Impact of Increased Travel Speed of a Transportation Set on the Dynamic Parameters of a Mine Suspended Monorail
Abstract
:1. Introduction
2. Test Stand and Computational Model
- 383 rigid bodies:
- ○
- Operator’s cabin (7 rigid bodies);
- ○
- 2x rack-and-pinion drive (2x 6 rigid bodies);
- ○
- diesel power pack (11 rigid bodies);
- ○
- cabin for crew transportation (33 rigid bodies);
- ○
- braking trolley (24 rigid bodies);
- ○
- tension rod (5 rigid bodies);
- ○
- route rail (23 rigid bodies);
- ○
- components of the route suspensions (268 rigid bodies).
- 13 cylindrical, 111 revolute, 298 spherical, and 15 fixed joints;
- 7 vectors of forces and torques (there are 2 driving torques; 4 braking forces, 1 braking torque);
- 18 spring—damping elements (located in the suspension system of operator’s cabin, cabin for crew transportation, and in the braking trolley);
- 1172 3D items of the contact model.
- F—contact force;
- K—stiffness of the virtual spring;
- x1—length of the virtual spring at the moment of the bodies contact;
- x—instantaneous length of the virtual spring;
- e—virtual spring linearity coefficient; e = 1 means a linear relationship;
- c—damping coefficient of the virtual damper;
- ẋ—relative speed of interacting bodies.
- 3D contact between rollers and gears with the rails:
- ○
- Virtual spring rigidity coefficient k = 7 × 109 N/m;
- ○
- damping coefficient cmax = 7 × 104 N·s/m;
- ○
- maximum penetration depth hmax = 1 × 10−4 m;
- ○
- virtual spring linear coefficient e = 2.2.
- 3D contact between braking pads with the rails:
- ○
- Virtual spring rigidity coefficient k = 9.5 × 108 N/m;
- ○
- damping coefficient cmax = 1 × 105 N·s/m;
- ○
- maximum penetration depth hmax = 1 × 10−4 m;
- ○
- virtual spring linear coefficient e = 2.2.
3. Validation of the Computational Model
4. Analysis of the Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Becker, F.; Zell, M. The state of the art in positively guided rail transport systems for underground mining. Min. Rep. 2014, 150, 34–46. [Google Scholar] [CrossRef]
- Song, Z.A.; Jiang, F. Hydraulic system elaboration and simulation for single-drive light-load monorail locomotive in fully mechanized coal mining applications. IOP Conf. Ser. Mater. Sci. Eng. 2019, 474. [Google Scholar] [CrossRef]
- Szewerda, K. Supporting development of suspended underground monorails using virtual prototyping techniques. Mater. Sci. Eng. 2019, 545, 012018. [Google Scholar] [CrossRef]
- Małkowski, P.; Ostrowski, Ł.; Bednarek, Ł. The Effect of Selected Factors on Floor Upheaval in Roadways—In Situ Testing. Energies 2020, 13, 5686. [Google Scholar] [CrossRef]
- Wu, G.; Chen, W.; Jia, S.; Tan, X.; Zheng, P. Deformation characteristics of a roadway in steeply inclined formations and its improved support. Int. J. Rock Mech. Min. Sci. 2020, 130, 104324. [Google Scholar] [CrossRef]
- Li, G.; Ma, F.; Guo, J.; Zhao, H. Case Study of Roadway Deformation Failure Mechanisms: Field Investigation and Numerical Simulation. Energies 2021, 14, 1032. [Google Scholar] [CrossRef]
- INESI European Project: Increase Efficiency and Safety Improvement in Underground Mining Transportation Routes. RFCS. 2017–2020, Contract No. 754169. Deliverable: D5.1: Report from laboratory tests and fields trials of transportation systems adapted to increased speed. Available online: https://www.gig.eu/en/international-projects/inesi (accessed on 8 March 2021).
- Pytlik, A.; Rotkegel, M.; Szot, Ł. Badanie wpływu prędkości kolejek podwieszonych na siły w wybranych elementach trasy. Przegląd Górniczy 2016, 11, 30–37. [Google Scholar]
- Zasadni, W.; Kania, J.; Tokarczyk, J.; Rusinek, J.; Szymiczek, K. Możliwości zwiększenia prędkości jazdy kolejkami podwieszonymi z napędem własnym. In Proceedings of the Problemy Bezpieczeństwa i Ochrony Zdrowia w Polskim Górnictwie, Zawiercie, Poland, 14–15 April 2015; pp. 1–10. [Google Scholar]
- Dumitriua, M.; Gheția, M.A.; Cruceanub, I.C. Experimental Analysis of the Vertical Vibration of the Railway Bogie During Braking. Procedia Manuf. 2020, 46, 49–54. [Google Scholar] [CrossRef]
- Gutarevych, V. Dynamic model of movement of mine suspended monorail. Transp. Probl. 2014, 9, 13–18. [Google Scholar]
- Tokarczyk, J. Methodology for Identifying the Selected Mechanical Hazards in Auxiliary Transport of Underground Mines, Monograph vol. 52; Institute of Mining Technology KOMAG: Gliwice, Poland, 2018; ISBN 978-83-65593-08-5. [Google Scholar]
- Drozd, K.; Nieoczym, A. Dynamic Load of Suspension Chains Generated during the Movement of the Self-Powered Diesel Transportation System on a Suspended Monorail Track in the Mining Excavation; Monograph, Lublin University of Technology: Lublin, Poland, 2020; ISBN 978-83-7947-426-4. [Google Scholar]
- Pytlik, A. Tests of steel arch and rock bolt support resistance to static and dynamic loading induced by suspended monorail transportation. Studia Geotech. Mech. 2019, 41, 81–92. [Google Scholar] [CrossRef] [Green Version]
- Horyl, P.; Šňupárek, R.; Maršálek, P.; Poruba, Z.; Pacześniowski, K. Parametric Studies of Total Load-Bearing Capacity of Steel Arch Supports. Acta Montan. Slovaca 2019, 24, 213–222. [Google Scholar]
- Wojtyra, M.; Frączek, J. Metoda Układów Wieloczłonowych w Dynamice Mechanizmów; Oficyna Wydawnicza Politechniki Warszawskiej: Warsaw, Poland, 2007. [Google Scholar]
- Verstraete, M.L.; Roccia, B.A.; Mook, D.T.; Preidikman, S. A co-simulation methodology to simulate the nonlinear aeroelastic behavior of a folding-wing concept in different flight configurations. Nonlinear Dyn. 2019, 98, 907–927. [Google Scholar] [CrossRef]
- Spiryagin, M.; Persson, I.; Wu, Q.; Bosomworth, C.; Wolfs, P.; Cole, C. A co-simulation approach for heavy haul long distance locomotive-track simulation studies. Veh. Syst. Dyn. 2019, 57, 1363–1380. [Google Scholar] [CrossRef]
- Jiang, Y.Z.; Zhong, W.S.; Wu, P.B.; Zeng, J.; Zhang, Y.C.; Wang, S. Prediction of wheel wear of different types of articulated monorail based on co-simulation of MATLAB and UM software. Adv. Mech. Eng. 2019, 11, 1–13. [Google Scholar] [CrossRef]
- Rahikainen, J.; Kiani, M.; Sopanen, J.; Jalali, P.; Mikkola, A. Computationally efficient approach for simulation of multibody and hydraulic dynamics. Mech Mach Theory 2018, 130, 435–446. [Google Scholar] [CrossRef]
- Yuan, R.; Fletcher, T.; Ahmedov, A.; Kalantzis, N.; Pezouvanis, N.; Dutta, N.; Watson, A.; Ebrahimi, K. Modelling and Co-simulation of hybrid vehicles. A thermal management perspective. Appl. Therm. Eng. 2020, 180, 115883. [Google Scholar] [CrossRef]
- Gat, G.; Franco, Y.; Shmulevich, I. Fast dynamic modeling for off-road track vehicles. J. Terramechanics 2020, 92, 1–12. [Google Scholar] [CrossRef]
- Desai, R.; Guha, A.; Seshu, P. Multibody Biomechanical Modelling of Human Body Response to Direct and Cross Axis Vibration. Procedia Comput. Sci. 2018, 133, 494–501. [Google Scholar] [CrossRef]
- Lynas, D.; Burgess-Limerick, R. Whole-body vibration associated with underground coal mining equipment in Australia. Appl. Ergon. 2020, 89, 103162. [Google Scholar] [CrossRef] [PubMed]
- Issevera, H.; Aksoy, C.; Sabuncu, H.; Karan, A. Vibration and Its Effects on the Body. Med. Princ. Pr. 2003, 12, 34–38. [Google Scholar] [CrossRef]
- AlShabi, M.; Araydah, W.; ElShatarat, H.; Othman, M.; Younis, M.B.; Gadsden, S.A. Effect of Mechanical Vibrations on Human Body. World J. Mech. 2016, 6, 273–304. [Google Scholar] [CrossRef] [Green Version]
- Kowalski, P.; Zając, J. Research on Simultaneous Impact of Hand–Arm and Whole-Body Vibration. Int. J. Occup. Saf. Erg. 2012, 18:1, 59–66. [Google Scholar] [CrossRef]
- Szewerda, K.; Tokarczyk, J.; Bożek, P.; Michalak, D.; Drwięga, A. Vibrations diagnostics and analysis in operator’s and passenger cabins of a suspended monorail. Acta Montan. Slovaca 2020, 2, 150–158. [Google Scholar]
- Herbuś, K.; Szewerda, K.; Świder, J. Virtual prototyping of the suspended monorail in the aspect of increasing the permissible travel speed in hard coal mines. Eksploat. Niezawodn. 2020, 4, 610–619. [Google Scholar] [CrossRef]
Calculated in Simulation [kN] | Measured on the Test Stand [kN] | Difference Calculated in Relation to the Measured Value [%] | |
---|---|---|---|
Travel speed 3 m/s | |||
Max. force in suspension C5 (vertical) | 17.97 | 17.3 | 3.84 |
Max. force in suspension C6 (vertical) | 17.93 | 17.78 | 0.87 |
Max. force in suspension C2 (diagonal) | 27.2 | 22.25 | 22.3 |
Max. force in suspension C4 (diagonal) | 27.49 | 25.27 | 8.79 |
Travel speed 5 m/s | |||
Max. force in suspension C5 (vertical) | 18.66 | 17.42 | 7.13 |
Max. force in suspension C6 (vertical) | 18.71 | 18.14 | 3.18 |
Max. force in suspension C8 (diagonal) | 25.71 | 20.75 | 23.9 |
Max. force in suspension C9 (diagonal) | 28.27 | 27.29 | 3.57 |
Speed [m/s]/Simulation Variant | Max. Force in L12 [N] | Max. Force in L13 [N] | Max. Force in L14 [N] | Max. Force in L15 [N] | Max. Force in L16 [N] | Max. Force in L17 [N] | Max. Force in L18 [N] | |
---|---|---|---|---|---|---|---|---|
1 | 50% Fh -------- 100% Fh | 3275 --------- 3162 | 1181 --------- 957 | 1190 --------- 9,53 | 1614 --------- 1768 | 1607 --------- 1607 | 1282 --------- 1282 | 1284 --------- 1284 |
2 | 50% Fh -------- 100% Fh | 8771 --------- 7547 | 1181 --------- 972 | 1190 --------- 958 | 2969 --------- 2006 | 4210 --------- 1607 | 1282 --------- 967 | 1284 --------- 955 |
3 | 50% Fh -------- 100% Fh | 25,058 --------- 43,828 | 13,981 --------- 4035 | 13,988 --------- 4011 | 7845 --------- 3752 | 5892 --------- 3296 | 1282 --------- 1359 | 1284 --------- 1352 |
4 | 50% Fh -------- 100% Fh | 25,058 --------- 48,407 | 13,981 --------- 13,887 | 13,988 --------- 13,950 | 7845 --------- 4593 | 5992 --------- 5191 | 1282 --------- 1252 | 1284 --------- 1228 |
5 | 50% Fh -------- 100% Fh | 31,728 --------- 50,923 | 18,272 --------- 29,997 | 18,176 --------- 29,970 | 24,138 --------- 27,381 | 21,749 --------- 27,508 | 2737 --------- 3403 | 2723 --------- 3384 |
6 | 50% Fh -------- 100% Fh | 29,874 --------- 32,701 | 18,337 --------- 16,775 | 18,353 --------- 16,832 | 37,681 --------- 55,218 | 21,827 --------- 32,193 | 15,460 --------- 17,286 | 15,471 --------- 17,272 |
Speed [m/s]/Simulation Variant | Max. Force in L12 [N] | Max. Force in L13 [N] | Max. Force in L14 [N] | Max. Force in L15 [N] | Max. Force in L16 [N] | Max. Force in L17 [N] | Max. Force in L18 [N] | |
---|---|---|---|---|---|---|---|---|
1 | 50% Fh * -------- 100% Fh | 3275 --------- 3162 | 1181 --------- 957 | 1190 --------- 953 | 1614 --------- 1768 | 1607 --------- 1607 | 1282 --------- 1282 | 1284 --------- 1284 |
2 | 50% Fh -------- 100% Fh | 8771 --------- 7547 | 1181 --------- 972 | 1190 --------- 958 | 2969 --------- 2006 | 4210 --------- 1607 | 1282 --------- 967 | 1284 --------- 955 |
3 | 50% Fh -------- 100% Fh | 25,058 --------- 43,828 | 13,981 --------- 4035 | 13,988 --------- 4011 | 7845 --------- 3752 | 5892 --------- 3296 | 1282 --------- 1359 | 1284 --------- 1352 |
4 | 50% Fh -------- 100% Fh | 25,058 --------- 48,407 | 13,981 --------- 13,887 | 13,988 --------- 13,950 | 7845 --------- 4593 | 5992 --------- 5191 | 1282 --------- 1252 | 1284 --------- 1228 |
5 | 50% Fh -------- 100% Fh | 31,728 --------- 50,923 | 18,272 --------- 29,997 | 18,176 --------- 29,970 | 24,138 --------- 27,381 | 21,749 --------- 27,508 | 2737 --------- 3403 | 2723 --------- 3384 |
6 | 50% Fh -------- 100% Fh | 29,874 --------- 32,701 | 18,337 --------- 16,775 | 18,353 --------- 16,832 | 37,681 --------- 55,218 | 21,827 --------- 32,193 | 15,460 --------- 17,286 | 15,471 --------- 17,272 |
Increase of the Max. Force in the Suspension When Braking 100% Fh[N] | Percentage Increase of the Max. Force in the Suspension When Braking 100% Fh[%] | Increase of the Max. Force in the Suspension When Braking 50% Fh[N] | Percentage Increase of the Max. Force in the Suspension When Braking 50% Fh[%] | |
---|---|---|---|---|
Base value—maximum force in the suspension during emergency braking from speed 1 m/s | +33,407 | - | +31,026 | - |
Increase of max force at speed 2 m/s in relation to 1 m/s | +1373 | +4.1 | +2380 | +7.7 |
Increase of max force at speed 3 m/s in relation to 1 m/s | +10,422 | +31.2 | +4959 | +16 |
Increase of max force at speed 4 m/s in relation to 1 m/s | +15,509 | +46.4 | +6492 | +20.9 |
Increase of max force at speed 5 m/s in relation to 1 m/s | +17,517 | +52.4 | +3442 | +11.1 |
Increase of max force at speed 2 m/s in relation to 1 m/s | +21,811 | +65.2 | +6654 | +21.5 |
Increase of the Max. Force in the Suspension When Braking 100% Fh * [N] | Percentage Increase of the Max. Force in the Suspension When Braking 100% Fh[%] | Increase of the Max. Force in the Suspension When Braking 50% Fh[N] | Percentage Increase of the Max. Force in the Suspension When Braking 50% Fh[%] | |
---|---|---|---|---|
Base value—maximum force in the suspension during emergency braking from speed 2 m/s | +34,780 | - | +33,407 | - |
Increase of max force at speed 1 m/s in relation to 2 m/s | −1373 | -3.9 | −2380 | −7.1 |
Increase of max force at speed 3 m/s in relation to 2 m/s | +9048 | +26 | +2579 | +7.7 |
Increase of max force at speed 4 m/s in relation to 2 m/s | +14,136 | +40.6 | +4111 | +12.3 |
Increase of max force at speed 5 m/s in relation to 2 m/s | +16,143 | +46.4 | +1061 | +3.2 |
Increase of max force at speed 6 m/s in relation to 2 m/s | +20,438 | +58.8 | +4274 | +12.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szewerda, K.; Tokarczyk, J.; Wieczorek, A. Impact of Increased Travel Speed of a Transportation Set on the Dynamic Parameters of a Mine Suspended Monorail. Energies 2021, 14, 1528. https://doi.org/10.3390/en14061528
Szewerda K, Tokarczyk J, Wieczorek A. Impact of Increased Travel Speed of a Transportation Set on the Dynamic Parameters of a Mine Suspended Monorail. Energies. 2021; 14(6):1528. https://doi.org/10.3390/en14061528
Chicago/Turabian StyleSzewerda, Kamil, Jarosław Tokarczyk, and Andrzej Wieczorek. 2021. "Impact of Increased Travel Speed of a Transportation Set on the Dynamic Parameters of a Mine Suspended Monorail" Energies 14, no. 6: 1528. https://doi.org/10.3390/en14061528
APA StyleSzewerda, K., Tokarczyk, J., & Wieczorek, A. (2021). Impact of Increased Travel Speed of a Transportation Set on the Dynamic Parameters of a Mine Suspended Monorail. Energies, 14(6), 1528. https://doi.org/10.3390/en14061528