Temperature Rise Characteristics and Error Analysis of a DC Voltage Divider
Abstract
:1. Introduction
2. Typical Structure of DC Voltage Divider
3. The Fundamental Principle of Temperature Rise Calculation for the Resistance Voltage Divider
3.1. Temperature Coefficient
3.2. Basic Concepts of Heat Transfer
3.2.1. Current Field
3.2.2. Electromagnetic Heat (Joule Heat)
3.2.3. Heat Transfer in Solids
3.2.4. Heat Transfer in Fluid
3.3. Heat Transfer Process of Voltage Divider
4. Modeling and Error Analysis of the Internal Temperature Rise of the DC Voltage Divider
4.1. Construction of Entity Model of DC Voltage Divider
4.2. Internal Temperature Simulation of DC Voltage Divider
4.2.1. Theoretical Analysis
4.2.2. Simulation Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Z.Y. UHV HVDC Transmission Theory; China Electric Power Press: Beijing, China, 2009. [Google Scholar]
- Riba, J.R.; Capelli, F.; Moreno-Eguilaz, M. Analysis and mitigation of stray capacitance effects in resistive high-voltage dividers. Energies 2019, 12, 2278. [Google Scholar] [CrossRef] [Green Version]
- Liu, X. Design and implementation of DC High Voltage Resistor Voltage divider. Meas. Tech. 2008, 28, 17–19. [Google Scholar]
- Li, Y.; Ediriweera, M.K.; Emms, F.S.; Lohrasby, A. Development of precision DC High-Voltage dividers. IEEE Trans. Instrum. Meas. 2011, 60, 2211–2216. [Google Scholar] [CrossRef]
- Sang, H.L.; Kwang, M.Y.; Jang, Y.C. Low-uncertainty equality between the voltage-dividing and resistance ratio of a DC resistive high voltage divider. J. Electr. Eng. Technol. 2019, 14, 1789–1795. [Google Scholar]
- Liu, B.; Huang, D.X. Thermal design for high precision DC resistance divider. High Volt. Appar. 2011, 2, 31–33. [Google Scholar]
- Li, D.Y.; Li, Q.; Li, H. A Method for Calculation of Thermal Equilibrium Temperature of Conventional DC Voltage Transformer. In Proceedings of the A China Electrical Engineering Society High Voltage Professional Committee Academic Annual Meeting, Wuhan, China, 13–16 November 2009. [Google Scholar]
- Wang, W.C.; Zhang, J.L. Analysis of structure principle and field application of DC and DC regulators. Comp. Tech. Auto 2012, 31, 45–49. [Google Scholar]
- Ye, T.L.; Wu, G.Y.; Wu, J.K. Analysis and treatment on external insulation flashover of DC voltage divider of 500 kV converter station. Electr. Power Constr. 2010, 31, 56–60. [Google Scholar]
- Xie, C.; Luo, Y.H.; Yang, J.L. ±800 kV UHVDC no-load pressure analysis on the abnormal action of protection test. Electr. Eng. 2013, 1, 45–49. [Google Scholar]
- Sun, S.H.; Fu, J.H.; Liu, J. Disturbance analysis and modification of ±500 kV DC voltage divider for converter station. Shaanxi Electr. Power 2012, 4, 34–38. [Google Scholar]
- Hu, X. Analysis of Locking Accident in DC System due to Failure of a DC Voltage Regulator. Sichuan Electr. Power Technol. 2011, 8, 59–61. [Google Scholar]
- Feng, P.; Yong, X.; Guoying, L.; Xia, L.; Hang, S. Analysis of the influencing factors for the 500 kV DC voltage reference divider used for on-site calibration. In Proceedings of the 2015 12th IEEE International Conference on Electronic Measurement & Instruments (ICEMI), Qingdao, China, 16–18 July 2015. [Google Scholar]
- Tingting, X.; Zhongzhou, Y.; Jianhua, F.; Lu, W. Influence of temperature variation on the accuracy of DC voltage measuring device. In Proceedings of the 2017 4th International Conference on Electric Power Equipment—Switching Technology (ICEPE-ST), Xi’an, China, 22–25 October 2017. [Google Scholar]
- Kartik, K.B.; John, T. A study of air force cooling on self heated wire wound Precision High Voltage divider though Automation. J. Phys. Conf. Ser. 2018, 1065, 052005. [Google Scholar] [CrossRef]
- Man, Y.H.; Mi, J.J. A numerical study on three-dimensional conjugate heat transfer of natural convection and conduction in a differentially heated cubic enclosure with a heat-generating cubic conducting body. Int. J. Heat Mass Transf. 2000, 43, 4229–4248. [Google Scholar]
- Li, Z.; Chu, Y.D.; Li, X.F. Numerical simulation of natural convection on vertical wall. J. Heilongjiang Inst. Sci. Technol. 2008, 18, 58–60. [Google Scholar]
- Kapjor, A.; Durcansky, P.; Vantuch, M. Effect of heat source placement on natural convection from cylindrical surfaces. Energies 2020, 13, 4334. [Google Scholar] [CrossRef]
- Xiong, C.A.; Yang, S.G. A study on mathematical model of large volume natural convection and laminar heat transfer. J. Heilongjiang Univ. Sci. Technol. 2000, 10, 42–45. [Google Scholar]
- Kuehn, T.H.; Goldstein, R.J. An experimental and theoretical study of natural convection in the annulus between horizontal concentric cylinders. J. Fluid Mech. 1976, 74, 695–719. [Google Scholar] [CrossRef]
- Choo, J.Y.; Schultz, D.H. A stable high-order method for the heated cavity problem. Int. J. Numer. Methods Fluids 1992, 15, 1313–1332. [Google Scholar] [CrossRef]
- Shao, F. Conjugate of natural convection and conduction in a complicated enclosure. Int. J. Heat Mass Transf. 2004, 47, 233–2239. [Google Scholar]
- Li, D.Y.; Li, Q.; Li, H. Temperature and heat transfer characteristics analysis and calculation under heat balance of DCTV resistive capacitor. High Volt. Technol. 2010, 36, 994–999. [Google Scholar]
- Tan, Y.F. Advanced Engineering Thermodynamics; Harbin University of Technology Press: Harbin, China, 2018. [Google Scholar]
Resistors | Insulating Oil | ABS Tube | |
---|---|---|---|
Thermal Conductivity [W/(m·K)] | 76.2 | 0.1484 | 0.25 |
Specific heat capacity [J/(kg·K)] | 440 | 932.5 | 1470 |
Density [kg/m3] | 7870 | 895 | 1050 |
Resistors | Flange | |
---|---|---|
Relative permittivity | 1 | 1 |
Conductivity [S/m] | 1.4506 × 10−5 | 3.774 × 107 |
Temperature Coefficients | Low-Voltage Arm Is Internal | Low-Voltage Arm Is External |
---|---|---|
1 ppm/°C | 31.7 ppm | 37.9 ppm |
2 ppm/°C | 63.4 ppm | 75.8 ppm |
5 ppm/°C | 158.4 ppm | 189.4 ppm |
10 ppm/°C | 316.7 ppm | 378.8 ppm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, Z.; Luo, Y.; Zhai, S.; Qian, B.; Liao, Y.; Lan, L.; Wang, D. Temperature Rise Characteristics and Error Analysis of a DC Voltage Divider. Energies 2021, 14, 1914. https://doi.org/10.3390/en14071914
Fang Z, Luo Y, Zhai S, Qian B, Liao Y, Lan L, Wang D. Temperature Rise Characteristics and Error Analysis of a DC Voltage Divider. Energies. 2021; 14(7):1914. https://doi.org/10.3390/en14071914
Chicago/Turabian StyleFang, Zhengyun, Yi Luo, Shaolei Zhai, Bin Qian, Yaohua Liao, Lei Lan, and Dianlang Wang. 2021. "Temperature Rise Characteristics and Error Analysis of a DC Voltage Divider" Energies 14, no. 7: 1914. https://doi.org/10.3390/en14071914
APA StyleFang, Z., Luo, Y., Zhai, S., Qian, B., Liao, Y., Lan, L., & Wang, D. (2021). Temperature Rise Characteristics and Error Analysis of a DC Voltage Divider. Energies, 14(7), 1914. https://doi.org/10.3390/en14071914