Thermal Monitoring of the Lithosphere by the Interaction of Deep Low-Frequency and Ordinary High-Frequency Earthquakes in Northeastern Japan
Abstract
:1. Introduction
2. Study Areas and Magmatic LFEs Swarms
3. Depth Profiling
4. Chronological Depth Variations
5. Discussion
5.1. Perspective on the Deep Geothermal Energy Developments
5.2. Spatial Characteristics of Clusters of the Magmatic LFEs
5.3. The Magmatic LFEs as Rising Basaltic Magma Conduits
5.4. The Brittle–Plastic Transition Depicted by the LFE and HFE Boundary
5.5. Possibility of Thermal Monitoring of the Lithosphere by the LFE and HFE Boundary
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Obara, K. Nonvolcanic deep tremor associated with subduction in southwest Japan. Science 2002, 296, 165–168. [Google Scholar] [CrossRef] [Green Version]
- Aso, N.; Ide, S. Focal mechanisms of deep low-frequency earthquakes in Eastern Shimane in Western Japan. J. Geophys. Res. Solid Earth 2014, 119, 364–377. [Google Scholar] [CrossRef]
- Kosuga, M.; Noro, K.; Masukawa, K. Characteristics of spatiotemporal variations of hypocenters and diversity of waveforms of deep low-frequency earthquakes in northeastern Japan. Bull. Earthq. Res. Inst. Univ. Tokyo 2017, 92, 63–80. [Google Scholar]
- Aso, N.; Tsai, V.C. Cooling magma model for deep volcanic long-period earthquakes. J. Geophys. Res. Solid Earth 2014, 119, 8442–8456. [Google Scholar] [CrossRef] [Green Version]
- Aki, K.; Koyanagi, R. Deep volcanic tremor and magma ascent mechanism. J. Geophys. Res. 1981, 86, 7095–7109. [Google Scholar] [CrossRef]
- Matsubara, M.; Sato, H.; Ishiyama, T.; Van Horne, A. Configuration of the Moho discontinuity beneath the Japanese Islands derived from three-dimensional seismic tomography. Tectonophysics 2017, 710–711, 97–107. [Google Scholar] [CrossRef]
- Muraoka, H.; Uchida, T.; Sasada, M.; Yagi, M.; Akaku, K.; Sasaki, M.; Yasukawa, K.; Miyazaki, S.; Doi, N.; Saito, S.; et al. Deep geothermal resources survey program: Igneous, metamorphic and hydrothermal processes in a well encountering 500 °C at 3729 m depth, Kakkonda, Japan. Geothermics 1998, 27, 507–534. [Google Scholar] [CrossRef]
- Chopra, P.N.; Paterson, M.S. The role of water in the deformation of dunite. J. Geophys. Res. 1984, 89, 7861–7876. [Google Scholar] [CrossRef]
- Hirth, G.; Kohlstedt, D.L. Water in the oceanic upper mantle: Implication of rheology, melt extraction and the evolution of lithosphere. Earth Planet. Sci. Lett. 1996, 144, 93–108. [Google Scholar] [CrossRef]
- Wilks, K.R.; Carter, N.L. Rheology of some continental lower crustal rocks. Tectonophysics 1990, 182, 57–77. [Google Scholar] [CrossRef]
- Burov, E.B. Rheology and strength of the lithosphere. Mar. Pet. Geol. 2011, 28, 1402–1443. [Google Scholar] [CrossRef]
- Brace, W.F.; Kohlstedt, D.L. Limits on lithospheric stress imposed by laboratory experiments. J. Geophys. Res. 1980, 85, 6248–6252. [Google Scholar] [CrossRef]
- Muraoka, H.; Kamata, H. Displacement distribution along minor fault traces. J. Struct. Geol. 1983, 5, 483–495. [Google Scholar] [CrossRef]
- Julian, B.R. Volcanic tremor: Nonlinear excitation by fluid flow. J. Geophys. Res. 1994, 99, 11859–11877. [Google Scholar] [CrossRef]
- Nakajima, J.; Matsuzawa, T.; Hasagawa, A.; Zhao, D. Three-dimensional structure of Vp, Vs, and Vp/Vs beneath northeastern Japan: Implications for arc magmatism and fluids. J. Geophys. Res. 2001, 106, 21843–21857. [Google Scholar] [CrossRef]
- Schmidt, M.W.; Poli, S. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet. Sci. Lett. 1998, 163, 361–379. [Google Scholar] [CrossRef]
- Ramberg, H. Gravity Deformation and Earth’s Crust as Studied by Centrifuged Models; Academic Press: New York, NY, USA, 1967; 224p. [Google Scholar]
- Whitehead, J.A.; Helfrich, K.R. Magma waves and diapiric dynamics. In Magma Transport and Storage; Ryan, M.P., Ed.; John Wiley & Sons: Chichester, UK, 1990; Volume 420, pp. 53–76. [Google Scholar]
- Scholz, C.H. The brittle-plastic transition and the depth of seismic faulting. Geol. Rundsch. 1988, 77, 319–328. [Google Scholar] [CrossRef]
- Fournier, R.O. The transition from hydrostatic to greater than hydrostatic fluid pressure in presently active continental hydrothermal systems in crystalline rock. Geophys. Res. Lett. 1991, 18, 955–958. [Google Scholar]
- Doi, N.; Kato, O.; Ikeuchi, K.; Komatsu, R.; Miyazaki, S.; Akaku, K.; Uchida, T. Genesis of the plutonic-hydrothermal system around Quaternary granite in the Kakkonda geothermal system, Japan. Geothermics 1998, 27, 663–690. [Google Scholar] [CrossRef]
- Ikeuchi, K.; Doi, N.; Sakagawa, Y.; Kamenosono, H.; Uchida, T. High-temperature measurements in well WD-1a and the thermal structure of the Kakkonda geothermal system, Japan. Geothermics 1998, 27, 591–607. [Google Scholar] [CrossRef]
- Suzuki, Y.; Ioka, S.; Muraoka, H. Determining the Maximum Depth of Hydrothermal Circulation Using Geothermal Mapping and Seismicity to Delineate the Depth to Brittle-Plastic Transition in Northern Honshu, Japan. Energies 2014, 7, 3503–3511. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, Y.; Muraoka, H.; Asanuma, H. Validation and Evaluation of an Estimation Method for Deep Thermal Structures Using an Activity Index in Major Geothermal Fields in Northeastern Japan. Energies 2020, 13, 4684. [Google Scholar] [CrossRef]
- Kudo, T.; Takarada, S. Catalog of Eruptive Events during the Last 10,000 Years in Japan, Version 2.4.1. Available online: https://gbank.gsj.jp/volcano/eruption/index.html (accessed on 23 February 2021).
- Tianhaozhe, S.; Wang, K.; Fujiwara, T.; Kodaira, S.; He, J. Large fault slip peaking at trench in the 2011 Tohoku-oki earthquake. Nat. Commun. 2017, 8, 14044. [Google Scholar] [CrossRef] [Green Version]
- Muraoka, H.; Yano, Y. Why neo-plutons are deeper in the extensional tectonic fields and shallower in the contractional tectonic fields? In Proceedings of the 20th New Zealand Geothermal Workshop, Auckland, New Zealand, 11–13 November 1998; pp. 109–114. [Google Scholar]
- Wessel, P.; Smith, W.H.F. New, improved version of the generic mapping tools released. Eos Trans. Am. Geophys. Union 1998, 79, 579. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suzuki, Y.; Muraoka, H.; Asanuma, H. Thermal Monitoring of the Lithosphere by the Interaction of Deep Low-Frequency and Ordinary High-Frequency Earthquakes in Northeastern Japan. Energies 2021, 14, 1546. https://doi.org/10.3390/en14061546
Suzuki Y, Muraoka H, Asanuma H. Thermal Monitoring of the Lithosphere by the Interaction of Deep Low-Frequency and Ordinary High-Frequency Earthquakes in Northeastern Japan. Energies. 2021; 14(6):1546. https://doi.org/10.3390/en14061546
Chicago/Turabian StyleSuzuki, Yota, Hirofumi Muraoka, and Hiroshi Asanuma. 2021. "Thermal Monitoring of the Lithosphere by the Interaction of Deep Low-Frequency and Ordinary High-Frequency Earthquakes in Northeastern Japan" Energies 14, no. 6: 1546. https://doi.org/10.3390/en14061546
APA StyleSuzuki, Y., Muraoka, H., & Asanuma, H. (2021). Thermal Monitoring of the Lithosphere by the Interaction of Deep Low-Frequency and Ordinary High-Frequency Earthquakes in Northeastern Japan. Energies, 14(6), 1546. https://doi.org/10.3390/en14061546