Design and Analysis of a While-Drilling Energy-Harvesting Device Based on Piezoelectric Effect
Abstract
:1. Introduction
2. Structural and Functional Design of the While-Drilling Energy Harvesting Device
3. Principle and Physical Model of Power Generation
4. Radial Dimension Design of the Proposed Device
5. Piezoelectric Design and Analysis
5.1. Piezo Material Selection
5.2. Length and Position Design of Piezoelectric Element
5.3. Thickness Analysis and Optimization of Piezoelectric Patches
5.3.1. Natural Frequency Variation Analysis
5.3.2. Peak Voltage and Energy Generation Performance Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Berro, M.J.; Reich, M.; Estevez, M.A.G.; Kruger, U.; Kruger, K.; Jaksch, K.; Giese, R.; Eggemann, K.; Zandi-Nia, A. Robust Unidirectional OFDM-Communication System: Integration in a Drill String and Measurements of the Autarkic System. Oil Gas-Eur. Mag. 2016, 42, 183–189. [Google Scholar]
- Zhang, X.S.; Zhang, H.X.; Guo, J.S.; Zhu, L.Z. Auto measurement while drilling mud pulse signal recognition based on deep neural network. J. Pet. Sci. Eng. 2018, 167, 37–43. [Google Scholar] [CrossRef]
- Berro, M.J.; Reich, M. Laboratory investigations of a hybrid mud pulse telemetry (HMPT)—A new approach for speeding up the transmitting of MWD/LWD data in deep boreholes. J. Pet. Sci. Eng. 2019, 183, 106374. [Google Scholar] [CrossRef]
- Liu, K.M. Model and control method of a downhole electromagnetic transmitter for EM-MWD system. J. Pet. Sci. Eng. 2020, 192, 107210. [Google Scholar] [CrossRef]
- Wang, C.L. Bionic design and test of polycrystalline diamond compact bit for hard rock drilling in coal mine. Adv. Mech. Eng. 2020, 12, 1–6. [Google Scholar] [CrossRef]
- Huo, A.Q.; He, Y.Y.; Wang, Y.L.; Tang, N.; Cheng, W.B. Study of Downward Communication Receiver in Rotary Steerable Drilling Tool Based on Turbine Generator. In Proceedings of the 29th Chinese Control Conference, Beijing, China, 29–31 July 2010; Chen, J., Ed.; Institute of Electrical and Electronics Engineers: New York, NY, USA, 2010; pp. 4210–4213. [Google Scholar]
- Zhang, X.D.; Lu, H.P.; Li, B. 2140. Parameters matching analysis of the stator and rotor for downhole asymmetric turbine generator. J. Vibroeng. 2016, 18, 3512–3523. [Google Scholar] [CrossRef]
- Lu, C.H.; Jiang, G.S.; Wang, Z.Q.; Wang, J.H.; Wang, C.L. The development of and experiments on electromagnetic measurement while a drilling system is used for deep exploration. J. Geophys. Eng. 2016, 13, 824–831. [Google Scholar] [CrossRef]
- Stojčev, M.K.; Kosanović, M.R.; Golubović, L.R. Power management and energy harvesting techniques for wireless sensor nodes. In Proceedings of the 9th International Conference on Telecommunication in Modern Satellite, Cable, and Broadcasting Services, Niš, Serbia, 7–9 October 2009; pp. 65–72. [Google Scholar]
- Liu, S.W.; Fu, M.X.; Jia, H.S.; Li, W.B.; Luo, Y.F. Numerical simulation and analysis of drill rods vibration during roof bolt hole drilling in underground mines. Int. J. Min. Sci. Technol. 2018, 28, 877–884. [Google Scholar] [CrossRef]
- Sun, H.Y.; Zhang, A.; Li, H. Experimental study and dynamic characteristics analysis of partially liquid-filled annulus tubes. PLoS ONE 2018, 13, e0209011. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, S.; Wei, T.T.; Chen, R. A wide band nonlinear dual piezoelectric cantilever energy harvester coupled by origami. Smart Mater. Struct. 2021, 30, 19. [Google Scholar] [CrossRef]
- Deng, J.; Guasch, O.; Zheng, L.; Song, T.T.; Cao, Y.S. Semi-analytical model of an acoustic black hole piezoelectric bimorph cantilever for energy harvesting. J. Sound Vibr. 2021, 494, 17. [Google Scholar] [CrossRef]
- Anton, S.R.; Sodano, H.A. A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater. Struct. 2007, 16, R1–R21. [Google Scholar] [CrossRef]
- Cui, G.; Pei, S.; Rui, Z.; Dou, B.; Ning, F.; Wang, J. Whole process analysis of geothermal exploitation and power generation from a depleted high-temperature gas reservoir by recycling CO2. Energy 2021, 217, 119340. [Google Scholar] [CrossRef]
- Wu, J.G.; Xiao, D.Q.; Zhu, J.G. Potassium-Sodium Niobate Lead-Free Piezoelectric Materials: Past, Present, and Future of Phase Boundaries. Chem. Rev. 2015, 115, 2559–2595. [Google Scholar] [CrossRef]
- Gong, J.J.; Ruan, Z.L.; Li, K.; Bian, Y. Study on the Generating Performance of a Novel Piezoelectric Generator with Multilayer Cantilevers. J. Mech. Eng. 2014, 50, 135–140. [Google Scholar] [CrossRef]
- Rastegar, J.; Pereira, C.; Nguyen, H.L. Piezoelectric-based power sources for harvesting energy from platforms with low frequency vibration. In Smart Structures and Materials 2006: Industrial and Commercial Applications of Smart Structures Technologies; White, E.V., Davis, L.P., Eds.; Society of Photo Optical: Washington, DC, USA, 2006; Volume 6171. [Google Scholar]
- Wang, Q. Research of Vibration Energy Harvesting Based on Piezoelectric Material. Master Thesis, Jiangsu University, Zhenjiang, China, 2008. [Google Scholar]
- Varadha, E.; Kumar, S.R.; Jain, X.S.A. Wind-Driven Leaf-Like Thin-Film Piezoelectric Harvester for Low Wind Applications. J. Vib. Eng. Technol. 2021, online. [Google Scholar] [CrossRef]
- Subbaramaiah, R.; Al-Jufout, S.A.; Ahmed, A.; Mozumdar, M.M. Design of Vibration-Sourced Piezoelectric Harvester for Battery-Powered Smart Road Sensor Systems. IEEE Sens. J. 2020, 20, 13940–13949. [Google Scholar] [CrossRef]
- Erturk, A.; Inman, D.J. An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater. Struct. 2009, 18, 025009. [Google Scholar] [CrossRef]
- Avvari, P.V.; Yang, Y.W.; Soh, C.K. Long-term fatigue behavior of a cantilever piezoelectric energy harvester. J. Intell. Mater. Syst. Struct. 2017, 28, 1188–1210. [Google Scholar] [CrossRef]
- Shu, B.; Ma, B.S.; Lan, H.T. Cuttings Transport Mechanism in a Large-Diameter HDD Borehole. J. Pipeline Syst. Eng. Pract. 2015, 6, 04014017. [Google Scholar] [CrossRef]
- Caenn, R.; Chillingar, G.V. Drilling fluids: State of the art. J. Pet. Sci. Eng. 1996, 14, 221–230. [Google Scholar] [CrossRef]
- Beeby, S.P.; Tudor, M.J.; White, N.M. Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 2006, 17, R175–R195. [Google Scholar] [CrossRef]
- Ottman, G.K.; Hofmann, H.F.; Bhatt, A.C.; Lesieutre, G.A. Adaptive piezoelectric energy harvesting circuit for wireless remote power supply. IEEE Trans. Power Electron. 2002, 17, 669–676. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.E.; Tran, V.H.; Wang, J.B.; Fuh, Y.K.; Lin, L.W. Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency. Nano Lett. 2010, 10, 726–731. [Google Scholar] [CrossRef] [PubMed]
- Erturk, A.; Inman, D.J. A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. J. Vib. Acoust. Trans. ASME 2008, 130, 041002. [Google Scholar] [CrossRef]
- Minh, N.Q. Ceramic Fuel-Cells. J. Am. Ceram. Soc. 1993, 76, 563–588. [Google Scholar] [CrossRef]
- Hu, J.; Tang, Y.G.; Li, S.X. Vibration test and assessment for an ocean drilling rig derrick: Taking the ZJ50/3150DB drilling rig as an example. Pet. Explor. Dev. 2013, 40, 126–129. [Google Scholar] [CrossRef]
- Abdo, J.; Al-Sharji, H. Investigation of vibration effects on friction and axial force transfer of buckled rod constrained in a horizontal cylinder. Tribol. Int. 2015, 92, 317–327. [Google Scholar] [CrossRef]
- Song, S.G.; Dalguer, L.A. Importance of 1-point statistics in earthquake source modelling for ground motion simulation. Geophys. J. Int. 2013, 192, 1255–1270. [Google Scholar] [CrossRef] [Green Version]
- Roy, N.; Sahu, R.B. Site specific ground motion simulation and seismic response analysis for microzonation of Kolkata. Geomech. Eng. 2012, 4, 1–18. [Google Scholar] [CrossRef]
- Hsiao, Y.Y.; Chang, W.C.; Chen, S.L. A mathematic model of thermoelectric module with applications on waste heat recovery from automobile engine. Energy 2010, 35, 1447–1454. [Google Scholar] [CrossRef]
NO. | Structure Name | Main Components |
---|---|---|
1 | Cylinder upper-end | 1.1 upper drill pipe joint, 1.2 through-hole, 1.3 upper shell, 1.4 upper well casing, 1.5 female screw |
2 | Cylinder bottom-end | 2.1 fixing thread, 2.2 lower shell, 2.3 lower well casing, 2.4 through-hole, 2.5 male screw, 2.6 lower drill pipe joint |
3 | Energy capturing plate | 3.1 inner race, 3.2 capacitor, 3.3 cantilever beam with the piezoelectric element, 3.4 mass block |
Component Parameters | Outer Diameter of Shell | Shell Thickness | Outer Diameter of Well Casing | Through Hole | Outer Diameter of Internal Ring | Cantilever Beam | Mass Block |
---|---|---|---|---|---|---|---|
Size (mm) | 320.7 | 9.85 | 116 (upper well casing) 123 (lower well casing) | 112 (upside) 118 (bottom) | 127 | 70 | 15 |
Cantilever Beam | Piezoelectric Patches | |
---|---|---|
Materials | Beryllium copper | PZT-5A |
Length (mm) | 70 | 24 |
Width (mm) | 10 | 10 |
Thickness (mm) | 2 | To be optimized |
Young’s modulus (GPa) | 128 | 59 |
Poisson’s ratio | 0.3 | 0.272 |
Density (kg/m3) | 8250 | 7750 |
Order | First-Order | Second Order | Third Order | Fourth Order | Fifth Order | Six Order |
---|---|---|---|---|---|---|
Fitted equation | Y = 22X + 63 | Y = 26X + 179 | Y = 32X + 288 | Y = 113X + 838 | Y = 44X + 1552 | Y = 63X + 2365 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, J.; Dou, B.; Li, Z.; Wu, T.; Tian, H.; Cui, G. Design and Analysis of a While-Drilling Energy-Harvesting Device Based on Piezoelectric Effect. Energies 2021, 14, 1266. https://doi.org/10.3390/en14051266
Zheng J, Dou B, Li Z, Wu T, Tian H, Cui G. Design and Analysis of a While-Drilling Energy-Harvesting Device Based on Piezoelectric Effect. Energies. 2021; 14(5):1266. https://doi.org/10.3390/en14051266
Chicago/Turabian StyleZheng, Jun, Bin Dou, Zilong Li, Tianyu Wu, Hong Tian, and Guodong Cui. 2021. "Design and Analysis of a While-Drilling Energy-Harvesting Device Based on Piezoelectric Effect" Energies 14, no. 5: 1266. https://doi.org/10.3390/en14051266
APA StyleZheng, J., Dou, B., Li, Z., Wu, T., Tian, H., & Cui, G. (2021). Design and Analysis of a While-Drilling Energy-Harvesting Device Based on Piezoelectric Effect. Energies, 14(5), 1266. https://doi.org/10.3390/en14051266