Construction of Operational Data-Driven Power Curve of a Generator by Industry 4.0 Data Analytics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of a Pulverized Coal Power Plant Operation and the Generator
2.2. Methodology
3. Data Acquisition, Data Processing, and Visualization
4. Construction of AI-Models and External Validation
4.1. Development of ANN Model
4.2. Development of the AutoML Model
5. Results and Discussion
5.1. Selection of the Best AI Model
5.2. Construction of Power Curve of the Generator
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Nomenclature
FWP | Feedwater pressure (MPa) |
FWT | Feedwater temperature (°C) |
LT.ECO | LT Eco water outlet temperature (°C) |
Ma | air flow rate (t/h) |
Mc | coal flow rate (t/h) |
MSP | main steam pressure (MPa) |
MST | main steam temperature (°C) |
N | turbine speed (rpm) |
Paux | auxiliary power (MW) |
Pvac | condenser vacuum (kPa) |
RSP | reheat steam pressure (MPa) |
RST | reheat steam temperature (°C) |
(Ta)APH | APH air outlet temperature (°C) |
Tamb | ambient air temperature (°C) |
Tc | condensate temperature (°C) |
Td | deaerator temperature (°C) |
(Tfg)APH | APH outlet flue gas temperature (°C) |
Tmid | middle temperature (°C) |
w/c | water / coal ratio (-) |
% O2 | % O2 in flue gas at APH outlet (%) |
Abbreviations
AI | Artificial Intelligence |
ANN | Artificial Neural Network |
ANNs | Artificial Neural Networks |
APH | air preheater |
AutoML | automated machine learning |
ESP | electro static precipitator |
FDF | forced draft fan |
FGD | flue gas desulphurization |
HP | high-pressure |
IDF | induced draft fan |
IP | intermediate pressure |
LCL | lower control limit |
LP | low-pressure |
LPA | low-pressure turbine A |
LPB | low-pressure turbine B |
Max | maximum |
Min | minimum |
NRMSE | normalized RMSE |
PAF | primary air fan |
R2 | coefficient of determination |
RMSE | root mean square error |
SD | standard deviation |
SIS | Supervisory Information System |
UCL | upper control limit |
References
- Amjad, M.S.; Rafique, M.Z.; Khan, M.A. Leveraging Optimized and Cleaner Production through Industry 4.0. Sustain. Prod. Consum. 2021, 26, 859–8711. [Google Scholar] [CrossRef]
- Muhammad Ashraf, W.; Moeen Uddin, G.; Hassan Kamal, A.; Haider Khan, M.; Khan, A.A.; Afroze Ahmad, H.; Ahmed, F.; Hafeez, N.; Muhammad Zawar Sami, R.; Muhammad Arafat, S. Optimization of a 660 MWe Supercritical Power Plant Performance—A Case of Industry 4.0 in the Data-Driven Operational Management. Part 2. Power Generation. Energies 2020, 13, 5619. [Google Scholar] [CrossRef]
- Muhammad Ashraf, W.; Moeen Uddin, G.; Muhammad Arafat, S.; Afghan, S.; Hassan Kamal, A.; Asim, M.; Haider Khan, M.; Waqas Rafique, M.; Naumann, U.; Niazi, S.G. Optimization of a 660 MWe Supercritical Power Plant Performance—A Case of Industry 4.0 in the Data-Driven Operational Management Part 1. Thermal Efficiency. Energies 2020, 13, 5592. [Google Scholar] [CrossRef]
- Uddin, G.M.; Arafat, S.M.; Ashraf, W.M.; Asim, M.; Bhutta, M.M.A.; Jatoi, H.U.K.; Niazi, S.G.; Jamil, A.; Farooq, M.; Ghufran, M. Artificial Intelligence-Based Emission Reduction Strategy for Limestone Forced Oxidation Flue Gas Desulfurization System. J. Energy Resour. Technol. 2020, 142, 092103. [Google Scholar] [CrossRef]
- Smrekar, J.; Assadi, M.; Fast, M.; Kuštrin, I.; De, S. Development of artificial neural network model for a coal-fired boiler using real plant data. Energy 2009, 34, 144–152. [Google Scholar] [CrossRef]
- Krzywanski, J. A general approach in optimization of heat exchangers by bio-inspired artificial intelligence methods. Energies 2019, 12, 4441. [Google Scholar] [CrossRef] [Green Version]
- Krzywanski, J.; Fan, H.; Feng, Y.; Shaikh, A.R.; Fang, M.; Wang, Q. Genetic algorithms and neural networks in optimization of sorbent enhanced H2 production in FB and CFB gasifiers. Energy Convers. Manag. 2018, 171, 1651–1661. [Google Scholar] [CrossRef]
- Krzywanski, J.; Żyłka, A.; Czakiert, T.; Kulicki, K.; Jankowska, S.; Nowak, W. A 1.5 D model of a complex geometry laboratory scale fuidized bed clc equipment. Powder Technol. 2017, 316, 592–598. [Google Scholar] [CrossRef]
- Muskała, W.; Krzywański, J.; Czakiert, T.; Nowak, W. The research of CFB boiler operation for oxygen-enhanced dried lignite combustion. Rynek Energii 2011, 92, 172–176. [Google Scholar]
- Mohamed, O.; Khalil, A.; Wang, J. Modeling and Control of Supercritical and Ultra-Supercritical Power Plants: A Review. Energies 2020, 13, 2935. [Google Scholar] [CrossRef]
- Smrekar, J.; Pandit, D.; Fast, M.; Assadi, M.; De, S. Prediction of power output of a coal-fired power plant by artificial neural network. Neural Comput. Appl. 2010, 19, 725–740. [Google Scholar] [CrossRef]
- Maldonado-Correa, J.; Martín-Martínez, S.; Artigao, E.; Gómez-Lázaro, E. Using SCADA Data for Wind Turbine Condition Monitoring: A Systematic Literature Review. Energies 2020, 13, 3132. [Google Scholar] [CrossRef]
- Vives, J.; Quiles, E.; García, E. AI techniques applied to diagnosis of vibrations failures in wind turbines. IEEE Lat. Am. Trans. 2020, 18, 1478–1486. [Google Scholar] [CrossRef]
- Yang, T.; Zhao, L.; Wang, C. Review on application of artificial intelligence in power system and integrated energy system. Autom. Electr. Power Syst. 2019, 43, 2–14. [Google Scholar]
- Bai, H.; Liu, C.; Breaz, E.; Gao, F. Artificial Neural Network Aided Real-Time Simulation of Electric Traction System. Energy AI 2020, 1, 100010. [Google Scholar] [CrossRef]
- Vieira, L.W.; Marques, A.D.; Schneider, P.S.; da Silva Neto, A.J.; Viana, F.A.C.; Abdel-jawad, M.; Hunt, J.D.; Siluk, J.C.M. Methodology for ranking controllable parameters to enhance operation of a steam generator with a combined Artificial Neural Network and Design of Experiments approach. Energy AI 2020, 3, 100040. [Google Scholar] [CrossRef]
- Krzywanski, J.; Grabowska, K.; Herman, F.; Pyrka, P.; Sosnowski, M.; Prauzner, T.; Nowak, W. Optimization of a three-bed adsorption chiller by genetic algorithms and neural networks. Energy Convers. Manag. 2017, 153, 313–322. [Google Scholar] [CrossRef]
- Krzywanski, J. Heat Transfer Performance in a Superheater of an Industrial CFBC Using Fuzzy Logic-Based Methods. Entropy 2019, 21, 919. [Google Scholar] [CrossRef] [Green Version]
- Antaki, F.; Kahwati, G.; Sebag, J.; Coussa, R.G.; Fanous, A.; Duval, R.; Sebag, M. Predictive modeling of proliferative vitreoretinopathy using automated machine learning by ophthalmologists without coding experience. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Zhao, K.; Chu, X. AutoML: A Survey of the State-of-the-Art. arXiv 2019, arXiv:1908.00709. [Google Scholar]
- Fahle, S.; Prinz, C.; Kuhlenkötter, B. Systematic review on machine learning (ML) methods for manufacturing processes–Identifying artificial intelligence (AI) methods for field application. Procedia CIRP 2020, 93, 413–418. [Google Scholar] [CrossRef]
- Narciso, D.A.; Martins, F. Application of machine learning tools for energy efficiency in industry: A review. Energy Rep. 2020, 6, 1181–1199. [Google Scholar] [CrossRef]
- Kabugo, J.C.; Jämsä-Jounela, S.-L.; Schiemann, R.; Binder, C. Industry 4.0 based process data analytics platform: A waste-to-energy plant case study. Int. J. Electr. Power Energy Syst. 2020, 115, 105508. [Google Scholar] [CrossRef]
- Klingenberg, C.O.; Borges, M.A.V.; Antunes, J.A.V., Jr. Industry 4.0 as a data-driven paradigm: A systematic literature review on technologies. J. Manuf. Technol. Manag. 2019, 29, 910–936. [Google Scholar] [CrossRef]
- Cheng, L.; Yu, T. A new generation of AI: A review and perspective on machine learning technologies applied to smart energy and electric power systems. Int. J. Energy Res. 2019, 43, 1928–1973. [Google Scholar] [CrossRef]
- Lee, K.; Heo, J.S.; Hoffman, J.; Kim, S.; Jung, W.-H. Neural Network-Based Modeling for A Large-Scale Power Plant. IEEE Power Eng. Soc. Gen. Meet. 2007, 1–8. [Google Scholar] [CrossRef]
- Liu, X.; Kong, X.; Hou, G.; Wang, J. Modeling of a 1000 MW power plant ultra super-critical boiler system using fuzzy-neural network methods. Energy Convers. Manag. 2013, 65, 518–527. [Google Scholar] [CrossRef]
- Liu, Z.; Karimi, I.A. Gas turbine performance prediction via machine learning. Energy 2020, 192, 116627. [Google Scholar] [CrossRef]
- Janssens, O.; Noppe, N.; Devriendt, C.; Van de Walle, R.; Van Hoecke, S. Data-driven multivariate power curve modeling of offshore wind turbines. Eng. Appl. Artif. Intell. 2016, 55, 331–338. [Google Scholar] [CrossRef]
- Kusiak, A.; Verma, A. Monitoring wind farms with performance curves. IEEE Trans. Sustain. Energy 2012, 4, 192–199. [Google Scholar] [CrossRef]
- De, S.; Kaiadi, M.; Fast, M.; Assadi, M. Development of an artificial neural network model for the steam process of a coal biomass cofired combined heat and power (CHP) plant in Sweden. Energy 2007, 32, 2099–2109. [Google Scholar] [CrossRef]
- Gu, H.; Zhu, H.; Cui, Y.; Si, F.; Xue, R.; Xi, H.; Zhang, J. Optimized scheme in coal-fired boiler combustion based on information entropy and modified K-prototypes algorithm. Results Phys. 2018, 9, 1262–1274. [Google Scholar] [CrossRef]
- Tunckaya, Y.; Koklukaya, E. Comparative prediction analysis of 600 MWe coal-fired power plant production rate using statistical and neural-based models. J. Energy Inst. 2015, 88, 11–18. [Google Scholar] [CrossRef]
- Wang, S.; Huang, Y.; Li, L.; Liu, C. Wind turbines abnormality detection through analysis of wind farm power curves. Measurement 2016, 93, 178–188. [Google Scholar] [CrossRef]
- Zulkifli, A.S.; Muhamad Razali, N.M.; Marsadek, M.; Yahya, Z.; Juhana Tengku Hashim, T. Power Plant Performance based on Power-Efficiency Curve of Hydroelectric Power Plant. Proc. Appl. Mech. Mater. 2015, 516–520. [Google Scholar] [CrossRef]
- R2.Ai. Available online: https://r2learn.r2.ai/support (accessed on 14 November 2020).
- Adams, D.; Oh, D.; Kim, D.; Lee, C.; Oh, M. Prediction of SOx–NOx emission from a coal-fired CFB power plant with machine learning: Plant data learned by deep neural network and least square support vector machine. J. Clean. Prod. 2020, 270, 122310. [Google Scholar] [CrossRef]
- Cai, J.; Ma, X.; Li, Q. On-line monitoring the performance of coal-fired power unit: A method based on support vector machine. Appl. Therm. Eng. 2009, 29, 2308–2319. [Google Scholar] [CrossRef]
Properties | Unit | Value |
---|---|---|
Moisture | % | 1.80 |
Ash | % | 16.83 |
Volatile Matter | % | 24.26 |
Fixed Carbon | % | 57.10 |
Sulfur | % | 0.56 |
Net Calorific Value | MJ/kg | 24.11 |
Parameters | Unit | Min | Max | SD | |
---|---|---|---|---|---|
1 | Coal flow rate (Mc) | t/h | 129 | 252 | 45.78 |
2 | Air flow rate (Ma) | t/h | 1469 | 2636 | 418.22 |
3 | Water/Coal ratio (w/c) | (-) | 6.98 | 8.49 | 0.31 |
4 | Middle temperature (Tmid) | °C | 343 | 425 | 27.93 |
5 | LT Eco water outlet temperature (LT.ECO) | °C | 90 | 100 | 2.5 |
6 | APH air outlet temperature ((Ta)APH) | °C | 311 | 352 | 12.23 |
7 | % O2 in flue gas at APH outlet (% O2) | % | 5.27 | 8.50 | 0.95 |
8 | Flue gas temperature after APH ((Tfg)APH) | °C | 120 | 157 | 8 |
9 | Ambient temperature (Tamb) | °C | 5 | 43 | 9.4 |
10 | Feed water pressure (FWP) | MPa | 15.4 | 30.1 | 6.11 |
11 | Feed water temperature (FWT) | °C | 260 | 299 | 15.37 |
12 | Feed water flow (FWF) | t/h | 942 | 1987 | 402.25 |
13 | Main Steam Pressure (MSP) | MPa | 13.0 | 24.4 | 4.69 |
14 | Main Steam Temperature (MST) | °C | 550 | 569 | 4.79 |
15 | Reheat pressure (RHP) | MPa | 2.6 | 5 | 0.93 |
16 | Reheat temperature (RHT) | °C | 553 | 569 | 4.03 |
17 | Condenser vacuum (Pvac) | kPa | −89.3 | −95.6 | 1.41 |
18 | Deaerator temperature (Td) | °C | 164 | 190 | 9.59 |
19 | Attemperation water flow rate (AWF) | t/h | 4 | 97 | 19.48 |
20 | Condensate temperature (Tc) | °C | 27 | 47 | 4.29 |
21 | Auxiliary power (Paux) | MW | 20.3 | 29.2 | 2.63 |
22 | Turbine speed (N) | rpm | 2986 | 3017 | 5.69 |
23 | Excitation voltage (Exc. V) | V | 176 | 435 | 67.71 |
24 | Excitation current (Exc. I) | A | 1839 | 4144 | 614.91 |
25 | Generator power (G.P) | MVA | 355.1 | 714.9 | 131.25 |
Neurons | R2 | RMSE (MVA) | NRMSE (%) |
---|---|---|---|
10 | 0.99886 | 3.972 | 1.336 |
11 | 0.999404 | 3.036 | 1.021 |
12 | 0.999548 | 2.785 | 0.937 |
13 | 0.998301 | 4.819 | 1.621 |
14 | 0.998654 | 4.782 | 1.609 |
15 | 0.999286 | 3.294 | 1.108 |
16 | 0.99948 | 2.834 | 0.953 |
17 | 0.99893 | 4.264 | 1.434 |
18 | 0.998738 | 4.318 | 1.453 |
19 | 0.99892 | 3.298 | 1.11 |
20 | 0.999228 | 3.324 | 1.118 |
21 | 0.999396 | 2.888 | 0.972 |
22 | 0.9988 | 4.181 | 1.407 |
23 | 0.999322 | 3.069 | 1.033 |
24 | 0.999336 | 3.33 | 1.12 |
25 | 0.998507 | 4.822 | 1.622 |
26 | 0.999244 | 3.284 | 1.105 |
27 | 0.999602 | 2.739 | 0.922 |
28 | 0.999286 | 3.336 | 1.122 |
29 | 0.998866 | 4.553 | 1.532 |
30 | 0.999184 | 4.495 | 1.512 |
31 | 0.999636 | 2.424 | 0.815 |
32 | 0.999232 | 3.524 | 1.186 |
33 | 0.99913 | 3.665 | 1.233 |
34 | 0.999118 | 3.486 | 1.173 |
35 | 0.999114 | 3.906 | 1.314 |
36 | 0.9987 | 2.431 | 0.818 |
Operating Parameter | Operating Value | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Coal flow rate (Mc) | 129 | 142 | 154 | 166 | 179 | 191 | 203 | 215 | 228 | 240 | 252 |
Air flow rate (Ma) | 1469 | 1586 | 1703 | 1819 | 1936 | 2053 | 2169 | 2286 | 2403 | 2519 | 2636 |
Water/Coal ratio (w/c) | 6.98 | 7.13 | 7.28 | 7.43 | 7.58 | 7.74 | 7.89 | 8.04 | 8.19 | 8.34 | 8.49 |
Middle temperature (Tmid) | 343 | 351 | 360 | 368 | 376 | 384 | 392 | 400 | 409 | 417 | 425 |
LT Eco water outlet temperature (LT.ECO) | 100 | 99 | 98 | 97 | 96 | 95 | 94 | 93 | 92 | 91 | 90 |
APH air outlet temperature ((Ta)APH) | 311 | 315 | 319 | 323 | 327 | 332 | 336 | 340 | 344 | 348 | 352 |
% O2 in flue gas at APH outlet (% O2) | 8.5 | 8.18 | 7.85 | 7.53 | 7.21 | 6.89 | 6.56 | 6.24 | 5.92 | 5.59 | 5.27 |
Flue gas temperature after APH ((Tfg)APH) | 120 | 123 | 127 | 131 | 135 | 139 | 142 | 146 | 150 | 154 | 157 |
Ambient temperature (Tamb) | 5 | 8 | 12 | 16 | 20 | 24 | 28 | 31 | 35 | 39 | 43 |
Feed water pressure (FWP) | 15.4 | 16.8 | 18.3 | 19.8 | 21.2 | 22.7 | 24.2 | 25.6 | 27.1 | 28.6 | 30.1 |
Feed water temperature (FWT) | 260 | 264 | 268 | 272 | 276 | 280 | 283 | 287 | 291 | 295 | 299 |
Feed water flow (FWF) | 942 | 1047 | 1151 | 1256 | 1360 | 1465 | 1569 | 1674 | 1778 | 1883 | 1987 |
Main Steam Pressure (MSP) | 13 | 14.1 | 15.2 | 16.4 | 17.5 | 18.7 | 19.8 | 20.9 | 22.1 | 23.2 | 24.4 |
Main Steam Temperature (MST) | 550 | 552 | 554 | 556 | 558 | 560 | 562 | 564 | 565 | 567 | 569 |
Reheat pressure (RHP) | 2.6 | 2.8 | 3 | 3.3 | 3.5 | 3.8 | 4 | 4.2 | 4.5 | 4.7 | 5 |
Reheat temperature (RHT) | 553 | 555 | 556 | 558 | 559 | 561 | 563 | 564 | 566 | 567 | 569 |
Condenser vacuum (Pvac) | −95.6 | −95.0 | −94.4 | −93.7 | −93.1 | −92.5 | −91.8 | −91.2 | −90.6 | −89.9 | −89.3 |
Deaerator temperature (Td) | 164 | 166 | 169 | 172 | 174 | 177 | 179 | 182 | 185 | 187 | 190 |
Attemperation water flow rate (AWF) | 97 | 88 | 79 | 69 | 60 | 51 | 42 | 32 | 23 | 14 | 4 |
Condensate temperature (Tc) | 27 | 29 | 31 | 33 | 35 | 37 | 39 | 41 | 43 | 45 | 47 |
Auxiliary power (Paux) | 20.3 | 21.2 | 22.1 | 22.9 | 23.8 | 24.7 | 25.6 | 26.5 | 27.4 | 28.3 | 29.2 |
Turbine speed (N) | 2986 | 2989 | 2992 | 2995 | 2998 | 3001 | 3005 | 3008 | 3011 | 3014 | 3017 |
Excitation voltage (Exc. V) | 176 | 202 | 228 | 254 | 280 | 305 | 331 | 357 | 383 | 409 | 435 |
Excitation current (Exc. I) | 1839 | 2070 | 2300 | 2531 | 2761 | 2992 | 3222 | 3453 | 3683 | 3914 | 4144 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashraf, W.M.; Uddin, G.M.; Farooq, M.; Riaz, F.; Ahmad, H.A.; Kamal, A.H.; Anwar, S.; El-Sherbeeny, A.M.; Khan, M.H.; Hafeez, N.; et al. Construction of Operational Data-Driven Power Curve of a Generator by Industry 4.0 Data Analytics. Energies 2021, 14, 1227. https://doi.org/10.3390/en14051227
Ashraf WM, Uddin GM, Farooq M, Riaz F, Ahmad HA, Kamal AH, Anwar S, El-Sherbeeny AM, Khan MH, Hafeez N, et al. Construction of Operational Data-Driven Power Curve of a Generator by Industry 4.0 Data Analytics. Energies. 2021; 14(5):1227. https://doi.org/10.3390/en14051227
Chicago/Turabian StyleAshraf, Waqar Muhammad, Ghulam Moeen Uddin, Muhammad Farooq, Fahid Riaz, Hassan Afroze Ahmad, Ahmad Hassan Kamal, Saqib Anwar, Ahmed M. El-Sherbeeny, Muhammad Haider Khan, Noman Hafeez, and et al. 2021. "Construction of Operational Data-Driven Power Curve of a Generator by Industry 4.0 Data Analytics" Energies 14, no. 5: 1227. https://doi.org/10.3390/en14051227
APA StyleAshraf, W. M., Uddin, G. M., Farooq, M., Riaz, F., Ahmad, H. A., Kamal, A. H., Anwar, S., El-Sherbeeny, A. M., Khan, M. H., Hafeez, N., Ali, A., Samee, A., Naeem, M. A., Jamil, A., Hassan, H. A., Muneeb, M., Chaudhary, I. A., Sosnowski, M., & Krzywanski, J. (2021). Construction of Operational Data-Driven Power Curve of a Generator by Industry 4.0 Data Analytics. Energies, 14(5), 1227. https://doi.org/10.3390/en14051227