A Matrix FMEA Analysis of Variable Delivery Vane Pumps
Abstract
:1. Introduction
2. Research Methodology
- Main assumptions.
- Preparation stage.
- Specification of potential failure modes, and their causes and end effects for individual pump components.
- Creating sheet.
- Analysis.
- Prioritization of failures, and their causes and end effects.
- Main function (components that perform the intended function: pumping fluid to receivers) . The following components were assigned to this function: housing, cover, shaft, stator, vane, and fastener.
- Auxiliary functions. Components performing these functions ensure proper operation of the pump. Their possible failures may cause the pump malfunction, but the main task of the pump is still maintained . These components are the port plate, bearing, piston, and sealing ring.
- Additional components. Their failure has little effect on the main task of the pump . These elements are the sealing ring, pin, and spring.
- Fracture and separation: brittle fracture , fatigue fracture , pitting .
- Deformation: yielding , extrusion-shrinkage .
- Wear: abrasive wear , adhesive wear .
- Erosion: particles erosion , cavitation erosion .
- Corrosion: general corrosion , chemical attack .
- Displacement: loosening , seizing .
- Material properties: aging , hardening .
- Design/Specification .
- Material/Manufacturing .
- Assembly/Installation .
- Maintenance/Fluid .
- Operation: Overload .
- Catastrophic: major damages with component destruction .
- Critical: component malfunction with severe damages .
- Marginal: component malfunction with minor damages .
- Minor: less than minor damages .
3. Results
- Critical, the pump does not realize the intended function (no flow on the pump outlet):
- Symptom: no shaft rotation .
- Symptom: pump leakage .
- Major, pump malfunction:
- Symptom: noisy operation .
- Symptom: flow below rated .
- Symptom: pressure below rated .
- Minor:
- Symptom: unusual heat level .
- Symptom: shaft leaks .
- Brittle fracture , fatigue fracture , yielding .
- Abrrasive wear , adhesive wear , particles erosion , cavitaion erosion , chemical attack .
- Pitting .
- Seizing .
- Aging , hardening .
- Design for shaft and vane .
- Maintenance/Fluid for shaft , vane and bearing .
- Material/Manufacturing for stator , shaft .
- Assembly/Installation for fastener .
- Operation: Overload for housing , cover , shaft , stator , vane , pin , and fastener .
- Design , Material/Manufacturing .
- Assembly/Installation .
- Operation: Overload .
- Maintenance/Fluid .
- Design , Material/Manufacturing .
- Maintenance/Fluid .
- Assembly/Installation .
- Operation: Overload .
- Design , Material/Manufacturing .
- Maintenance/Fluid .
- Assembly/Installation .
- Operation: Overload .
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MDPI | hlMultidisciplinary Digital Publishing Institute |
DOAJ | Directory of open access journals |
MIL-STD | US Defense Standard |
FMEA | Failure Modes and Effect Analysis |
FMEDA | Failure Modes, Effects, and Diagnostic Analysis |
FMCA | Failure Modes, Effects, and Criticality Analysis |
NASA | National Aeronautics and Space Administration |
RCA | Root Cause Analysis |
RPN | Risk Priority Number |
ISO | International Organization for Standardization |
References
- Lee, Y.; Lee, G.; Yang, J.; Park, J.; Baek, D. Failure analysis of a hydraulic power system in the wind turbine. Eng. Fail. Anal. 2020, 107, 104218. [Google Scholar] [CrossRef]
- Li, Y.; Coolen, F.P.A.; Zhu, C.; Tan, J. Reliability assessment of the hydraulic system of wind turbines based on load-sharing using survival signature. Renew. Energy 2020, 153, 766–776. [Google Scholar] [CrossRef]
- Gao, P.; Yu, T.; Zhang, Y.; Wang, J.; Zhai, J. Vibration analysis and control technologies of hydraulic pipeline system in aircraft: A review. Chin. J. Aeronaut. 2020, 34, 83–114. [Google Scholar] [CrossRef]
- Wang, G.; Song, Y.; Wang, J.; Chen, W.; Cao, Y.; Wang, J. Study on the Shifting Quality of the CVT Tractor under Hydraulic System Failure. Appl. Sci. 2020, 10, 681. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Wang, S.; Shi, J.; Li, T.; Wang, X. Fault diagnosis of an intelligent hydraulic pump based on a nonlinear unknown input observer. Chin. J. Aeronaut. 2018, 31, 385–394. [Google Scholar] [CrossRef]
- Li, T.; Wang, S.; Zio, E.; Shi, J.; Ma, Z. A numerical approach for predicting the remaining useful life of an aviation hydraulic pump based on monitoring abrasive debris generation. Mech. Syst. Signal Process. 2018, 136, 106519. [Google Scholar] [CrossRef]
- Hast, D.; Findeisen, R.; Streif, S. Detection and isolation of parametric faults in hydraulic pumps using a set-based approach and quantitative–qualitative fault specifications. Control Eng. Pract. 2015, 40, 61–70. [Google Scholar] [CrossRef]
- Lu, C.; Wang, S.; Wang, X. A multi-source information fusion fault diagnosis for aviation hydraulic pump based on the new evidence similarity distance. Aerosp. Sci. Technol. 2017, 71, 392–401. [Google Scholar] [CrossRef]
- Tague, N.R. The Quality Toolbox, 2nd ed.; ASQ Quality Press: Milwaukee, WI, USA, 2005. [Google Scholar]
- Carlson, C.S. Effective FMEAs: Achieving Safe, Reliable, and Economical Products and Processes Using Failure Mode and Effects Analysis; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012. [Google Scholar]
- Byington, C.S.; Roemer, M.J.; Galie, T. Prognostic enhancements to diagnostic systems for improved condition-based maintenance [military aircraft]. In Proceedings of the IEEE Aerospace Conference, Big Sky, MT, USA, 9–16 March 2002. [Google Scholar]
- Tidriri, K.; Chatti, N.; Verron, S.; Tiplica, T. Bridging data-driven and model-based approaches for process fault diagnosis and health monitoring: A review of researches and future challenges. Annu. Rev. Control 2016. [Google Scholar] [CrossRef]
- Djeziri, M.A.; Benmoussa, S.; Zio, E. Review on Health Indices Extraction and Trend Modeling for Remaining Useful Life Estimation. In Artificial Intelligence Techniques for a Scalable Energy Transition; Sayed-Mouchaweh, M., Ed.; Springer: Berlin, Germany, 2020. [Google Scholar]
- MIL-P 1629. USA Military Standard, Procedure for Performing a Failure Mode, Effects and Criticality Analysis (MIL-P 1629, USA); Military Specifications and Standards: Washington, DC, USA, 1949. [Google Scholar]
- J1739 200901. Potential Failure Mode and Effects Analysis in Design (Design FMEA), Potential Failure Mode and Effects Analysis in Manufacturing and Assembly Processes (Process FMEA); SAE International J1739 200901: Warrendale, PA, USA, 2009. [Google Scholar]
- Grebe, J.C.; Goble, W.M. FMEDA—Accurate Product Failure Metrics, FMEDA Development Paper; Revision 1.1, 19 February 2007; FMEDA: Exida, PA, USA, 2007. [Google Scholar]
- IEC 61508. Functional Safety of Electrical/Electronic/Programmable Electronic Safety-Related Systems; International Electrotechnical Commission, IEC 61508: Geneva, Switzerland, 2010. [Google Scholar]
- Globe, W.M.; Bukowski, J.V. Development of a Mechanical Component Failure Database. In Proceedings of the annual Reliability and Maintainability Symposium, Orlando, FL, USA, 22–25 January 2007. [Google Scholar]
- Wirth, R.; Berthold, B.; Kramer, A.; Peter, G. Knowledge-based Support Analysis for the Analysis of Failure Modes and Effects. Eng. Appl. Artif. Intell. 1996, 9, 219–229. [Google Scholar] [CrossRef]
- Liu, H.C.; Liu, L.; Liu, N. Risk evaluation approaches in failure mode and effects analysis: A literature review. Expert Syst. Appl. 2013, 40, 828–838. [Google Scholar] [CrossRef]
- Liu, H.-C. FMEA Using Uncertainty Theories and MCDM Methods; Springer Science+Business Media: Singapore, 2016. [Google Scholar]
- Liu, H.C.; Liu, L.; Bian, Q.H.; Lin, Q.L.; Dong, N.; Xu, P.C. Failure mode and effects analysis using fuzzy evidential reasoning approach and grey theory. Expert Syst Appl. 2011, 38, 4403–4415. [Google Scholar] [CrossRef]
- Bahrebar, S.; Blaabjerg, F.; Wang, H.; Vafamand, N.; Khooban, M.H.; Rastayesh, S.; Zhou, D. A Novel Type-2 Fuzzy Logic for Improved Risk Analysis of Proton Exchange Membrane Fuel Cells in Marine Power Systems Application. Energies 2018, 11, 721. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Guo, X.; Zhang, L. An Improved Assessment Method for FMEA for a Shipboard Integrated Electric Propulsion System Using Fuzzy Logic and DEMATEL Theory. Energies 2019, 12, 3162. [Google Scholar] [CrossRef] [Green Version]
- Lv, Y.; Liu, Y.; Jing, W.; Wozniak, M.; Damasevicius, R.; Scherer, R.; Wei, W. Quality Control of the Continuous Hot Pressing Process of Medium Density Fiberboard Using Fuzzy Failure Mode and Effects Analysis. Appl. Sci. 2020, 10, 4627. [Google Scholar] [CrossRef]
- Filo, G.; Fabis-Domagala, J.; Domagala, M.; Lisowski, E.; Momeni, H. Knowledge-based Support Analysis for the Analysis of Failure Modes and Effects. MATEC Web Conf. 2018, 183, 03009. [Google Scholar] [CrossRef] [Green Version]
- AIAG & VDA FMEA Handbook; Automotive Industry Action Group (AIAG): Southfield, MI, USA, 2019.
- Watton, J. Modelling, Monitoring and Diagnostic Techniques for Fluid Power Systems; Springer: London, UK, 2007. [Google Scholar]
- Catalogue HY29-0022/UK, 2M, 01/2012, IRO; Parker Hannifin Corporation, Parker Hannifin Limited: Warwick, UK, 2014.
- Barbour, G.L. Failure Modes and Effects Analysis by Matrix Method. In Proceedings of the Annual Reliability Symposium, Philadelphia, PA, USA, 18–20 January 1977; pp. 114–119. [Google Scholar]
- Stock, M.E.; Stone, R.B.; Tumer, I.Y. Going back in time to improve design: The elemental function-failure design method. In Proceedings of the DETC 03 ASME 2003 Design Engineering Technical Conference Computers and Information in Engineering Conference, Chicago, IL, USA, 2–6 September 2003. [Google Scholar]
- Arunajadai, S.G.; Uder, S.J.; Stone, R.B.; Tumer, I.Y. Failure Mode Identification through Clustering Analysis. Qual. Reliab. Eng. Int. 2004, 20, 511–526. [Google Scholar] [CrossRef] [Green Version]
- Wilson, P.F.; Dell, L.D.; Anderson, G.F. Root Cause Analysis: A Tool for Total Quality Management; ASQ Quality Press: Milwaukee, WI, USA, 1993. [Google Scholar]
- Jaccard, P. Etude comparative de la distribution florale dans une portion des Alpes et du Jura. Bull. Soc. Vaudoise Des Sci. Nat. 1901, 37. [Google Scholar] [CrossRef]
- McDermott, R.E.; Mikulak, R.J.; Beauregard, M.R. The Basics of FMEA, 2nd ed.; CRC Press: New York, NY, USA, 2009. [Google Scholar]
- Bloch, H.P.; Geitner, F.K. Machinery Failure Analysis and Troubleshooting; Gulf Professional Publishing: Huston, TX, USA, 1999; Volume 2. [Google Scholar]
- Stachowiak, G.W. (Ed.) Wear-Materials, Mechanism and Practice; John Wiley & Sons Ltd.: Chichester, UK, 2005. [Google Scholar]
- Kato, K. Classification of wear mechanisms/models. J. Eng. Tribol. 2002, 216. [Google Scholar] [CrossRef]
- Donald, J.; Wulpi, L. Understanding How Components Fail, 3rd ed.; Miller, B., Ed.; ASM International: Materials Park, OH, USA, 2013. [Google Scholar]
- Hossain, F.A.; Scutti, J.J. Four Fundamental Root Causes of Failure: Case Histories, Failure Analysis: A Foundation for Diagnostics and Prognostics Development. In Proceedings of the 53rd Meeting of Society for Machinery Failure Prevention Technology, Virginia Beach, VA, USA, 19–22 April 1999. [Google Scholar]
- Flitney, R. Seals and Sealing Handbook, 6th ed.; Butterworth-Heinemann: Oxford, UK, 2014. [Google Scholar]
- Bulletin HY29-0106/UK, XM, 08/2012; Parker Hannifin Manufacturing France SAS: Vierzon Cedex, France, 2012.
- ASTM D7043-17. Standard Test Method for Indicating Wear Characteristics of Non-Petroleum and Petroleum Hydraulic Fluids in a Constant Volume Vane Pump; ASTM International: West Conshohocken, PA, USA, 2017. [Google Scholar]
- DIN 51389-1. Determination of Lubricants; Mechanical Testing of Hydraulic Fluids in the Vane-Cell-Pump; General Working Principles; DIN Deutsches Institut für Normung e. V.: Berlin, Germany, 1982. [Google Scholar]
- ISO 20763:2004. Petroleum and Related Products—Determination of Anti-Wear Properties of Hydraulic Fluids—Vane Pump Method; International Organization for Standardization: Geneva, Switzerland, 2004. [Google Scholar]
1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | |
1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | |
0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | |
0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | |
0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | |
0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0.33 | 0.42 | 0.33 | 0.33 | 0.00 | 0.42 | 0.42 | 0.42 | 0.42 | 0.00 | 0.42 | 0.00 | 0.25 | 0.00 | 0.00 | |
0.42 | 0.42 | 0.17 | 0.42 | 0.00 | 0.33 | 0.33 | 0.33 | 0.33 | 0.08 | 0.33 | 0.08 | 0.08 | 0.00 | 0.00 | |
0.33 | 0.42 | 0.33 | 0.33 | 0.00 | 0.50 | 0.42 | 0.42 | 0.42 | 0.00 | 0.50 | 0.00 | 0.33 | 0.00 | 0.00 | |
0.17 | 0.25 | 0.17 | 0.17 | 0.08 | 0.42 | 0.33 | 0.25 | 0.25 | 0.08 | 0.33 | 0.00 | 0.25 | 0.08 | 0.08 | |
0.17 | 0.25 | 0.17 | 0.17 | 0.00 | 0.25 | 0.25 | 0.25 | 0.25 | 0.00 | 0.25 | 0.00 | 0.17 | 0.00 | 0.00 | |
0.25 | 0.42 | 0.33 | 0.25 | 0.00 | 0.42 | 0.42 | 0.42 | 0.42 | 0.00 | 0.42 | 0.00 | 0.33 | 0.00 | 0.00 | |
0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.17 | 0.08 | 0.08 | 0.08 | 0.00 | 0.08 | 0.00 | 0.08 | 0.08 | 0.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fabis-Domagala, J.; Domagala, M.; Momeni, H. A Matrix FMEA Analysis of Variable Delivery Vane Pumps. Energies 2021, 14, 1741. https://doi.org/10.3390/en14061741
Fabis-Domagala J, Domagala M, Momeni H. A Matrix FMEA Analysis of Variable Delivery Vane Pumps. Energies. 2021; 14(6):1741. https://doi.org/10.3390/en14061741
Chicago/Turabian StyleFabis-Domagala, Joanna, Mariusz Domagala, and Hassan Momeni. 2021. "A Matrix FMEA Analysis of Variable Delivery Vane Pumps" Energies 14, no. 6: 1741. https://doi.org/10.3390/en14061741
APA StyleFabis-Domagala, J., Domagala, M., & Momeni, H. (2021). A Matrix FMEA Analysis of Variable Delivery Vane Pumps. Energies, 14(6), 1741. https://doi.org/10.3390/en14061741