Time-Dependent Heat Transfer Calculations with Trefftz and Picard Methods for Flow Boiling in a Mini-Channel Heat Sink
Abstract
:1. Introduction
2. Experiment
2.1. Experimental Apparatus
2.2. Experimental Methodology
2.3. Experimental Parameters and Errors
2.4. Raw Experimental Data
3. Void Fraction Determination
4. Basic Mathematical Model
- fluid flow in the mini-channel is laminar (Reynolds number below 2100) with a constant mass flux density;
- fluid velocity in the mini-channel has one constant component wx(y) parallel to the heated plate, the other component takes the value of zero;
- the emerging vapor bubbles are an internal negative heat source absorbing some part of the energy transferred to the fluid from the heated plate.
5. Solution Methods
5.1. The Classical Trefftz Method (CTM)
5.2. The Hybrid Picard-Trefftz Method (HPTM)
5.3. The FEM with Trefftz Type Basis Functions (FEMT)
5.4. Heat Transfer Coefficient Determination
6. Results and Discussion
7. Comparison of the Authors’ Results with Theoretical Correlations
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
aj | coefficient |
cp | specific heat capacity, J kg−1 K−1 |
CTM | classical Trefftz method |
D | domain |
d | diameter, m |
f | basic function |
FEMT | FEM with Trefftz-type basis functions |
G | mass flux, kg m−2 s−1 |
HPTM | hybrid Picard-Trefftz method |
hlv | latent heat of vaporization, J kg−1 |
L | length of the mini-channel, m |
M | number of Trefftz functions |
MRD | maximum relative difference |
N | number of time moments |
N | nonlinear operator |
P | number of measuring points |
qV | volumetric heat flux, W m−3 |
qw | heat flux density, W m−2 |
T | temperature, K |
t | time coordinate, s |
u | particular solution |
V | Trefftz function |
w | velocity, m s−1 |
x, y | Cartesian coordinates, m |
L2 norm | |
∇2 | Laplacian |
Greek symbols | |
α | heat transfer coefficient, W m−2 K−1 |
Δ | difference |
δ | depth, thickness, m |
Γ | surface development parameter |
ρ | density, kg m−3 |
λ | thermal conductivity, W m−1 K−1 |
μ | dynamic viscosity, Pa∙s |
ϕ | void fraction |
σ | surface tension, N m−1 |
Ω | negative heat source, W m−3 |
Subscripts | |
ave | average |
b | bubble |
con | convection |
EL | element |
f | fluid |
H | heated plate |
h | hydraulic |
in | at the inlet |
IR | infrared thermography |
l | liquid |
M | mini-channel |
out | at the outlet |
sol | particular solution |
TP | two-phase |
v | vapor |
Superscripts | |
j | number of element |
k | number of iteration |
r | number of node |
Dimensionless numbers | |
Boiling number | |
Péclet number | Pe = Re·Pr |
Prandtl number | |
Reynolds number | |
Weber number |
References
- Piasecka, M.; Maciejewska, B.; Łabędzki, P. Heat Transfer Coefficient Determination during FC-72 Flow in a Minichannel Heat Sink Using the Trefftz Functions and ADINA Software. Energies 2020, 13, 6647. [Google Scholar] [CrossRef]
- Zaborowska, I.; Grzybowski, H.; Rafalko, G.; Mosdorf, R. Boiling dynamics in parallel minichannel system with different inlet solutions. Int. J. Heat Mass Transf. 2021, 165, 120655. [Google Scholar] [CrossRef]
- Kuczynski, W.; Bohdal, T.; Meyer, J.P.; Denis, A. A regressive model for dynamic instabilities during the condensation of R404A and R507 refrigerants. Int. J. Heat Mass Transf. 2019, 141, 1025–1035. [Google Scholar] [CrossRef]
- Klugmann, M.; Dabrowski, P.; Mikielewicz, D. Flow distribution and heat transfer in minigap and minichannel heat exchangers during flow boiling. Appl. Therm. Eng. 2020, 181, 116034. [Google Scholar] [CrossRef]
- Moreira, T.A.; Furlan, G.; de Sena e Oliveira, G.H.; Ribatski, G. Flow boiling and convective condensation of hydrocarbons: A state-of-the-art literature review. Appl. Therm. Eng. 2021, 182, 116129. [Google Scholar] [CrossRef]
- Kruzel, M.; Bohdal, T.; Sikora, M. Heat transfer and pressure drop during refrigerants condensation in compact heat exchangers. Int. J. Heat Mass Transf. 2020, 161, 120283. [Google Scholar] [CrossRef]
- Manetti, L.L.; Ribatski, G.; de Souza, R.R.; Cardoso, E.M. Pool boiling heat transfer of HFE-7100 on metal foams. Exp. Therm. Fluid Sci. 2020, 113, 110025. [Google Scholar] [CrossRef]
- Pastuszko, R.; Kaniowski, R.; Wójcik, T.M. Comparison of pool boiling performance for plain micro-fins and micro-fins with a porous layer. Appl. Therm. Eng. 2020, 166, 114658. [Google Scholar] [CrossRef]
- Orman, L.J.; Radek, N.; Pietraszek, J.; Szczepaniak, M. Analysis of Enhanced Pool Boiling Heat Transfer on Laser-Textured Surfaces. Energies 2020, 13, 2700. [Google Scholar] [CrossRef]
- Błasiak, S. Influence of Thermoelastic Phenomena on the Energy Conservation in Non-Contacting Face Seals. Energies 2020, 13, 5283. [Google Scholar] [CrossRef]
- Joachimiak, D.; Frąckowiak, A. Experimental and Numerical Analysis of the Gas Flow in the Axisymmetric Radial Clearance. Energies 2020, 13, 5794. [Google Scholar] [CrossRef]
- Piasecka, M.; Strąk, K.; Grabas, B. Vibration-Assisted Laser Surface Texturing and Electromachining for the Intensification of Boiling Heat Transfer in a Minichannel. Arch. Metall. Mater. 2017, 62, 1983–1990. [Google Scholar] [CrossRef]
- Piasecka, M.; Strąk, K. Influence of the Surface Enhancement on the Flow Boiling Heat Transfer in a Minichannel. Heat Transf. Eng. 2019, 40, 1162–1175. [Google Scholar] [CrossRef]
- Maciejewska, B.; Piasecka, M. Time-dependent study of boiling heat transfer coefficient in a vertical minichannel. Int. J. Numer. Methods Heat Fluid Flow 2019, 30, 2953–2969. [Google Scholar] [CrossRef]
- Maciejewska, B.; Piasecka, M.; Piasecki, A. The Study of the Onset of Flow Boiling in Minichannels—Time-Dependent Heat Transfer Results. Heat Transf. Eng. 2021, 43, 1–15. [Google Scholar] [CrossRef]
- Hożejowska, S.; Piasecka, M. Numerical Solution of Axisymmetric Inverse Heat Conduction Problem by the Trefftz Method. Energies 2020, 13, 705. [Google Scholar] [CrossRef] [Green Version]
- Maciejewska, B.; Błasiak, S.; Piasecka, M. Determination of the temperature distribution in a minichannel using ANSYS CFX and a procedure based on the Trefftz functions. EPJ Web Conf. 2017, 143, 02071. [Google Scholar] [CrossRef] [Green Version]
- Jaszczur, M.; Mlynarczykowska, A.; Demurtas, L. Effect of Impeller Design on Power Characteristics and Newtonian Fluids Mixing Efficiency in a Mechanically Agitated Vessel at Low Reynolds Numbers. Energies 2020, 13, 640. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Fletcher, D.F.; Haynes, B.S. A review of computational modelling of flow boiling in microchannels. J. Comput. Multiph. Flows 2014, 6, 79–110. [Google Scholar] [CrossRef] [Green Version]
- Hadamard, J. Sur les Problèmes aux Dérivées Partielles et Leur Signification Physique. Princet. Univ. Bull. 1902, 13, 49–52. [Google Scholar]
- Kita, E.; Kamiya, N. Trefftz method: An overview. Adv. Eng. Softw. 1995, 24, 3–12. [Google Scholar] [CrossRef]
- Li, Z.-C.; Lu, T.-T.; Huang, H.-T.; Cheng Alexander, H.-D. Trefftz, collocation, and other boundary methods—A comparison. Numer. Methods Partial Differ. Equ. 2006, 23, 1–52. [Google Scholar] [CrossRef]
- Grysa, K.; Maciag, A.; Pawinska, A. Solving nonlinear direct and inverse problems of stationary heat transfer by using Trefftz functions. Int. J. Heat Mass Transf. 2012, 55, 7336–7340. [Google Scholar] [CrossRef]
- Hożejowska, S.; Maciejewska, B.; Poniewski, M.E. Numerical Analysis of Boiling Two-Phase Flow in Mini- and Microchannels. In Encyclopedia of Two-Phase Heat Transfer and Flow I. Fundamentals and Method. Vol. 4 Specjal Topics in Pool and Flow Boiling; Thome, J.R., Ed.; World Scientific Publishing Co., Ltd.: New York, NY, USA; London, UK; Singapore, 2016; pp. 131–160. [Google Scholar]
- Trefftz, E. Ein Gegenstück zum Ritzschen Verfahren. In Proceedings of the International Kongress für Technische Mechanik, Zürich, Switzerland, 12–17 September 1926; pp. 131–137. [Google Scholar]
- Herrera, I. Trefftz method: A general theory. Numer. Methods Partial Differ. Equ. 2000, 16, 561–580. [Google Scholar] [CrossRef]
- Grysa, K.; Maciejewska, B. Trefftz functions for non-stationary problems. J. Theor. Appl. Mech. 2013, 51, 251–264. [Google Scholar]
- Alves, C.; Karageorghis, A.; Leitão, V.; Valtchev, S. (Eds.) Advances in Trefftz Methods and Their Applications; Springer: Cham, Germany, 2020. [Google Scholar]
- Cialkowski, M.; Frackowiak, A. Solution of the stationary 2D inverse heat conduction problem by Treffetz method. J. Therm. Sci. 2002, 11, 148–162. [Google Scholar] [CrossRef]
- Movahedian, B.; Boroomand, B.; Soghrati, S. A Trefftz method in space and time using exponential basis functions: Application to direct and inverse heat conduction problems. Eng. Anal. Bound. Elem. 2013, 37, 868–883. [Google Scholar] [CrossRef]
- Moldovan, I.D.; Coutinho, A.; Cismasiu, I. Hybrid-Trefftz finite elements for non-homogeneous parabolic problems using a novel dual reciprocity variant. Eng. Anal. Bound. Elem. 2019, 106, 228–242. [Google Scholar] [CrossRef]
- Grysa, K.; Maciag, A. Temperature dependent thermal conductivity determination and source identification for nonlinear heat conduction by means of the Trefftz and homotopy perturbation methods. Int. J. Heat Mass Transf. 2016, 100, 627–633. [Google Scholar] [CrossRef]
- Blasiak, S.; Pawinska, A. Direct and inverse heat transfer in non-contacting face seals. Int. J. Heat Mass Transf. 2015, 90, 710–718. [Google Scholar] [CrossRef]
- Cialkowski, M. New type of basic functions of FEM in application to solution of inverse heat conduction problem. J. Therm. Sci. 2002, 11, 163–171. [Google Scholar] [CrossRef]
- Grysa, K.; Hożejowska, S.; Maciejewska, B. Adjustment calculus and Trefftz functions applied to local heat transfer coefficient determination in a minichannel. J. Theor. Appl. Mech. 2012, 50, 1087–1096. [Google Scholar]
- Qin, Q.-H. Trefftz Finite Element Method and Its Applications. Appl. Mech. Rev. 2005, 58, 316–337. [Google Scholar] [CrossRef]
- Qin, Q.-H. The Trefftz Finite and Boundary Element Method; WIT Press: Southampton, UK, 2000. [Google Scholar]
- Hożejowska, S. Homotopy perturbation method combined with Trefftz method in numerical identification of liquid temperature in flow boiling. J. Theor. Appl. Mech. 2015, 53, 969–980. [Google Scholar] [CrossRef] [Green Version]
- Uscilowska, A. Application of the Trefftz method to nonlinear potential problems. Computer Assisted Mechanics and Engineering Sciences. In Proceedings of the Lsame.08: Leuven Symposium on Applied Mechanics in Engineering, PTS 1 and 2, Louvain, Belgium, 31 March–2 April 2008; pp. 417–431. [Google Scholar]
- Grabowski, M.; Poniewski, M.E.; Hożejowska, S.; Pawińska, A. Numerical simulation of the temperature fields in a single-phase flow in an asymmetrically heated mininchannel. J. Eng. Phys. Thermophys. 2020, 93, 355–363. [Google Scholar] [CrossRef]
- Węgrzyn, T.; Szczucka-Lasota, B.; Uscilowska, A.; Stanik, Z.; Piwnik, J. Validation of parameters selection of welding with micro-jet cooling by using method of fundamental solutions. Eng. Anal. Bound. Elem. 2019, 98, 17–26. [Google Scholar] [CrossRef]
- Yang, A.-M.; Zhang, C.; Jafari, H.; Cattani, C.; Jiao, Y. Picard Successive Approximation Method for Solving Differential Equations Arising in Fractal Heat Transfer with Local Fractional Derivative. Abstr. Appl. Anal. 2014, 1–5. [Google Scholar] [CrossRef]
- Ince, E.L. Ordinary Differential Equations; Dover Publications, Inc.: New York, NY, USA, 1956. [Google Scholar]
- Picard, E. Sur l’application des méthodes d’approximations successives à l’étude de certaines équations différentielles ordinaires. J. Math. Pures Appl. 1893, 9, 217–272. [Google Scholar]
- Bellman, R.E.; Kalaba, R.E. Quasi Linearization and Nonlinear Boundary-Value Problems; American Elsevier Publishing Company: New York, NY, USA, 1965. [Google Scholar]
- Clenshaw, C.W.; Norton, H.J. The solution of nonlinear ordinary differential equations in Chebyshev series. Comput. J. 1963, 6, 88–92. [Google Scholar] [CrossRef] [Green Version]
- Hożejowski, L.; Hożejowska, S. Trefftz method in an inverse problem of two-phase flow boiling in a minichannel. Eng. Anal. Bound. Elem. 2019, 98, 27–34. [Google Scholar] [CrossRef]
- Michalski, D.; Strąk, K.; Piasecka, M. Estimating uncertainty of temperature measurements for studies of flow boiling heat transfer in minichannels. EPJ Web Conf. 2019, 213, 1–7. [Google Scholar] [CrossRef]
- Grabowski, M.; Hozejowska, S.; Maciejewska, B.; Placzkowski, K.; Poniewski, M.E. Application of the 2-D Trefftz Method for Identification of Flow Boiling Heat Transfer Coefficient in a Rectangular MiniChannel. Energies 2020, 13, 3973. [Google Scholar] [CrossRef]
- Maciejewska, B.; Piasecka, M. Trefftz function-based thermal solution of inverse problem in unsteady-state flow boiling heat transfer in a minichannel. Int. J. Heat Mass Transf. 2017, 107, 925–933. [Google Scholar] [CrossRef]
- Bohdal, T. Modeling the process of bubble boiling on flows. Arch. Thermodyn. 2000, 21, 34–75. [Google Scholar]
- Hożejowska, S.; Kaniowski, R.; Poniewski, M.E. Experimental investigations and numerical modeling of 2D temperature fields in flow boiling in minichannels. Exp. Therm. Fluid Sci. 2016, 78, 18–29. [Google Scholar] [CrossRef]
- Tolubinski, V.I.; Kostanchuk, D.M. Vapour bubbles growth rate and heat transfer intensity at subcooled water boiling. In Proceedings of the 4th Int. Heat Transfer Conference, Paris-Versailles, France, 31 August–5 September 1970; pp. 1–11. [Google Scholar]
- Koncar, B.; Matkovic, M.; Prosek, A. NEPTUNE_CFD Analysis of Flow Field in Rectangular Boiling Channel. J. Comput. Multiph. Flows 2012, 4, 399–410. [Google Scholar] [CrossRef] [Green Version]
- Cheung, Y.K.; Jin, W.G.; Zienkiewicz, O.C. Direct solution procedure for solution of harmonic problems using complete, non-singular, Trefftz functions. Commun. Appl. Numer. Methods 1989, 5, 159–169. [Google Scholar] [CrossRef]
- Grabowski, M.; Hożejowska, S.; Pawińska, A.; Poniewski, M.; Wernik, J. Heat Transfer Coefficient Identification in Mini-Channel Flow Boiling with the Hybrid Picard–Trefftz Method. Energies 2018, 11, 2057. [Google Scholar] [CrossRef] [Green Version]
- Lazarek, G.M.; Black, S.H. Evaporative heat transfer, pressure drop and critical heat flux in a small vertical tube. Int. J. Heat Mass Transf. 1982, 25, 945–960. [Google Scholar] [CrossRef]
- Tran, T.N.; Wambsganss, M.W.; France, D.M. Small circular- and rectangular-channel boiling with two refrigerants. Int. J. Multiph. Flow 1996, 22, 485–498. [Google Scholar] [CrossRef]
- Piasecka, M. Correlations for flow boiling heat transfer in minichannels with various orientations. Int. J. Heat Mass Transf. 2015, 81, 114–121. [Google Scholar] [CrossRef]
Temperature of the Heated Plate TH,IR | Temperature of the Fluid at the Inlet Tf,in | Temperature of the Fluid at the Outlet Tf,out | Absolute Error of the Difference in Fluid Temperature | Overpressure at the Inlet | Overpressure at the Outlet | Total Mass Flow Rate | Heat Flux (Density) qw |
---|---|---|---|---|---|---|---|
Device | |||||||
IR camera FLIR, A655SC | K-type Thermo- couple, Czaki Thermo- Product, type K 221 b | K-type Thermo- couple, Czaki Thermo- Product, type K 221 b | - | Pressure meter, Endress+ Hauser, Cerabar S PMP71 | Pressure meter, Endress+ Hauser, Cerabar S PMP71 | Coriolis mass flowmeter, Endress+ Hauser, Proline Promass A 100 | - |
Ranges | |||||||
37.0 ÷ 63.99 °C | 23.8 ÷ 25.9 °C | 29.1 ÷ 38.3 °C | - | 105.9 ÷ 122.5 kPa | 97.2 ÷ 113.8 kPa | 0.00273 ÷ 0.00280 kg s−1 | 9.70 ÷ 16.29 kW m−2 |
Maximum Error | |||||||
±1 °C or ±1% in the range 0 ÷ 120 °C, according to the calibration certificate | calibration tolerance 1.5 °C | calibration tolerance 1.5 °C | 0.19 °C, according to the additional calibration experiment [48] | ±0.05% of reading | ±0.05% of reading | ±0.1% of reading | 3.16% |
Time-Dependent Heat Transfer Problems Solved by the FEMT and the HPTM | Quasi-Time-Dependent Heat Transfer Problems Solved by the CTM |
---|---|
α (15) | (16) |
where the reference temperature of the fluid is calculated from the formula | |
(17) | (18) |
Distinctive Features | Mathematical Method | ||
---|---|---|---|
CTM | HPTM | FEMT | |
Can be used to solve inverse problems | + | + | + |
Can be used to solve problems described by a nonlinear differential equation | - | + | - |
The solution satisfies exactly the governing differential equation | + | - | + |
The solution satisfies exactly the boundary conditions | - | - | + (*) |
The number and the type of boundary conditions (temperature—related, flow-related, discrete or continuous) are not limited | + | + | + |
The solution is a differentiable function | - | - | - (**) |
Can be applied to problems with complicated geometry | - | - | + |
Permits any number of Trefftz functions to be used in the solution | - | - | + (***) |
Author/Authors | Correlation | Characteristics |
---|---|---|
Lazarek and Black (1982) [57] | (19) | flow boiling heat transfer; the correlation based upon 738 points of R-113, circular mini-channels, hydraulic diameter of channels of 3.15 mm |
Tran et al. (1996) [58] | (20) | flow boiling heat transfer experiments for R-12; hydraulic diameter of channels: 2.46 mm and 2.92 mm |
Piasecka (2015) [59] | (21) | saturated flow boiling, based on experiments with rectangular mini-channels of 1 mm depth, refrigants R-11, R-123 and FC-72; Γ—surface development parameter |
Correlation/Mathematical Method | MRD [%] | ||
---|---|---|---|
t = 340 s | |||
CTM | HPTM | FEMT | |
Lazarek and Black (1982) | 9 | 25 | 9 |
Tran et al. (1996) | 42 | 68 | 32 |
Piasecka (2015) | 50 | 78 | 39 |
CTM | 20 | 12 | |
HPTM | 20 | 31 | |
FEMT | 12 | 31 | |
t = 380 s | |||
CTM | HPTM | FEMT | |
Lazarek and Black (1982) | 7 | 16 | 25 |
Tran et al. (1996) | 33 | 29 | 43 |
Piasecka (2015) | 44 | 40 | 53 |
CTM | 18 | 12 | |
HPTM | 18 | 19 | |
FEMT | 12 | 19 | |
t = 420 s | |||
CTM | HPTM | FEMT | |
Lazarek and Black (1982) | 26 | 36 | 42 |
Tran et al. (1996) | 20 | 27 | 41 |
Piasecka (2015) | 29 | 35 | 49 |
CTM | 23 | 10 | |
HPTM | 23 | 20 | |
FEMT | 10 | 20 | |
t = 460 s | |||
CTM | HPTM | FEMT | |
Lazarek and Black (1982) | 35 | 31 | 42 |
Tran et al. (1996) | 21 | 33 | 47 |
Piasecka (2015) | 28 | 42 | 56 |
CTM | 26 | 13 | |
HPTM | 26 | 18 | |
FEMT | 13 | 18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piasecka, M.; Hożejowska, S.; Maciejewska, B.; Pawińska, A. Time-Dependent Heat Transfer Calculations with Trefftz and Picard Methods for Flow Boiling in a Mini-Channel Heat Sink. Energies 2021, 14, 1832. https://doi.org/10.3390/en14071832
Piasecka M, Hożejowska S, Maciejewska B, Pawińska A. Time-Dependent Heat Transfer Calculations with Trefftz and Picard Methods for Flow Boiling in a Mini-Channel Heat Sink. Energies. 2021; 14(7):1832. https://doi.org/10.3390/en14071832
Chicago/Turabian StylePiasecka, Magdalena, Sylwia Hożejowska, Beata Maciejewska, and Anna Pawińska. 2021. "Time-Dependent Heat Transfer Calculations with Trefftz and Picard Methods for Flow Boiling in a Mini-Channel Heat Sink" Energies 14, no. 7: 1832. https://doi.org/10.3390/en14071832
APA StylePiasecka, M., Hożejowska, S., Maciejewska, B., & Pawińska, A. (2021). Time-Dependent Heat Transfer Calculations with Trefftz and Picard Methods for Flow Boiling in a Mini-Channel Heat Sink. Energies, 14(7), 1832. https://doi.org/10.3390/en14071832