Evaluating Spatial Interdependencies of Sector Coupling Using Spatiotemporal Modelling
Abstract
:1. Introduction
1.1. Different Concepts of Sector Coupling
- Sectoral: Primarily referring to sectors of energy consumption like households, commerce, industry, service, or transportation.
- Technological: Focusing on technical solutions like heat pumps, district heating, or electric vehicles.
- System and infrastructure: Interlinking electricity, heating, cooling, mobility, and industrial processes through corresponding infrastructure.
- Optimisation of energy use by automation, communication and energy storage systems.
- Combination of multiple energy vectors like electricity, gas, hydrogen, heating or cooling.
- Power-to-X solutions as a linkage between different energy vectors.
- Circular energy systems with a focus on energy efficiency.
- Utilisation of low-carbon fuels like hydrogen for specific end-use sectors.
- Multi-directional energy system, empowering consumers.
1.2. Integrated Spatial & Energy Planning and Spatiotemporal Modelling
- Energy-efficient spatial structures: Focus on multi-functionality, appropriate density, minimum size and compact organization.
- Renewable resources and spatial structures: Considering aspects of resource logistics, siting of energy-related technologies and grid infrastructure, as well as the temporal availability of RES.
- Energy supply systems tailored to spatial structures and vice versa.
1.3. Research Demand
- What influence do spatial and temporal conditions pose on successful implementation of sector coupling?
- Based on the application of a spatiotemporal model on the (inter)municipal level, what favourable sector coupling strategies could be derived?
2. Methods and Materials
2.1. System Design for Sector Coupling
2.2. Spatiotemporal Model
2.3. Case Study Description
- Raster cells and individual buildings with high heat demand (e.g., village centres or multi-storey buildings), to guarantee high heat demand per metre of district heating network.
- Buildings owned or managed by the municipalities should be included in the energy zones, as municipalities can act as “initial seedbeds in transition” [43] (p. 22).
- Relevant planning documents such as local development concepts or zoning plans in order to better locate and include future developments or potential heat consumers.
- Natural (e.g., water bodies or slopes) and anthropogenic barriers (e.g., railway tracks), since they limit the realisation of district heating networks.
- Other existing infrastructure (e.g., gas network) and administrative boundaries such as municipal borders, influencing the direction and expansion of the district heating network.
3. Results
3.1. Coupling Wastewater Infrastructure with Thermal Energy Supply
3.2. Coupling of Decentral Energy Supply Solutions
4. Discussion
4.1. Spatiotemporal Interdependencies for a Successful Implementation of Sector Coupling
4.2. Strategies for Sector Coupling in the Context of Integrated Spatial and Energy Planning
- To support SC, the principle of focusing on multi-functional, appropriately dense, and compact spatial structures is imperative. These energy efficient spatial structures allow high shares of properly supplied demand, due to different functions comprising different sectors of ED. This was shown with the help of energy zones in this research. Simultaneously, the utilisation of excess energy is easier in these spatial structures. Taking the mobility sector as an example, high EDel for charging electric vehicle are seen in areas comprising a mix of different sectors, such as the residential and service/industrial sector. The possibility to charge vehicles at home and at work in the same area offers the opportunity for high shares of properly supplied demand.
- SC-priorities should be considered in ISEP, as energy zones with appropriate dense and compact structures and high heat demand are, for instance, preferred for central solutions like district heating, whereas areas with less heat demand could benefit from decentral supply solutions. First-level (between central and decentral RES) and second-level coupling (e.g., between PV and ST) are to be pursued, if it supports the efficiency of the energy system, since energy efficiency is the central goal of SC.
- The specific use of STM for SC supports an appropriate use of RES. Using STM allows the generation of detailed results in an early stage of planning. Appropriate shares of RES use can be revealed and the emphasis can be put on those areas with high properly supplied demand. Within the framework of spatiotemporal evaluations of EDth,el and EPth,el, infrastructure planning, including grid analysis and storage determinations, is also a key aspect.
- A hierarchical evaluation of locally available RES is suggested for SC. In this context, already available and still untapped RES should be given priority.
- The following strategies apply for the spatiotemporal indicators. The focus of ISEP should be on utilising high shares of properly supplied demand. In addition, spatial structures that make use of excess energy (e.g., from nearby settlements) need to be identified. Finally, potential unfulfilled demand should be covered by local available RES.
- Future spatial developments need to include the question on where efficient SC is possible. The designation of priority zones for SC need be included in spatial plans, as this is already partly realized for district heating (e.g., [57]).
4.3. Strengths and Limits of Spatiotemporal Modelling for Sector Coupling
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Powering a Climate-Neutral Economy: An EU Strategy for Energy System Integration; COM/2020/299; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Wietschel, M.; Plötz, P.; Pfluger, B.; Klobasa, M.; Eßer, A.; Haendel, M.; Müller-Kirchenbauer, J.; Kochems, J.; Hermann, L.; Grosse, B.; et al. Sektorkopplung—Definition, Chancen und Herausforderungen; Fraunhofer-Institut für System und Innovationsforschung ISI: Karlsruhe, Germany, 2018; 61p. [Google Scholar]
- Van Nuffel, L.; Gorenstein Dedecca, J.; Smit, T.; Rademaekers, K. Sector Coupling: How Can It Be Enhanced in the EU to Foster Grid Stability and Decarbonise? European Union: Brussels, Belgium, 2018; 64p. [Google Scholar]
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy Stratgy Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- Wu, J.; Yan, J.; Jia, H.; Hatziargyriou, N.; Djilali, N.; Sun, H. Integrated Energy Systems. Appl. Energy 2016, 167, 155–157. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions; Energy Roadmap 2050, COM (2011) 885 Final on 15 December 2011; European Commission: Brussels, Belgium, 2011. [Google Scholar]
- Lund, H.; Østergaard, P.A.; Connolly, D.; Mathiesen, B.V. Smart Energy and Smart Energy Systems. Energy 2017, 137, 556–565. [Google Scholar] [CrossRef]
- Hanna, R.; Gazis, E.; Rhodes, A.; Gross, R. Unlocking the Potential of Energy Systems Integration; Imperial College London: London, UK, 2018; 40p. [Google Scholar]
- Daiyan, R.; MacGill, I.; Amal, R. Opportunities and Challenges for Renewable Power-to-X. ACS Energy Lett. 2020, 5, 3843–3847. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission. Towards an Integrated Strategic Energy Technology (SET) Plan: Accelerating the European Energy System Transformation; C(2015) 6317 Final on 15 September 2015; European Commission: Brussels, Belgium, 2015. [Google Scholar]
- Stoeglehner, G.; Neugebauer, G.; Erker, S.; Narodoslawsky, M. Integrated Spatial and Energy Planning—Supporting Climate Protection and the Energy Turn with Means of Spatial Planning (SpringerBriefs in Applied Sciences and Technology), 1st ed.; Springer: Cham, Switzerland, 2016; ISBN 978-3-319-31868-4. [Google Scholar]
- Stoeglehner, G.; Erker, S.; Neugebauer, G. Energieraumplanung. Materialienband; ÖROK Schriftenreihe Nr. 192; in Zusammenarbeit Mit Der ÖREK-Partnerschaft “Energieraumplanung”. Auftraggeber Und Leadpartner Bundesministerium Für Land-Und Forstwirtschaft, Umwelt Und Wasserwirtschaft; Geschäftsstelle Der Österreichischen Raumordnungskonferenz (ÖROK): Vienna, Austria, 2014. [Google Scholar]
- Ramirez Camargo, L.; Stoeglehner, G. Spatiotemporal modelling for integrated spatial and energy planning. Energy Sustain. Soc. 2018, 8, 32. [Google Scholar] [CrossRef]
- Fonseca, J.A.; Schlueter, A. Integrated model for characterization of spatiotemporal building energy consumption patterns in neighborhoods and city districts. Appl. Energy 2015, 142, 247–265. [Google Scholar] [CrossRef]
- Schmidt, J.; Cancella, R.; Pereira, A.O. An optimal mix of solar PV, wind and hydro power for a low-carbon electricity supply in Brazil. Renew. Energy 2016, 85, 137–147. [Google Scholar] [CrossRef]
- Varlas, G.; Christakos, K.; Cheliotis, I.; Papadopoulos, A.; Steeneveld, G.-J. Spatiotemporal variability of marine renewable energy resources in Norway. Energy Procedia 2017, 125, 180–189. [Google Scholar] [CrossRef]
- Spriet, J.; McNabola, A.; Neugebauer, G.; Stoeglehner, G.; Ertl, T.; Kretschmer, F. Spatial and temporal considerations in the performance of wastewater heat recovery systems. J. Clean. Prod. 2020, 247, 119583. [Google Scholar] [CrossRef]
- Ramirez Camargo, L.; Zink, R.; Dorner, W.; Stoeglehner, G. Spatio-temporal modeling of roof-top photovoltaic panels for improved technical potential assessment and electricity peak load offsetting at the municipal scale. Comput. Environ. Urban Syst. 2015, 52, 58–69. [Google Scholar] [CrossRef] [Green Version]
- Lohmeier, D.; Cronbach, D.; Drauz, S.R.; Braun, M.; Kneiske, T.M. Pandapipes: An Open-Source Piping Grid Calculation Package for Multi-Energy Grid Simulations. Sustainability 2020, 12, 9899. [Google Scholar] [CrossRef]
- Schäfer, M.; Gretzschel, O.; Steinmetz, H. The Possible Roles of Wastewater Treatment Plants in Sector Coupling. Energies 2020, 13, 2088. [Google Scholar] [CrossRef] [Green Version]
- Aghaei, J.; Alizadeh, M.-I. Demand response in smart electricity grids equipped with renewable energy sources: A review. Renew. Sustain. Energy Rev. 2013, 18, 64–72. [Google Scholar] [CrossRef]
- Jalil-Vega, F.; Kerdan, I.G.; Hawkes, A.D. Spatially-resolved urban energy systems model to study decarbonisation pathways for energy services in cities. Appl. Energy 2020, 262, 114445. [Google Scholar] [CrossRef]
- Zach, F.; Erker, S.; Stoeglehner, G. Factors influencing the environmental and economic feasibility of district heating systems—a perspective from integrated spatial and energy planning. Energy Sustain. Soc. 2019, 9, 9. [Google Scholar] [CrossRef]
- Facci, A.L.; Krastev, V.K.; Falcucci, G.; Ubertini, S. Smart integration of photovoltaic production, heat pump and thermal energy storage in residential applications. Sol. Energy 2019, 192, 133–143. [Google Scholar] [CrossRef]
- Komarnicki, P.; Haubrock, J.; Styczynski, Z.A. Elektromobilität und Sektorenkopplung: Infrastruktur- und Systemkomponenten; Springer: Wiesbaden, Germany, 2018; ISBN 978-3-662-56248-2. [Google Scholar]
- Hao, X.; Li, J.; Van Loosdrecht, M.C.; Jiang, H.; Liu, R. Energy recovery from wastewater: Heat over organics. Water Res. 2019, 161, 74–77. [Google Scholar] [CrossRef] [PubMed]
- Kretschmer, F.; Neugebauer, G.; Kollmann, R.; Eder, M.; Zach, F.; Zottl, A.; Narodoslawsky, M.; Stoeglehner, G.; Ertl, T. Resource recovery from wastewater in Austria: Wastewater treatment plants as regional energy cells. J. Water Reuse Desalin. 2016, 6, 421–429. [Google Scholar] [CrossRef] [Green Version]
- Huber, F.; Neugebauer, G.; Ertl, T.; Kretschmer, F. Suitability Pre-Assessment of in-Sewer Heat Recovery Sites Combining Energy and Wastewater Perspectives. Energies 2020, 13, 6680. [Google Scholar] [CrossRef]
- Kollmann, R.; Neugebauer, G.; Kretschmer, F.; Truger, B.; Kindermann, H.; Stoeglehner, G.; Ertl, T.; Narodoslawsky, M. Renewable energy from wastewater—Practical aspects of integrating a wastewater treatment plant into local energy supply concepts. J. Clean. Prod. 2017, 155, 119–129. [Google Scholar] [CrossRef]
- APCS Synthetic Load Profiles. Available online: https://www.apcs.at/en/clearing/physical-clearing/synthetic-load-profiles (accessed on 24 February 2020).
- Abart-Heriszt, L.; Erker, S.; Stoeglehner, G. The Energy Mosaic Austria—A Nationwide Energy and Greenhouse Gas Inventory on Municipal Level as Action Field of Integrated Spatial and Energy Planning. Energies 2019, 12, 3065. [Google Scholar] [CrossRef] [Green Version]
- Eichlseder, H.; Almbauer, R. Lastprofile Nicht-Leistungsgemessener Kunden (HE, HM, HG, PG, PK Und PW) Der Gasnetzbetreiber Österreichs-Überarbeitung 2008; Institut für Verbrennungskraftmaschinen und Thermodynamik: Graz, Austria, 2008. [Google Scholar]
- Statistik Austria Blick-Online. Available online: https://www.statistik.at/blickgem/index (accessed on 13 February 2020).
- Abart-Heriszt, L.; Erker, S.; Reichel, S.; Schöndorfer, H.; Weinke, E.; Lang, S. Österreichweite Visualisierung von Energieverbrauch Und Treibhausgasemissionen Auf Gemeindeebene; EnCO2Web; FFG, BMVIT, Stadt Der Zukunft: Vienna/Salzburg, Austria. Lizenz: CC BY-NC-SA 3.0 AT. Energiemosaik Austria. Available online: https://www.energiemosaik.at/intro (accessed on 13 February 2020).
- Carpaneto, E.; Lazzeroni, P.; Repetto, M. Optimal Integration of Solar Energy in a District Heating Network. Renew. Energy 2015, 75, 714–721. [Google Scholar] [CrossRef]
- GRASS Development Team. Geographic Resources Analysis Support System (GRASS) Software; Version 7.6.; Open Source Geospatial Foundation: Chicago, IL, USA, 2019; Available online: https://grass.osgeo.org (accessed on 19 August 2020).
- PVGIS. Photovoltaic Geographical Information System (PVGIS). Available online: https://ec.europa.eu/jrc/en/pvgis (accessed on 9 August 2020).
- EU Directive 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources; European Parliament and the Council: Brussels, Belgium, 2018; 128p.
- Zach, F.; Lichtenwoehrer, P.; Neugebauer, G.; Kretschmer, F. REEF 2W Machbarkeitsstudie—Fallbeispiel RHV Trattnachtal. In Wiener Mitteilungen-Abwasserwirtschaft im Ländlichen Raum 2019; RSA: Vienna, Austria, 2019; Volume 251. [Google Scholar]
- Wastewater Utility Trattnachtal Description of the Wastewater Treatment Plant. Available online: https://www.rhv-trattnachtal.at/anlage-leistungen/ (accessed on 11 February 2021). (In German).
- GIP. Die Graphenintegrations-Plattform. Available online: http://www.gip.gv.at/ (accessed on 19 August 2020).
- Nussbaumer, T.; Thalmann, S.; Jenni, A.; Ködel, J. Planungshandbuch Fernwärme; Bundesamt für Energie: Ittigen, Switzerland, 2017. [Google Scholar]
- Geels, F. The Role of the Cities in Technological Transitions: Analytical Clarifications and Historical Examples. In Cities and Low Carbon Transition; Bulkeley, H., Castán Broto, V., Hodson, M., Marvin, S., Eds.; Routledge: London, UK, 2011; pp. 13–28. [Google Scholar]
- Bala, H. WWTP Operating Protocols for the Years 2016 and 2017. Manger of the Local Wastewater Utility, E-Mail Communication to the Authors; s.a.
- Buffa, S.; Cozzini, M.; D’Antoni, M.; Baratieri, M.; Fedrizzi, R. 5th generation district heating and cooling systems: A review of existing cases in Europe. Renew. Sustain. Energy Rev. 2019, 104, 504–522. [Google Scholar] [CrossRef]
- Werner, S. International Review of District Heating and Cooling. Energy 2017, 137, 617–631. [Google Scholar] [CrossRef]
- BMNT. Energie in Österreich 2019—Zahlen, Daten, Fakten; Bundesministerium für Nachhaltigkeit und Tourismus: Vienna, Austria, 2019; 46p. [Google Scholar]
- Erker, S.; Lichtenwoehrer, P.; Zach, F.; Stoeglehner, G. Interdisciplinary decision support model for grid-bound heat supply systems in urban areas. Energy Sustain. Soc. 2019, 9, 11. [Google Scholar] [CrossRef]
- ÖNORM B 5019. Hygienerelevante Planung, Ausführung, Betrieb, Überwachung Und Sanierung von Zentralen Trinkwasser-Erwärmungsanlagen (Hygienic Planning, Construction, Operation, Surveillance and Maintenance of Central Drinking Warm Water Supply Systems); Austrian Standards: Vienna, Austria, 2017. [Google Scholar]
- Lichtenegger, K.; Wöss, D.; Halmdienst, C.; Höftberger, E.; Schmidl, C.; Pröll, T. Intelligent heat networks: First results of an energy-information-cost-model. Sustain. Energy Grids Netw. 2017, 11, 1–12. [Google Scholar] [CrossRef]
- European Environment Agency. New Registrations of Electric Vehicles in Europe. Available online: https://www.eea.europa.eu/data-and-maps/indicators/proportion-of-vehicle-fleet-meeting-5/assessment (accessed on 7 December 2020).
- Arabzadeh, V.; Pilpola, S.; Lund, P.D. Coupling Variable Renewable Electricity Production to the Heating Sector through Curtailment and Power-to-heat Strategies for Accelerated Emission Reduction. Future Cities Environ. 2019, 5. [Google Scholar] [CrossRef] [Green Version]
- Waite, M.; Cohen, E.; Torbey, H.; Piccirilli, M.; Tian, Y.; Modi, V. Global Trends in Urban Electricity Demands for Cooling and Heating. Energy 2017, 127, 786–802. [Google Scholar] [CrossRef] [Green Version]
- Maggio, G.; Nicita, A.; Squadrito, G. How the hydrogen production from RES could change energy and fuel markets: A review of recent literature. Int. J. Hydrogen Energy 2019, 44, 11371–11384. [Google Scholar] [CrossRef]
- Steinmann, W.-D.; Bauer, D.; Jockenhöfer, H.; Johnson, M. Pumped Thermal Energy Storage (PTES) as Smart Sector-Coupling Technology for Heat and Electricity. Energy 2019, 183, 185–190. [Google Scholar] [CrossRef]
- Bachmaier, A.; Narmsara, S.; Eggers, J.-B.; Herkel, S. Spatial distribution of thermal energy storage systems in urban areas connected to district heating for grid balancing—A techno-economical optimization based on a case study. J. Energy Storage 2016, 8, 349–357. [Google Scholar] [CrossRef]
- Abart-Heriszt, L.; Stoeglehner, G. Das Sachbereichskonzept Energie; In Beitrag zum Örtlichen Entwicklungskonzept; Institut für Raumplanung, Umweltplanung und Bodenordnung (IRUB), Amt der Steiermärkischen Landesregierung: Graz, Austria, 2019; 36p. [Google Scholar]
- Statistik Austria. Statistical Data on the Basis of Statistical Grids—Data and Fees; Statistik Austria: Vienna, Austria, 2020.
- Kranzl, L.; Müller, A.; Hartner, M.; Forthuber, S.; Totschnig, G. Decarbonisation of the Space Heating and Hot Water Sector: Pathways, Challenges and Requirements for Sector Coupling. In Proceedings of the Renewable Heating and Cooling in Integrated Urban and Industrial Energy Systems, Graz, Austria, 3–5 October 2018. [Google Scholar]
- Caramizaru, A.; Uihlein, A. Energy Communities: An Overview of Energy and Social Innovation; EUR 30083 EN; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar]
- European Commission. Energy and Smart Cities. Available online: https://ec.europa.eu/energy/topics/technology-and-innovation/energy-and-smart-cities_en?redir=1 (accessed on 20 December 2020).
- Langergraber, G.; Pucher, B.; Simperler, L.; Kisser, J.; Katsou, E.; Buehler, D.; Mateo, M.C.G.; Atanasova, N. Implementing Nature-Based Solutions for Creating a Resourceful Circular City. Blue Green Syst. 2020, 2, 173–185. [Google Scholar] [CrossRef]
Municipality | Total | Residential | Agriculture | Industry | Services | Mobility |
---|---|---|---|---|---|---|
Wallern an der Trattnach | 92,800 | 27,300 | 2800 | 33,700 | 8400 | 20,500 |
Bad Schallerbach | 112,100 | 33,800 | 1000 | 11,300 | 25,800 | 40,300 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lichtenwoehrer, P.; Abart-Heriszt, L.; Kretschmer, F.; Suppan, F.; Stoeglehner, G.; Neugebauer, G. Evaluating Spatial Interdependencies of Sector Coupling Using Spatiotemporal Modelling. Energies 2021, 14, 1256. https://doi.org/10.3390/en14051256
Lichtenwoehrer P, Abart-Heriszt L, Kretschmer F, Suppan F, Stoeglehner G, Neugebauer G. Evaluating Spatial Interdependencies of Sector Coupling Using Spatiotemporal Modelling. Energies. 2021; 14(5):1256. https://doi.org/10.3390/en14051256
Chicago/Turabian StyleLichtenwoehrer, Peter, Lore Abart-Heriszt, Florian Kretschmer, Franz Suppan, Gernot Stoeglehner, and Georg Neugebauer. 2021. "Evaluating Spatial Interdependencies of Sector Coupling Using Spatiotemporal Modelling" Energies 14, no. 5: 1256. https://doi.org/10.3390/en14051256
APA StyleLichtenwoehrer, P., Abart-Heriszt, L., Kretschmer, F., Suppan, F., Stoeglehner, G., & Neugebauer, G. (2021). Evaluating Spatial Interdependencies of Sector Coupling Using Spatiotemporal Modelling. Energies, 14(5), 1256. https://doi.org/10.3390/en14051256