Large Eddy Simulations of Strongly Non-Ideal Compressible Flows through a Transonic Cascade
Abstract
:1. Introduction
2. Flow Configuration and Operating Conditions
3. Numerical Methodology
4. Results and Discussion
4.1. Mean Field Properties
4.2. Second-Order Statistics and Unsteady Flow Properties
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adam, A. Encyclopedia of Energy Technology and the Environment; John Wiley & Sons: New York, NY, USA, 1995; Volume 4, Chapter Organic Rankine Cycles. [Google Scholar]
- Schuster, A.; Karellas, S.; Kakaras, E.; Spliethoff, H. Energetic and economic investigation of organic Rankine cycle applications. Appl. Therm. Eng. 2009, 29, 1809–1817. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Goswami, D.; Stefanakos, E. A review of thermodynamic cycles and working fluids for the conversion of low-grade heat. Sustain. Energy Rev. 2010, 14, 3059–3067. [Google Scholar] [CrossRef]
- Colonna, P.; Casati, E.; Trapp, C.; Mathijssen, T.; Larjola, J.; Turunen-Saaresti, T.; Uusitalo, A. Organic Rankine cycle power systems: From the concept to current technology, applications, and an outlook to the future. J. Eng. Gas Turbines Power 2015, 137, 100801. [Google Scholar] [CrossRef] [Green Version]
- Vescovo, R.; Spagnoli, E. High Temperature ORC Systems. Energy Procedia 2017, 129, 82–89. [Google Scholar] [CrossRef]
- Bini, R.; Colombo, D. Large multistage axial turbines. Energy Procedia 2017, 129, 1078–1084. [Google Scholar] [CrossRef]
- Schuster, A.; Karellas, S.; Aumann, R. Efficiency optimization potential in supercritical Organic Rankine Cycles. Energy 2010, 35, 1033–1039. [Google Scholar] [CrossRef]
- Lai, N.; Wendland, M.; Fischer, J. Working fluids for high-temperature organic Rankine cycles. Energy 2011, 36, 199–211. [Google Scholar] [CrossRef]
- Romei, A.; Vimercati, D.; Persico, G.; Guardone, A. Non-ideal compressible flows in supersonic turbine cascades. J. Fluid Mech. 2020, 882, A12. [Google Scholar] [CrossRef] [Green Version]
- Saleh, B.; Koglbauer, G.; Wendland, M.; Fischer, J. Working fluids for low-temperature Organic Rankine Cycles. Energy 2007, 32, 1210–1221. [Google Scholar] [CrossRef]
- Thompson, P. A fundamental derivative in gas dynamics. Phys. Fluids 1971, 14, 1843–1849. [Google Scholar] [CrossRef]
- Cramer, M.; Kluwick, A. On the propagation of waves exhibiting both positive and negative nonlinearity. J. Fluid Mech. 1984, 142, 9–37. [Google Scholar] [CrossRef]
- Cramer, M.; Best, L. Steady, isentropic flows of dense gases. Phys. Fluids A 1991, 3, 219–226. [Google Scholar] [CrossRef]
- Monaco, J.; Cramer, M.; Watson, L. Supersonic flows of dense gases in cascade configurations. J. Fluid Mech. 1997, 330, 31–59. [Google Scholar] [CrossRef]
- Brown, B.; Argrow, B. Application of Bethe-Zel’dovich-Thompson fluids in organic Rankine cycle engines. J. Propuls. Power 2000, 16, 1118–1124. [Google Scholar] [CrossRef]
- Congedo, P.; Corre, C.; Cinnella, P. Numerical investigation of dense-gas effects in turbomachinery. Comput. Fluids 2011, 49, 290–301. [Google Scholar] [CrossRef]
- Wheeler, A.; Ong, J. The role of dense gas dynamics on ORC turbine performance. In ASME Turbo Expo 2013; American Society of Mechanical Engineers: New York, NY, USA, 2013; Volume V002T07A030. [Google Scholar]
- Sciacovelli, L.; Cinnella, P. Numerical study of multistage transcritical organic Rankine cycle axial turbines. J. Eng. Gas Turbines Power 2014, 136, 082604-1–082604-14. [Google Scholar] [CrossRef] [Green Version]
- Cinnella, P.; Congedo, P. Inviscid and viscous aerodynamics of dense gases. J. Fluid Mech. 2007, 580, 179–217. [Google Scholar] [CrossRef]
- Colonna, P.; Harinck, J.; Rebay, S.; Guardone, A. Real-gas effects in organic Rankine cycle turbine nozzles. J. Propuls. Power 2008, 24, 282–294. [Google Scholar] [CrossRef]
- Bufi, E.; Cinnella, P. Preliminary design method for dense-gas supersonic axial turbine stages. J. Eng. Gas Turbines Power 2018, 140, 112605. [Google Scholar] [CrossRef]
- Rinaldi, E.; Pecnik, R.; Colonna, P. Unsteady operation of a highly supersonic organic Rankine cycle turbine. ASME J. Turbomach 2016, 138, 121010. [Google Scholar] [CrossRef]
- Obert, B.; Cinnella, P. Comparison of steady and unsteady RANS CFD simulation of a supersonic ORC turbine. Energy Procedia 2017, 129, 1063–1070. [Google Scholar] [CrossRef]
- Wilcox, D. Turbulence Modeling for CFD; DCW Industries: La Canada Flintridge, CA, USA, 2006. [Google Scholar]
- Durá Galiana, F.; Wheeler, A.; Ong, J. A study of trailing-edge losses in organic Rankine cycle turbines. ASME J. Turbomach 2016, 138, 121003. [Google Scholar] [CrossRef]
- Alshammari, F.; Pesyridis, A.; Karvountzis-Kontakiotis, A.; Franchetti, B.; Pesmazoglou, Y. Experimental study of a small scale organic Rankine cycle waste heat recovery system for a heavy duty diesel engine with focus on the radial inflow turbine expander performance. Appl. Energy 2018, 215, 543–555. [Google Scholar] [CrossRef]
- Zocca, M.; Guardone, A.; Cammi, G.; Cozzi, F.; Spinelli, A. Experimental observation of oblique shock waves in steady non-ideal flows. Exp. Fluids 2019, 60, 101. [Google Scholar] [CrossRef] [Green Version]
- Reinker, F.; Kening, E.; Passmann, M.; aus der Wiesche, S. Closed loop organic wind tunnel (CLOWT): Design, components and control system. Energy Procedia 2017, 129, 200–207. [Google Scholar] [CrossRef]
- Baumgartner, D.; Otter, J.; Wheeler, A. Closed loop organic vapor wind tunnel CLOWT: Commissioning and operational experience. In Proceedings of the 5th International Seminar on ORC Power Systems, Athens, Greece, 9–11 September 2019. [Google Scholar]
- Baumgartner, D.; Otter, J.; Wheeler, A. The Effect of Isentropic Exponent on Supersonic Turbine Wakes. ASME J. Turbom 2020, 142, 081007. [Google Scholar] [CrossRef]
- Beltrame, F.; Head, A.; Servi, C.; Pini, M.; Schrijer, F.; Colonna, P. First Experiments and Commissioning of the ORCHID Nozzle Test Section. NICFD: International Seminar on Non-Ideal Computational Fluid Dynamics. 2020. Available online: https://d2k0ddhflgrk1i.cloudfront.net/Websections/NICFD2020/Slides/Session%204%20-%20Fabio%20Beltrame.pdf (accessed on 31 January 2021).
- Sciacovelli, L.; Cinnella, P.; Content, C.; Grasso, F. Dense gas effects in inviscid homogeneous isotropic turbulence. J. Fluid Mech. 2016, 800, 140–179. [Google Scholar] [CrossRef] [Green Version]
- Sciacovelli, L.; Cinnella, P.; Gloerfelt, X. Direct numerical simulations of supersonic turbulent channel flows of dense gases. J. Fluid Mech. 2017, 821, 153–199. [Google Scholar] [CrossRef] [Green Version]
- Sciacovelli, L.; Cinnella, P.; Grasso, F. Small-scale dynamics of dense gas compressible homogeneous isotropic turbulence. J. Fluid Mech. 2017, 825, 515–549. [Google Scholar] [CrossRef] [Green Version]
- Sciacovelli, L.; Gloerfelt, X.; Passiatore, D.; Cinnella, P.; Grasso, F. Numerical investigation of high-speed turbulent boundary layers of dense gases. Flow Turbul. Combust. 2020, 105, 555–579. [Google Scholar] [CrossRef]
- Gloerfelt, X.; Robinet, J.C.; Sciacovelli, L.; Cinnella, P.; Grasso, F. Dense gas effects on compressible boundary layer stability. J. Fluid Mech. 2020, 893, A19. [Google Scholar] [CrossRef]
- Bhaskaran, R.; Lele, S. Large eddy simulation of free-stream turbulence effects on heat transfer to a high-pressure turbine cascade. J. Turbul. 2010, 11. [Google Scholar] [CrossRef]
- Collado, E.; Gourdain, N.; Duchaine, F.; Gicquel, L. Effects of free-stream turbulence on high pressure turbine blade heat transfer predicted by structured and unstructured LES. Int. J. Heat Mass Transf. 2012, 55, 5754–5768. [Google Scholar] [CrossRef]
- Wheeler, A.; Sandberg, R.; Sandham, N.; Pichler, R.; Michelassi, V.; Laskowski, G. Direct numerical simulations of a high-pressure turbine vane. ASME J. Turbomach 2016, 138, 071003–071009. [Google Scholar] [CrossRef]
- Segui, L.; Gicquel, L.; Duchaine, F.; de Laborderie, J. LES of the LS89 Cascade: Influence of Inflow Turbulence on the Flow Predictions. In European Conference on Turbomachinery Fluid Dynamics & Thermodynamics. 2017. Available online: https://www.euroturbo.eu/publications/proceedings-papers/ETC2017-159/ (accessed on 30 January 2021).
- Arts, T.; Lambert de Rouvroit, M.; Rutherford, A. Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade. A test case for inviscid and viscous flow computations. In VKI Training Center for Experimental Aerodynamics Technical Note 174; Von Kármán Institute: Rhodes-Saint-Genese, Belgium, 1990. [Google Scholar]
- Harinck, J.; Guardone, A.; Colonna, P. The influence of molecular complexity on expanding flows of ideal and dense gases. Phys. Fluids 2009, 21, 086101. [Google Scholar] [CrossRef] [Green Version]
- Harinck, J.; Colonna, P.; Guardone, A.; Rebay, S. Influence of thermodynamic models in two-dimensional flow simulations of turboexpanders. ASME J. Turbomach 2010, 132, 011001. [Google Scholar] [CrossRef]
- Pichler, R.; Kopriva, J.; Laskowski, G.; Michelassi, V.; Sandberg, R. Highly resolved LES of a linear HPT vane cascade using structured and unstructured codes. In ASME Turbo Expo Conference; American Society of Mechanical Engineers: New York, NY, USA, 2016; Volume GT2016-49712. [Google Scholar]
- Schnerr, G.; Leidner, P. Internal flows with multiple sonic points. Acta Mech. 1994, 4, 147–154. [Google Scholar]
- Martin, J.; Hou, Y.C. Development of an equation of state for gases. AIChE J. 1955, 1, 142–151. [Google Scholar] [CrossRef] [Green Version]
- F2 Chemicals Ltd. FLUTEC Stability and Compatibility. Technical Article. Available online: http://f2chemicals.com/pdf/technical/Compatability.pdf (accessed on 31 January 2021).
- Hoarau, J.C.; Cinnella, P.; Gloerfelt, X. Large Eddy Simulation of dense gas flow around a turbine cascade. In Proceedings of the AIAA Aviation 2019 Forum, Dallas, TX, USA, 17–21 June 2019. AIAA Paper 2019-2843. [Google Scholar]
- Choi, H.; Moin, P. Grid-point requirements for large eddy simulation: Chapman’s estimates revisited. Phys. Fluids 2012, 24, 011702. [Google Scholar] [CrossRef]
- Chung, T.; Ajlan, M.; Lee, L.; Starling, K. Generalized multiparameter correlation for nonpolar and polar fluid transport properties. Ind. Eng. Chem. Res. 1988, 27, 671–679. [Google Scholar] [CrossRef]
- Cinnella, P.; Congedo, P. Aerodynamic performance of transonic Bethe–Zel’dovich–Thompson flows past an airfoil. AIAA J. 2005, 43, 370–378. [Google Scholar] [CrossRef]
- Visbal, M.; Morgan, P.; Rizzetta, D. An implicit LES approach based on high-order compact differencing and filtering schemes. In Proceedings of the 16th AIAA Computational Fluid Dynamics Conference, Orlando, FL, USA, 23–26 June 2003. AIAA Paper 2003-4098. [Google Scholar]
- Gloerfelt, X.; Cinnella, P. Large eddy simulation requirements for the flow over periodic hills. Flow Turbul. Combust. 2019, 103, 55–91. [Google Scholar] [CrossRef] [Green Version]
- Cinnella, P.; Content, C. High-order implicit residual smoothing time scheme for direct and large eddy simulations of compressible flow. J. Comput. Phys. 2016, 326, 1–29. [Google Scholar] [CrossRef]
- Hoarau, J.C.; Cinnella, P.; Gloerfelt, X. Large eddy simulation of turbomachinery flows using a high-order implicit residual smoothing scheme. Comput. Fluids 2020, 198, 104395. [Google Scholar] [CrossRef]
- Outtier, P.Y.; Content, C.; Cinnella, P.; Michel, B. The high-order dynamic computational laboratory for CFD research and applications. In Proceedings of the 21st AIAA Computational Fluid Dynamics Conference, San Diego, CA, USA, 24–27 June 2013. AIAA Paper 2013-2439. [Google Scholar]
- Kravchenko, A.; Moin, P. Numerical studies of flow over a circular cylinder at ReD = 3900. Phys Fluids 2000, 12, 403–417. [Google Scholar] [CrossRef]
- Cinnella, P.; Lerat, A. A fully implicit third-order scheme in time and space for unsteady turbulent compressible flow simulations. In Proceedings of the ECCOMAS: European Congress on Computational Methods in Applied Sciences and Engineering, Barcelona, Spain, 11–14 September 2000. [Google Scholar]
- Sieverding, C.H.; Richard, H.; Desse, J. Turbine Blade Trailing Edge Flow Characteristics at High Subsonic Outlet Mach Number. ASME J. Turbomach 2003, 125, 298–309. [Google Scholar] [CrossRef]
IC1-LPR | IC1-HPR | IC2-LPR | |
---|---|---|---|
0.98 | 0.98 | 1.35 | |
0.62 | 0.62 | 1.47 | |
1.001 | 1.001 | 1.019 | |
−0.093 | −0.093 | 6.706 | |
0.59 | 0.75 | 0.18 | |
1.58 | 2.10 | 1.58 | |
624.11 | 650.2 | 627.14 | 1.46 | 0.2688 | 97.3 |
(s) | Time-Steps per f.t.t. | |||||
---|---|---|---|---|---|---|
IC1-LPR | 55 | 0.92 | 13 | 6.5 × | 7.0 | 13,000 |
IC1-HPR | 99 | 1.54 | 24 | 6.5 × | 4.7 | 10,000 |
IC2-LPR | 51 | 0.74 | 12 | 6.5 × | 5.4 | 15,000 |
LES | RANS | Inviscid | |
---|---|---|---|
IC1-LPR | 0.82 × | 0.90 × | 0.69 × |
IC1-HPR | 0.59 × | 0.82 × | 0.73 × |
IC2-LPR | 0.53 × | 0.37 × | 0.45 × |
MUR129 | 0.81 × | 0.82 × | 0.62 × |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoarau, J.-C.; Cinnella, P.; Gloerfelt, X. Large Eddy Simulations of Strongly Non-Ideal Compressible Flows through a Transonic Cascade. Energies 2021, 14, 772. https://doi.org/10.3390/en14030772
Hoarau J-C, Cinnella P, Gloerfelt X. Large Eddy Simulations of Strongly Non-Ideal Compressible Flows through a Transonic Cascade. Energies. 2021; 14(3):772. https://doi.org/10.3390/en14030772
Chicago/Turabian StyleHoarau, Jean-Christophe, Paola Cinnella, and Xavier Gloerfelt. 2021. "Large Eddy Simulations of Strongly Non-Ideal Compressible Flows through a Transonic Cascade" Energies 14, no. 3: 772. https://doi.org/10.3390/en14030772
APA StyleHoarau, J. -C., Cinnella, P., & Gloerfelt, X. (2021). Large Eddy Simulations of Strongly Non-Ideal Compressible Flows through a Transonic Cascade. Energies, 14(3), 772. https://doi.org/10.3390/en14030772