. 2011, 47, 65–71. [Google Scholar] [CrossRef]
- Chabchoub, M.; Salah, I.; Krebs, G.; Neji, R.; Marchand, C. PMSM cogging torque reduction: Comparison between different shapes of magnet. In Proceedings of the 2012 First International Conference on Renewable Energies and Vehicular Technology (REVET), Hammamet, Tunisia, 26–28 March 2012. [Google Scholar]
Parameter | Value |
---|---|
Number of stator poles, N | 15 |
Number of rotor poles, p | 30 |
Outer rotor diameter, mm | 111 |
Inner rotor diameter, mm | 82 |
Inner stator diameter, mm | 113 |
Air gap, mm | 0.8 |
Residual flux density of the PMs | 0.78 T |
Permeability of the PMs, µr | 1.1 |
PMs size, mm | 20 × 10 × 7.5 |
Number of PMs | 60 |
Outer coil diameter, mm | 152 |
Inner coil diameter, mm | 118 |
Width of the coil, mm | 26 |
Number of turns of the coil | 220 |
Diameter of the conductor, mm | 1.13 |
Cross-section of the conductor, mm2 | 1 |
Resistance of the coil, Ohms | 1.8 |
Outer Rotor | |||||
---|---|---|---|---|---|
Parameter | Rδ = 56 | Rδ = 61 | Rδ = 64 | Rδ = 68 | Rδ = 70 |
Tcog(max), Nm | 11.3 | 7.0 | 4.4 | 2.1 | 6.83 |
Inner Rotor | |||||
Parameter | Rδ = 56 | Rδ = 61 | Rδ = 63 | Rδ = 66 | Rδ = 69 |
Tcog(max), Nm | 3.5 | 2.6 | 2.1 | 1.5 | 1.9 |
Parameter | b = 20 | b = 10 | b = 4 |
---|---|---|---|
Height of the coil—b, mm | 20 | 10 | 4 |
Width of the coil—h, mm | 26 | 26 | 26 |
Filling coefficient—k | 0.5 | 0.5 | 0.5 |
Coil cross-section—Scoil, mm2 | 520 | 260 | 104 |
Cooper cross-section—Scu, mm2 | 260 | 130 | 52 |
Current density—Jn, A/mm2 | 5 | 5 | 5 |
Number of turns, N | 220 | 220 | 220 |
Conductor cross-section—Swire, mm2 | 1.18 | 0.59 | 0.24 |
Rated current In, А | 5.91 | 2.95 | 1.18 |
Parameter | Inner Rotor | Outer Rotor |
---|---|---|
Number of stator poles, N | 15 | 15 |
Number of rotor poles, p | 30 | 30 |
External diameter of the magnetic system, мм | 153 | 165 |
Magnetic system height, мм | 210 | 210 |
Total mass of active parts, ma, кг | 7.7 | 9.1 |
Working gap, мм | 0.8 | 0.8 |
Permanent magnet type | N42 | N42 |
Rated speed, n, rpm | 600 | 600 |
Rated power, Pn, kW | 0.38 | 0.45 |
Specific power, Pe = Pn/ma | 0.05 | 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viktor, G.; Dobzhanskyi, O.; Rostislav, G.; Gouws, R. Improvement of Transverse-Flux Machine Characteristics by Finding an Optimal Air-Gap Diameter and Coil Cross-Section at the Given Magneto-Motive Force of the PMs. Energies 2021, 14, 755. https://doi.org/10.3390/en14030755
Viktor G, Dobzhanskyi O, Rostislav G, Gouws R. Improvement of Transverse-Flux Machine Characteristics by Finding an Optimal Air-Gap Diameter and Coil Cross-Section at the Given Magneto-Motive Force of the PMs. Energies. 2021; 14(3):755. https://doi.org/10.3390/en14030755
Chicago/Turabian StyleViktor, Grebenikov, Oleksandr Dobzhanskyi, Gamaliia Rostislav, and Rupert Gouws. 2021. "Improvement of Transverse-Flux Machine Characteristics by Finding an Optimal Air-Gap Diameter and Coil Cross-Section at the Given Magneto-Motive Force of the PMs" Energies 14, no. 3: 755. https://doi.org/10.3390/en14030755
APA StyleViktor, G., Dobzhanskyi, O., Rostislav, G., & Gouws, R. (2021). Improvement of Transverse-Flux Machine Characteristics by Finding an Optimal Air-Gap Diameter and Coil Cross-Section at the Given Magneto-Motive Force of the PMs. Energies, 14(3), 755. https://doi.org/10.3390/en14030755