Investigation of Thermo-Flow Characteristics of Natural Draft Dry Cooling Systems Designed with Only One Tower in 2 × 660 MW Power Plants
Abstract
:1. Introduction
2. Numerical Modeling
2.1. NDDCS with Only One Tower
2.2. Governing Equations
2.3. Boundaries, Meshing, and Solution
2.4. Model Validation
3. Results and Discussions
3.1. Thermo-Flow Performances of Cooling Deltas with One/Two Unit(s)
3.2. Thermo-Flow Performances of Air-Cooled Sectors with One/Two Unit(s)
3.3. Overall Cooling Performances of NDDCS with One/Two Unit(s)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Nomenclature | |
A | heat transfer surface area (m2) |
cp | specific heat (J Kg−1 K−1) |
D | diameter (m) |
f | pressure loss coefficient |
H | height (m) |
k | turbulent kinetic energy (m2 s−2) |
L | tube length (m) |
m | mass flow rate (kg s−1) |
N | number |
p | pressure (Pa) |
Q | heat rejection (W) |
S | source term in generic equation |
t | temperature (K) |
u | velocity (m s−1) |
V | volume (m3) |
W | width (m) |
Greek symbols | |
ε | turbulence dissipation rate (m2 s−3) |
εmacro | heat exchanger effectiveness |
Γ | diffusion coefficient (m2 s−1) |
φ | scalar variable |
ρ | density (kg m−3) |
Subscripts | |
a | air |
w | wind |
wa | water |
1 | inlet |
2 | outlet |
Acronyms | |
ACHE | air-cooled heat exchanger |
GCS | gas condensing system |
NDDCS | natural draft dry cooling system |
WESP | wet electrostatic precipitator |
1 # | one power-generating unit |
2 # | two power-generating unit |
References
- Kroger, D.G. Air-Cooled Heat Exchangers and Cooling Towers: Thermal-Flow Performance Evaluation and Design; Penn Well Corporation: Tulsa, OK, USA, 2004. [Google Scholar]
- Yang, L.J.; Wu, X.P.; Du, X.Z.; Yang, Y.P. Dimensional characteristics of wind effects on the performance of indirect dry cooling system with vertically arranged heat exchanger bundles. Int. J. Heat Mass Transf. 2013, 67, 853–866. [Google Scholar] [CrossRef]
- Wang, W.J.; Chen, L.; Kong, Y.Q.; Yang, L.J.; Niu, Y.G.; Du, X.Z. Cooling performance evaluation for double-layer configuration of air-cooled heat exchanger. Int. J. Heat Mass Transf. 2020, 151, 119396. [Google Scholar] [CrossRef]
- Dai, Y.; Lu, Y.; Klimenko, A.Y.; Wang, Y.; Hooman, K. Numerical investigation of swirl effects on a short natural draft dry cooling tower under windless and crosswind conditions. Appl. Therm. Eng. 2021, 21, 116628. [Google Scholar] [CrossRef]
- Khamooshi, M.; Anderson, T.N.; Nates, R.J. A numerical study on interactions between three short natural draft dry cooling towers In an in-line arrangement. Int. J. Therm. Sci. 2021, 159, 106505. [Google Scholar] [CrossRef]
- Ge, W.; Zhao, Y.; Song, S.; Li, W.; Gao, S.; Chen, T. Thermal characteristics of dry cooling tower reconstructed from obsolete natural draft wet cooling tower and the relevant thermal system coupling optimization—ScienceDirect. Appl. Therm. Eng. 2020, 174, 115202. [Google Scholar] [CrossRef]
- Yang, G.; Ding, L.; Guo, T.; Li, X.; Tian, W.; Xu, Z.; Wang, Z.; Sun, F.; Min, J.; Xu, J.; et al. Study of flue gas emission and improvement measure in a natural draft dry-cooling tower with flue gas injection under unfavorable working conditions. Atmos. Pollut. Res. 2020, 11, 963–972. [Google Scholar] [CrossRef]
- Song, G.; Zhi, X.; Fan, F.; Wang, W.; Wang, P. Cooling performance of cylinder-frustum natural draft dry cooling tower. Appl. Therm. Eng. 2020, 180, 115797. [Google Scholar] [CrossRef]
- Soltani, M.; Dehghani-Sanij, A.; Sayadnia, A.; Kashkooli, F.M.; Gharali, K.; Mahbaz, S.; Dusseault, M.B. Investigation of Airflow Patterns in a New Design of Wind Tower with a Wetted Surface. Energies 2018, 11, 1100. [Google Scholar] [CrossRef] [Green Version]
- Kashkooli, F.M.; Soltani, M.; Zargar, B.; Ijaz, M.K.; Taatizadeh, E.; Sattar, S.A. Analysis of an indoor air decontamination device inside an aerobiology chamber: A numerical-experimental study. Air Qual. Atmos. Health 2020, 13, 281–288. [Google Scholar] [CrossRef]
- Mehryan, S.A.M.; Kashkooli, F.M.; Soltani, M. Comprehensive study of the impacts of surrounding structures on the aero-dynamic performance and flow characteristics of an outdoor unit of split-type air conditioner. Build Simul. 2018, 11, 325–337. [Google Scholar] [CrossRef]
- Ma, H.; Si, F.Q.; Li, L.; Yan, W.S.; Zhu, K.P. Effects of ambient temperature and crosswind on thermo-flow performance of the tower under energy balance of the indirect dry cooling system. Appl. Therm. Eng. 2015, 78, 90–100. [Google Scholar] [CrossRef]
- Ma, H.; Si, F.Q.; Kong, Y.; Zhu, K.P.; Yan, W.S. A new theoretical method for predicating the part-load performance of natural draft dry cooling towers. Appl. Therm. Eng. 2015, 78, 1106–1115. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.B.; Long, G.Q.; Sun, F.Z.; Li, Y.; Zhang, C.J. Numerical study on the cooling performance of dry cooling tower with vertical two-pass column radiators under crosswind. Appl. Therm. Eng. 2015, 75, 1106–1117. [Google Scholar] [CrossRef]
- Zhao, Y.B.; Sun, F.Z.; Li, Y.; Long, G.Q.; Yang, Z. Numerical study on the cooling performance of natural draft dry cooling tower with vertical delta radiators under constant heat load. Appl. Energy 2015, 149, 225–237. [Google Scholar] [CrossRef]
- Li, X.X.; Gurgenci, H.; Guan, Z.Q.; Sun, Y.B. Experimental study of cold inflow effect on a small natural draft dry cooling tower. Appl. Therm. Eng. 2018, 128, 762–771. [Google Scholar] [CrossRef] [Green Version]
- Li, X.X.; Gurgenci, H.; Guan, Z.Q.; Wang, X.R.; Xia, L. A review of the crosswind effect on the natural draft cooling towers. Appl. Therm. Eng. 2019, 150, 250–270. [Google Scholar] [CrossRef]
- Dong, P.X.; Li, X.X.; Sun, Y.B.; Hooman, K.; Guan, Z.Q.; Dai, Y.C.; Gurgenci, H. Numerical investigation of the influence of local effects on the transient start-up process of natural draft dry cooling towers in dispatchable power plants. Int. J. Heat Mass Transf. 2019, 133, 166–178. [Google Scholar] [CrossRef]
- Dong, P.X.; Li, X.X.; Hooman, K.; Sun, Y.B.; Li, J.S.; Guan, Z.Q.; Gurgenci, H. The crosswind effects on the start-up process of natural draft dry cooling towers in dispatchable power plants. Int. J. Heat Mass Transf. 2019, 135, 950–961. [Google Scholar] [CrossRef]
- Dai, Y.C.; Kaiser, A.S.; Lu, Y.S.; Klimenko, A.Y.; Dong, P.X.; Hooman, K. Addressing the adverse cold air inflow effects for a short natural draft dry cooling tower through swirl generation. Int. J. Heat Mass Transf. 2019, 145, 118738. [Google Scholar] [CrossRef]
- Zhao, Y.B.; Long, G.Q.; Sun, F.Z.; Li, Y.; Zhang, C.J.; Liu, J.B. Effect mechanism of air deflectors on the cooling performance of dry cooling tower with vertical delta radiators under crosswind. Energy Convers. Manag. 2015, 93, 321–331. [Google Scholar] [CrossRef]
- Chen, L.; Yang, L.J.; Du, X.Z.; Yang, Y.P. Performance improvement of natural draft dry cooling system by interior and exterior windbreaker configurations. Int. J. Heat Mass Transf. 2016, 96, 42–63. [Google Scholar] [CrossRef]
- Gu, H.F.; Wang, H.J.; Gu, Y.Q.; Yao, J.N. A numerical study on the mechanism and optimization of wind-break structures for indirect air-cooling towers. Energy Convers. Manag. 2016, 108, 43–49. [Google Scholar] [CrossRef]
- Wang, W.L.; Zhang, H.; Li, Z.; Lv, J.F.; Ni, W.D.; Li, Y.S. Adoption of enclosure and windbreaks to prevent the degradation of the cooling performance for a natural draft dry cooling tower under crosswind conditions. Energy 2016, 116, 1360–1369. [Google Scholar] [CrossRef]
- Wang, W.L.; Zhang, H.; Liu, P.; Li, Z.; Lv, J.F.; Ni, W.D. The cooling performance of a natural draft dry cooling tower under crosswind and an enclosure approach to cooling efficiency enhancement. Appl. Energy 2017, 186, 336–346. [Google Scholar] [CrossRef]
- Ma, H.; Si, F.Q.; Kong, Y.; Zhu, K.P.; Yan, W.S. Wind-break walls with optimized setting angles for natural draft dry cooling tower with vertical radiators. Appl. Therm. Eng. 2017, 112, 326–329. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Si, F.Q.; Zhu, K.P.; Wang, J.S. The adoption of windbreak wall partially rotating to improve thermo-flow performance of natural draft dry cooling tower under crosswind. Int. J. Therm. Sci. 2018, 134, 66–88. [Google Scholar] [CrossRef]
- Wu, T.; Ge, Z.H.; Yang, L.J.; Du, X.Z. Flow deflectors to release the negative defect of natural wind on large scale dry cooling tower. Int. J. Heat Mass Transf. 2019, 128, 248–269. [Google Scholar] [CrossRef]
- Goodarzi, M.; Amooie, H. Heat transfer enhancement in a natural draft dry cooling tower under crosswind operation with heterogeneous water distribution. Int. J. Nuclear Power 2016, 61, 252–259. [Google Scholar]
- Wang, X.B.; Yang, L.J.; Du, X.Z.; Yang, Y.P. Performance improvement of natural draft dry cooling system by water flow distribution under crosswinds. Int. J. Heat Mass Transf. 2017, 108, 1924–1940. [Google Scholar] [CrossRef]
- Li, X.X.; Xia, L.; Gurgenci, H.; Guan, Z.Q. Performance enhancement for the natural draft dry cooling tower under crosswind condition by optimizing the water distribution. Int. J. Heat Mass Transf. 2017, 107, 271–280. [Google Scholar] [CrossRef]
- Goodarzi, M.; Ramezanpour, R.R. Alternative geometry for cylindrical natural draft cooling tower with higher cooling efficiency under crosswind condition. Energy Convers. Manag. 2014, 77, 243–249. [Google Scholar] [CrossRef]
- Liao, H.T.; Yang, L.J.; Du, X.Z.; Yang, Y.P. Influences of height to diameter ratios of dry-cooling tower upon thermo-flow characteristics of indirect dry cooling system. Int. J. Therm. Sci. 2015, 94, 178–192. [Google Scholar] [CrossRef]
- Kong, Y.Q.; Wang, W.J.; Yang, L.J.; Du, X.Z.; Yang, Y.P. A novel natural draft dry cooling system with bilaterally arranged air-cooled heat exchanger. Int. J. Therm. Sci. 2017, 112, 313–334. [Google Scholar] [CrossRef]
- Goodarzi, M. Proposing a new technique to enhance thermal performance and reduce structural design wind loads for natural drought cooling tower. Energy 2013, 62, 164–172. [Google Scholar] [CrossRef]
- Goodarzi, M. A proposed stack configuration for dry cooling tower to improve cooling efficiency under crosswind. J. Wind Eng. Ind. Aerodyn. 2010, 98, 858–863. [Google Scholar] [CrossRef]
- Lu, Y.S.; Klimenko, A.; Russell, H.; Dai, Y.C.; Warner, J.; Hooman, K. A conceptual study on air jet-induced swirling plume for performance improvement of natural draft cooling towers. Appl. Energy. 2018, 217, 496–508. [Google Scholar] [CrossRef]
- Chen, L.; Wang, W.; Kong, Y.; Yang, L.; Du, X. Hot air extraction to improve aerodynamic and heat transfer performances of natural draft dry cooling system. Int. J. Heat Mass Transf. 2020, 163, 120476. [Google Scholar] [CrossRef]
- Xia, L.; Gurgenci, H.; Liu, D.Y.; Guan, Z.Q.; Zhou, L.; Wang, P. CFD analysis of pre-cooling water spray system in natural draft dry cooling towers. Appl. Therm. Eng. 2016, 105, 1051–1060. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Huang, X.W.; Yang, L.J.; Du, X.Z.; Yang, Y.P. Evaluation of natural draft dry cooling system incorporating water spray air precooling. Appl. Therm. Eng. 2019, 151, 294–307. [Google Scholar] [CrossRef]
- Huang, X.W.; Chen, L.; Yang, L.J.; Du, X.Z.; Yang, Y.P. Evaporation aided improvement for cooling performance of large scale natural draft dry cooling system. Appl. Therm. Eng. 2019, 163, 114350. [Google Scholar] [CrossRef]
- Sun, Y.B.; Guan, Z.Q.; Gurgenci, H.; Li, X.X.; Hooman, K. A study on multi-nozzle arrangement for spray cooling system in natural draft dry cooling tower. Appl. Therm. Eng. 2017, 124, 795–814. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.B.; Guan, Z.Q.; Gurgenci, H.; Li, X.X.; Hooman, K.; Li, X.X. Investigations on the influence of nozzle arrangement on the pre-cooling effect for the natural draft dry cooling tower. Appl. Therm. Eng. 2018, 130, 979–996. [Google Scholar] [CrossRef]
- Ge, W.J.; Fan, J.; Liu, C.X.; Li, W.D.; Chen, G.G.; Zhao, Y.B. Critical impact factors on the cooling performance design of natural draft dry cooling tower and relevant optimization strategies. Appl. Therm. Eng. 2019, 154, 614–627. [Google Scholar] [CrossRef]
- Wang, W.J.; Huang, X.W.; Yang, L.J.; Du, X.Z.; Yang, Y.P. Anti-freezing operation strategies of natural draft dry cooling system. Int. J. Heat Mass Transf. 2018, 118, 165–170. [Google Scholar] [CrossRef]
- Kong, Y.Q.; Yang, L.J.; Du, X.Z.; Yang, Y.P. Effects of continuous and alternant rectangular slots on thermo-flow performances of plain finned tube bundles in in-line and staggered configurations. Int. J. Heat Mass Transf. 2016, 93, 97–107. [Google Scholar] [CrossRef]
Parameter | Symbol | Value |
---|---|---|
Air-cooled heat exchanger and cooling tower | ||
Height of tower (m) | Ht | 225 |
Height of tower throat (m) | Htt | 168.75 |
Height of each ACHE layer (m) | HA/B | 14.65 |
Interval of ACHE layer (m) | Hi | 1.2 |
Diameter of tower outlet (m) | Do | 128 |
Diameter of tower throat (m) | Dtt | 121 |
Diameter of tower bottom (m) | Db | 195 |
Number of cooling deltas | Ncd | 392 |
Number of air-cooled sectors | Ns | 14 |
Four subsystems inside cooling tower | ||
Diameter of desulfurizer (m) | Dd | 18.6 |
Height of desulfurizer (m) | Hd | 38.05 |
Length of GCS (m) | LG | 20.9 |
Width of GCS (m) | WG | 14 |
Hight of GCS (m) | HG | 3.5 |
Length of WESP (m) | LW | 17.5 |
Width of WESP (m) | WW | 27.85 |
Height of WESP (m) | HW | 16.7 |
Diameter of flue gas chimney (m) | Dc | 8 |
Height of flue gas chimney (m) | Hc | 12.25 |
Equations | φ | Γφ | Sφ |
---|---|---|---|
Continuity | 1 | 0 | 0 |
x-momentum | ui | μe | |
y-momentum | uj | μe | |
z-momentum | uk | μe | |
Energy | cpt | μe/σT | 0 |
Turbulence kinetic energy | k | μ + μT/σk | |
Turbulence dissipation rate | ε | μ + μT/σε |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Chen, L.; Jiang, K.; Zhou, X.; Zhang, Z.; Zhou, H.; Wang, W.; Yang, L.; Niu, Y. Investigation of Thermo-Flow Characteristics of Natural Draft Dry Cooling Systems Designed with Only One Tower in 2 × 660 MW Power Plants. Energies 2021, 14, 1308. https://doi.org/10.3390/en14051308
Liu M, Chen L, Jiang K, Zhou X, Zhang Z, Zhou H, Wang W, Yang L, Niu Y. Investigation of Thermo-Flow Characteristics of Natural Draft Dry Cooling Systems Designed with Only One Tower in 2 × 660 MW Power Plants. Energies. 2021; 14(5):1308. https://doi.org/10.3390/en14051308
Chicago/Turabian StyleLiu, Mohan, Lei Chen, Kaijun Jiang, Xiaohui Zhou, Zongyang Zhang, Hanyu Zhou, Weijia Wang, Lijun Yang, and Yuguang Niu. 2021. "Investigation of Thermo-Flow Characteristics of Natural Draft Dry Cooling Systems Designed with Only One Tower in 2 × 660 MW Power Plants" Energies 14, no. 5: 1308. https://doi.org/10.3390/en14051308
APA StyleLiu, M., Chen, L., Jiang, K., Zhou, X., Zhang, Z., Zhou, H., Wang, W., Yang, L., & Niu, Y. (2021). Investigation of Thermo-Flow Characteristics of Natural Draft Dry Cooling Systems Designed with Only One Tower in 2 × 660 MW Power Plants. Energies, 14(5), 1308. https://doi.org/10.3390/en14051308