A CFD-Based Optimization of Building Configuration for Urban Ventilation Potential
Abstract
:1. Introduction
2. Building Configuration Definition and Parameterization
3. Outline of Case Study
4. Computational Method
4.1. Building Configuration Parameterization
4.2. Constraint Functions
4.2.1. Vertices of the Building Geometry
4.2.2. Building Volume Density
4.3. Objective Function
5. Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kusaka, H.; Kimura, F. Thermal Effects of Urban Canyon Structure on the Nocturnal Heat Island: Numerical Experiment Using a Mesoscale Model Coupled with an Urban Canopy Model. J. Appl. Meteorol. 2004, 43, 1899–1910. [Google Scholar] [CrossRef]
- Giridharan, R.; Lau, S.S.Y.; Ganesan, S.; Givoni, B. Urban design factors influencing heat island intensity in high-rise high-density environments of Hong Kong. Build. Environ. 2007, 42, 3669–3684. [Google Scholar] [CrossRef]
- Chen, H.; Ooka, R.; Huang, H.; Tsuchiya, T. Study on mitigation measures for outdoor thermal environment on present urban blocks in Tokyo using coupled simulation. Build. Environ. 2009, 44, 2290–2299. [Google Scholar] [CrossRef]
- Oliveira, S.; Andrade, H.; Vaz, T. The cooling effect of green spaces as a contribution to the mitigation of urban heat: A case study in Lisbon. Build. Environ. 2011, 46, 2186–2194. [Google Scholar] [CrossRef]
- Xu, T.; Sathaye, J.; Akbari, H.; Garg, V.; Tetali, S. Quantifying the direct benefits of cool roofs in an urban setting: Reduced cooling energy use and lowered greenhouse gas emissions. Build. Environ. 2012, 48, 1–6. [Google Scholar] [CrossRef]
- Chen, H.; Ooka, R.; Harayama, K.; Kato, S.; Li, X. Study on outdoor thermal environment of apartment block in Shenzhen, China with coupled simulation of convection, radiation and conduction. Energy Build. 2004, 36, 1247–1258. [Google Scholar] [CrossRef]
- Guo, Y.; Han, J.; Zhao, X.; Dai, X.; Zhang, H. Understanding the Role of Optimized Land Use/Land Cover Components in Mitigating Summertime Intra-Surface Urban Heat Island Effect: A Study on Downtown Shanghai, China. Energies 2020, 13, 1678. [Google Scholar] [CrossRef] [Green Version]
- Liang, Z.; Wang, Y.; Huang, J.; Wei, F.; Wu, S.; Shen, J.; Sun, F.; Li, S. Seasonal and Diurnal Variations in the Relationships between Urban Form and the Urban Heat Island Effect. Energies 2020, 13, 5909. [Google Scholar] [CrossRef]
- Arnfield, A.J. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol. 2003, 23, 1–26. [Google Scholar] [CrossRef]
- Oke, T.R. Street design and urban canopy layer climate. Energy Build. 1988, 11, 103–113. [Google Scholar] [CrossRef]
- Malkawi, A.M.; Srinivasan, R.S.; Yi, Y.K.; Choudhary, R. Decision support and design evolution: Integrating genetic algorithms, CFD and visualization. Autom. Constr. 2005, 14, 33–44. [Google Scholar] [CrossRef]
- Wang, W.; Zmeureanu, R.; Rivard, H. Applying multi-objective genetic algorithms in green building design optimization. Build. Environ. 2005, 40, 1512–1525. [Google Scholar] [CrossRef]
- Wang, W.; Rivard, H.; Zmeureanu, R. Floor shape optimization for green building design. Adv. Eng. Inform. 2006, 20, 363–378. [Google Scholar] [CrossRef]
- Tuhus-Dubrow, D.; Krarti, M. Genetic-algorithm based approach to optimize building envelope design for residential buildings. Build. Environ. 2010, 45, 1574–1581. [Google Scholar] [CrossRef]
- Cheng, C.L.; He, K.C.; Yen, C.J. Decision-making and assessment tool for design and construction of high-rise building drainage systems. Autom. Constr. 2008, 17, 897–906. [Google Scholar] [CrossRef]
- Granadeiro, V.; Pina, L.; Duarte, J.P.; Correia, J.R.; Leal, V.M.S. A general indirect representation for optimization of generative design systems by genetic algorithms: Application to a shape grammar-based design system. Autom. Constr. 2013, 35, 374–382. [Google Scholar] [CrossRef]
- Ihm, P.; Krarti, M. Design optimization of energy efficient residential buildings in Tunisia. Build. Environ. 2012, 58, 81–90. [Google Scholar] [CrossRef]
- Griego, D.; Krarti, M.; Hernández-Guerrero, A. Optimization of energy efficiency and thermal comfort measures for residential buildings in Salamanca, Mexico. Energy Build. 2012, 54, 540–549. [Google Scholar] [CrossRef]
- Granadeiro, V.; Duarte, J.P.; Correia, J.R.; Leal, V.M.S. Building envelope shape design in early stages of the design process: Integrating architectural design systems and energy simulation. Autom. Constr. 2013, 32, 196–209. [Google Scholar] [CrossRef]
- Touloupaki, E.; Theodosiou, T. Performance Simulation Integrated in Parametric 3D Modeling as a Method for Early Stage Design Optimization—A Review. Energies 2017, 10, 637. [Google Scholar] [CrossRef] [Green Version]
- Baglivo, C.; Congedo, P.; Di Cataldo, M.; Coluccia, L.; D’Agostino, D. Envelope Design Optimization by Thermal Modelling of a Building in a Warm Climate. Energies 2017, 10, 1808. [Google Scholar] [CrossRef] [Green Version]
- Ferdyn-Grygierek, J.; Grygierek, K. Multi-Variable Optimization of Building Thermal Design Using Genetic Algorithms. Energies 2017, 10, 1570. [Google Scholar] [CrossRef] [Green Version]
- Flager, F.; Haymaker, J. A comparison of multidisciplinary design, analysis and optimization processes in the building construction and aero-space industries. In Proceedings of the International Conference on Information Technology in Construction, Maribor, Slovenia, 26–29 June 2007; pp. 625–630. [Google Scholar]
- Bowcutt, K.; Kuruvila, G.; Follett, W. Progress toward integrated vehicle design of hypersonic. In Proceedings of the International Conferences of the Aeronautical Sciences, Yokohama, Japan, 29 August–3 September 2004. [Google Scholar]
- Tahara, Y.; Tohyama, S.; Katsui, T. CFD-based multi-objective optimization method for ship design. Int. J. Numer. Methods Fluids 2006, 52, 499–527. [Google Scholar] [CrossRef]
- Zubair, M.; Bilal Awan, A.; Al-Ahmadi, A.; Abo-Khalil, A. NPC Based Design Optimization for a Net Zero Office Building in Hot Climates with PV Panels as Shading Device. Energies 2018, 11, 1391. [Google Scholar] [CrossRef] [Green Version]
- Yi, Y.K.; Malkawi, A.M. Optimizing building form for energy performance based on hierarchical geometry relation. Autom. Constr. 2009, 18, 825–833. [Google Scholar] [CrossRef]
- Jin, J.; Cho, H.; Jeong, J. Optimization of freeform building shape using genetic algorithm. In Proceedings of the Asia conference of International Building Performance Simulation Association, Shanghai, China, 27–30 October 2012. [Google Scholar]
- Kim, J.; Yi, Y.; Malkawi, A.M. Building form optimization in early design stage to reduce adverse wind condition-using computational fluid dynamics. In Proceedings of the Conference of International Building Performance Simulation Association, Sydney, Australia, 14–16 November 2011. [Google Scholar]
- Yi, Y.K.; Malkawi, A.M. Site-specific optimal energy form generation based on hierarchical geometry relation. Autom. Constr. 2012, 26, 77–91. [Google Scholar] [CrossRef]
- Gál, T.; Unger, J. Detection of ventilation paths using high-resolution roughness parameter mapping in a large urban area. Build. Environ. 2009, 44, 198–206. [Google Scholar] [CrossRef]
- Bu, Z.; Kato, S.; Ishida, Y.; Huang, H. New criteria for assessing local wind environment at pedestrian level based on exceedance probability analysis. Build. Environ. 2009, 44, 1501–1508. [Google Scholar] [CrossRef]
- Hang, J.; Sandberg, M.; Li, Y. Age of air and air exchange efficiency in idealized city models. Build. Environ. 2009, 44, 1714–1723. [Google Scholar] [CrossRef]
- Huang, Y.; Hu, X.; Zeng, N. Impact of wedge-shaped roofs on airflow and pollutant dispersion inside urban street canyons. Build. Environ. 2009, 44, 2335–2347. [Google Scholar] [CrossRef]
- Letzel, M.O.; Krane, M.; Raasch, S. High resolution urban large-eddy simulation studies from street canyon to neighbourhood scale. Atmos. Environ. 2008, 42, 8770–8784. [Google Scholar] [CrossRef]
- Hefny, M.M.; Ooka, R. CFD analysis of pollutant dispersion around buildings: Effect of cell geometry. Build. Environ. 2009, 44, 1699–1706. [Google Scholar] [CrossRef]
- Tominaga, Y.; Mochida, A.; Yoshie, R.; Kataoka, H.; Nozu, T.; Yoshikawa, M.; Shirasawa, T. AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. J. Wind Eng. Ind. Aerodyn. 2008, 96, 1749–1761. [Google Scholar] [CrossRef]
- Luo, Z.; Li, Y. Passive urban ventilation by combined buoyancy-driven slope flow and wall flow: Parametric CFD studies on idealized city models. Atmos. Environ. 2011, 45, 5946–5956. [Google Scholar] [CrossRef]
- Gao, N.P.; Niu, J.L. CFD Study of the Thermal Environment around a Human Body: A Review. Indoor Built Environ. 2005, 14, 5–16. [Google Scholar] [CrossRef]
Properties | Value |
---|---|
Total area | 250,000 m2 |
Number of buildings | 559 |
Averaged building height | 19.2 m |
Averaged building plan area fraction | 32.26% |
Averaged floor area ratio | 342.66% |
Study site area | 16,712 m2 |
Building 1 | Building 2 | Building 3 | |
---|---|---|---|
Height | 80 m | 24 m | 12 m |
Floors | 20 | 6 | 3 |
Floor height | 4 m | 4 m | 4 m |
Plan area | 1600 m2 | 3500 m2 | 2700 m2 |
Total floor area | 32,000 m2 | 21,000 m2 | 8100 m2 |
Wind Direction | Mean Velocity (m/s) | Time (Hours) | |
---|---|---|---|
N | N, NNE, NNW | 2.00 | 3604 |
E | E, NE, SE, ENE, ESE | 2.24 | 1991 |
W | W, NW, SW, WNW, WSW | 2.60 | 1728 |
S | S, SSE, SSW | 2.25 | 1437 |
Turbulence Model | Standard k–ε Model |
---|---|
Difference scheme | Velocity and advective term: secondary upwind Diffusion term: central difference |
Inlet | |
Outlet | Pressure outlet |
Side, top | Free slip |
Ground, wall | No-slip with zero roughness |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, J.; Ooka, R. A CFD-Based Optimization of Building Configuration for Urban Ventilation Potential. Energies 2021, 14, 1447. https://doi.org/10.3390/en14051447
Lim J, Ooka R. A CFD-Based Optimization of Building Configuration for Urban Ventilation Potential. Energies. 2021; 14(5):1447. https://doi.org/10.3390/en14051447
Chicago/Turabian StyleLim, Jongyeon, and Ryozo Ooka. 2021. "A CFD-Based Optimization of Building Configuration for Urban Ventilation Potential" Energies 14, no. 5: 1447. https://doi.org/10.3390/en14051447
APA StyleLim, J., & Ooka, R. (2021). A CFD-Based Optimization of Building Configuration for Urban Ventilation Potential. Energies, 14(5), 1447. https://doi.org/10.3390/en14051447