Criteria for Optimal Site Selection for Ocean Thermal Energy Conversion (OTEC) Plants in Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Bathymetry
2.3. Deep Ocean Temperature (Td)
2.4. Sea Surface Temperature (SST)
2.5. Sea Water Temperature Difference between the Surface and the Depth of 1000 ()
2.6. OTEC Net Power ()
2.7. Persistencies (p) of the
2.8. Decision Matrix (DM)
2.9. Comparative Criteria
2.10. Technical Criteria
2.11. Environmental and Socio-Economic Criteria
2.12. Sites Chosen for Comparative Analysis
2.13. Optimum Sites
2.14. Levelised Cost of Energy (LCOE)
3. Results and Discussion
3.1. Selection of Potential Sites
3.2. Comparative Criteria
3.3. Technical Criteria
Extreme Events
Distance from the Main Electric Grid
3.4. Environmental and Socioeconomic Criteria
3.5. Optimum Sites
3.6. Levelised Cost of Energy (LCOE)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AHP | Analytic Hierarchy Process |
BCS | Baja California Sur |
CC | Closed Cycle |
CEMIE-Océano | Mexican Centre for Innovation in Ocean Energy |
CF | Capacity Factor |
CMP | Central MP |
Cold Ag | Cold Agriculture |
CR | Consistency Radio |
CS | Caribbean Sea |
CTEC | Coastal Thermal Gradient Energy |
DM | Decision Matrix |
DOWA | Deep Ocean Water Applications |
EEZ | Mexican Exclusive Economic Zone |
ENSO | Niño-Southern Oscillation |
ETP | Eastern Tropical Pacific |
FF | Fossil Fuel |
GC | Gulf of California |
GEBCO | General Bathymetric Chart of the Oceans |
GIS | Geographic Information System |
H | Hybrid |
HEL | Homes with Electricity at the Local level (homes) |
HEN | Homes with Electricity at National Level (homes) |
KRISO | Korea Research Institute of Ships & Ocean engineering |
LCOE | Levelized Cost of Energy |
LMP | Locational Marginal Price |
LREC | Local Residential Electricity Consumption (MWh/yr) |
MCDA | Multi-Criteria Decision Analysis |
MI | Marginalization Index |
MP | Mexican Pacific |
MRE | Marine Renewable Energy |
NEM | National Energy Matrix |
NP | Northwest Pacific |
NPA | Natural Protected Areas |
NREC | National Residential Electricity Consumption (MWh/yr) |
OC | Open Cycle |
OTEC | Ocean Thermal Energy Conversion |
P | Persistencies (%) |
Pnet | OTEC net power (MW) |
Ppump | Pumping Power (MW/K) |
Qcw | Volume of cold-water flow (m3/s) |
RE | Renewable Energies |
SATMO | Oceanic Monitoring Satellite System |
SENSIMAR | National Electricity GridCoastal Marine Information and Analysis System |
SIN | Interconnected National Grid |
SMP | Southern MP |
SST | Sea Surface Temperature |
SWAC | Seawater Air Conditioning |
T | Absolute temperature of the surface seawater (K) |
TC | Tropical Cyclones |
Td | Deep Ocean Temperature |
TE | Thermal Energy |
TOPSIS | Technique for Order Performance by Similarity to Ideal Solution |
WOA | World Ocean Atlas |
WOD | World Ocean Database |
Average density of seawater (1025 kg/m3) | |
Efficiency of the turbogenerator (0.75) | |
Ratio between the hot and cold-water flows (1.5) | |
Sea water temperature difference between the surface andthe depth of 1000 (°C) | |
Specific enthalpy of seawater (0.004 MJ/kgK) |
Appendix A
Criteria | |||||||||
---|---|---|---|---|---|---|---|---|---|
Alternatives | (a) | (b) | (c) | (d) | (e) | (f) | (g) | (h) | (i) |
Cozumel | 5.42 | 29.07 | 100 | 5.00 | 1.00 | 1.00 | 0.22 | 100.54 | 44.16 |
Lazaro Cardenas | 21.86 | 29.52 | 100 | 4.00 | 0.00 | 1.00 | 0.43 | 71.85 | 32.13 |
Cabo San Lucas | 7.48 | 28.62 | 42 | 5.00 | 0.00 | 1.00 | 0.63 | 181.39 | 6.74 |
Puerto Angel | 3.91 | 29.41 | 100 | 2.00 | 0.00 | 4.00 | 3.28 | 84.44 | 12.67 |
Criteria | (a) | (b) | (c) | (d) | (e) | (f) | (g) | (h) | (i) |
---|---|---|---|---|---|---|---|---|---|
(a) | 1.00 | 1.00 | 1.00 | 3.00 | 3.00 | 5.00 | 3.00 | 3.00 | 3.00 |
(b) | 1.00 | 1.00 | 1.00 | 5.00 | 5.00 | 7.00 | 5.00 | 3.00 | 3.00 |
(c) | 1.00 | 1.00 | 1.00 | 5.00 | 5.00 | 7.00 | 5.00 | 3.00 | 3.00 |
(d) | 0.33 | 0.20 | 0.20 | 1.00 | 1.00 | 1.00 | 3.00 | 3.00 | 3.00 |
(e) | 0.33 | 0.20 | 0.20 | 1.00 | 1.00 | 1.00 | 3.00 | 3.00 | 3.00 |
(f) | 0.20 | 0.14 | 0.14 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 3.00 |
(g) | 0.33 | 0.20 | 0.20 | 0.33 | 0.33 | 1.00 | 1.00 | 1.00 | 3.00 |
(h) | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 1.00 | 1.00 | 1.00 | 1.00 |
(i) | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 1.00 | 1.00 |
Criteria | (a) | (b) | (c) | (d) | (e) | (f) | (g) | (h) | (i) | Weighing |
---|---|---|---|---|---|---|---|---|---|---|
(a) | 0.21 | 0.23 | 0.23 | 0.18 | 0.18 | 0.21 | 0.13 | 0.16 | 0.13 | 0.18 |
(b) | 0.21 | 0.23 | 0.23 | 0.29 | 0.29 | 0.29 | 0.22 | 0.16 | 0.13 | 0.23 |
(c) | 0.21 | 0.23 | 0.23 | 0.29 | 0.29 | 0.29 | 0.22 | 0.16 | 0.13 | 0.23 |
(d) | 0.07 | 0.05 | 0.05 | 0.06 | 0.06 | 0.04 | 0.13 | 0.16 | 0.13 | 0.08 |
(e) | 0.07 | 0.05 | 0.05 | 0.06 | 0.06 | 0.04 | 0.13 | 0.16 | 0.13 | 0.08 |
(f) | 0.04 | 0.03 | 0.03 | 0.06 | 0.06 | 0.04 | 0.04 | 0.05 | 0.13 | 0.05 |
(g) | 0.07 | 0.05 | 0.05 | 0.02 | 0.02 | 0.04 | 0.04 | 0.05 | 0.13 | 0.05 |
(h) | 0.07 | 0.08 | 0.08 | 0.02 | 0.02 | 0.04 | 0.04 | 0.05 | 0.04 | 0.05 |
(i) | 0.07 | 0.08 | 0.08 | 0.02 | 0.02 | 0.01 | 0.01 | 0.05 | 0.04 | 0.04 |
References
- Vega, L. Ocean Thermal Energy Conversion. In Encyclopedia of Sustainability Science and Technology; Meyers, R.A., Ed.; Springer: New York, NY, USA, 2012; pp. 7296–7328. [Google Scholar]
- Bernardoni, C.; Binotti, M. Techno-economic analysis of closed OTEC cycles for power generation. Renew. Energy. 2019, 132, 1018–1033. [Google Scholar] [CrossRef]
- International Renewable Energy Agency (IRENA). Ocean Thermal Energy Conversion: Technology Brief. IRENA Ocean Energy Technol. Br. 2014, 1, 32. [Google Scholar]
- Kobayashi, H.; Jitsuhara, S.; Uehara, H. The Present Status and Features of OTEC and Recent Aspects of Thermal Energy Conversion Technologies; National Maritime Research Institute: Mitaka, Tokyo, 2001; pp. 1–8. [Google Scholar]
- OES. OES Annual Report 2018|Main achievements in 2018|Task 11—Ocean thermal Energy Conversion. 2018. Available online: https://report2018.ocean-energy-systems.org/main-achievements-in-2018/task-11-ocean-thermal-energy-conversion/ (accessed on 24 November 2019).
- OES|Ocean Energy Systems—An IEA Technology Collaboration Programme. Available online: https://www.ocean-energy-systems.org/ (accessed on 24 November 2019).
- Technology, P. Makai’s Ocean Thermal Energy Conversion (OTEC) Power Plant, Hawaii. Available online: https://www.power-technology.com/projects/makais-ocean-thermal-energy-conversion-otec-power-plant-hawaii/ (accessed on 1 January 2021).
- U.S. Energy Information Administration. Annual Energy Outlook 2009, With Projections to 2030. Available online: https://www.eia.gov/outlooks/aeo/electricity_generation.php (accessed on 4 March 2018).
- Twidell, J.; Weir, T. Renewable Energy Resources, 2nd ed.; Taylor & Francis: London, UK; Milton Park, UK, 2006. [Google Scholar]
- Vega, L.; Michaelis, D. First generation 50 MW OTEC plantship for the production of electricity and desalinated water. Proc. Annu. Offshore Technol. Conf. 2010, 4, 2979–2995. [Google Scholar]
- Vega, L. Economies of ocean thermal energy conversion (OTEC): An update. Proc. Annu. Offshore Technol. Conf. 2010, 4, 3239–3256. [Google Scholar]
- Hernández-Fontes, J.V.; Felix, A.; Mendoza, E.; Cueto, Y.R.; Silva, R. On the Marine Energy Resources of Mexico. J. Mar. Sci. Eng. 2019, 7, 191. [Google Scholar] [CrossRef] [Green Version]
- García-Huante, A.; Rodríguez-Cueto, Y.; Garduño-Ruiz, E.P.; Hérnadez-Contreras, R. General Criteria for Optimal Site Selection for the Installation of Ocean Thermal Energy Conversion (OTEC) Plants in the Mexican Pacific. In Intech; IntechOpen: London, UK, 2020; p. 15. [Google Scholar]
- Alatorre-Mendieta, A.; Garcia Huante, A.; Cerezo-Acevedo, E.; Barcenas-Graniel, J.; Jimenez, F.; Silva, R. OTEC Instalation Posibilities in Mexico. In Proceeding of the 5th OTEC Symposium, La Réunion, France, 7–9 November 2017. [Google Scholar]
- Mendoza, E.; Lithgow, D.; Flores, P.; Felix, A.; Simas, T.; Silva, R. A framework to evaluate the environmental impact of OCEAN energy devices. Renew. Sustain. Energy Rev. 2019, 112, 440–449. [Google Scholar] [CrossRef]
- Paredes, M.G.; Padilla-Rivera, A.; Güereca, L.P. Life cycle assessment of ocean energy technologies: A systematic review. J. Mar. Sci. Eng. 2019, 7, 322. [Google Scholar] [CrossRef] [Green Version]
- Giraud, M.; Garçon, V.; de la Broise, D.; L’Helguen, S.; Sudre, J.; Boye, M. Potential effects of deep seawater discharge by an Ocean Thermal Energy Conversion plant on the marine microorganisms in oligotrophic waters. Biogeosci. Discuss. 2018, 475, 1–33. [Google Scholar] [CrossRef]
- Wojtarowski, A. Will Cozumel be able to capitalize its potential for the development of maritime energy? An analysis from the attitude towards alternative energies. Rev. Sociológica Pensam. Crítico 2020, 14, 31–58. [Google Scholar]
- Carrera-Chan, E.; Sabido-Tun, M.F.; Bárcenas-Graniel, J.F.; Cerezo-Acevedo, E.; Diaz Masuelli, D. Environmental Impact Assessment of the Operation of an Open Cycle OTEC 1MWe Power Plant in the Cozumel Island, Mexico. In Ocean Thermal Energy Conversion (OTEC)—Past, Present, and Progress; Intech Open: London, UK, 2020; p. 13. [Google Scholar]
- Hernández-Fontes, J.V.; Martínez, M.L.; Wojtarowski, A.; González-Mendoza, J.L.; Landgrave, R.; Silva, R. Is ocean energy an alternative in developing regions? A case study in Michoacan, Mexico. J. Clean. Prod. 2020, 266, 121984. [Google Scholar] [CrossRef]
- Secretaría de Energía (SENER). Prospectiva de Energías Renovables 2017–2031; SENER: México City, México, 2017. [Google Scholar]
- Organización de Naciones Unidas (ONU). Proyecto de Documento Final de la Cumbre de las Naciones Unidas Para la Aprobación de la Agenda para el Desarrollo Después de 2015; United Nations: New York, NY, USA, 2015; Available online: https://www.un.org/ga/search/view_doc.asp?symbol=A/69/L.85&Lang=S (accessed on 19 February 2021).
- Union of Concerned Scientist. Los Costos Ocultos de Los Combustibles Fósiles. 2018. Available online: https://es.ucsusa.org/resources/costos-ocultos-combustibles-fosiles (accessed on 22 February 2021).
- Centro Nacional de Control de Energía|Gobierno|gob.mx. Available online: https://www.gob.mx/cenace (accessed on 24 November 2019).
- Secretaría de Energía (SENER), Sistema de Información Energética; SENER: México. Available online: http://sie.energia.gob.mx/ (accessed on 25 November 2019).
- Centro Nacional de Control de la Energía (CENACE). Precios Marginales Locales. México. 2019. Available online: https://www.cenace.gob.mx/Paginas/SIM/Reportes/PreciosEnergiaSisMEM.aspx. (accessed on 5 August 2020).
- Chiappa-Carrara, X.; Enríquez, C.; Papiol, V.; Mariño-Tapia, I.; Reyes-Hernández, C. Pacific coast of Mexico in World Seas: Environ. Eval, 2nd ed.; Sheppard, C., Ed.; Elsevier Academic Press: London, UK, 2019; pp. 655–671. [Google Scholar]
- García-Huante, A.; Rodríguez-Cueto, Y.; Silva, R.; Mendoza, E.; Vega, L. Determination of the potential thermal gradient for the Mexican Pacific Ocean. J. Mar. Sci. Eng. 2018, 6, 20. [Google Scholar] [CrossRef] [Green Version]
- Valdez-Holguin, J.E.; Gaxiola-Castro, G.; Cervantes-Duarte, R. Primary productivity in the Gulf of California, calculated from the relationship between superficial irradiance and chlorophyll in the euphotic zone. Ciencias Mar. 1995, 21, 311–329. [Google Scholar] [CrossRef] [Green Version]
- Márquez-Artavia, A.; Sánchez-Velasco, L.; Barton, E.D.; Paulmier, A.; Santamaría-Del-Ángel, E.; Beier, E. A suboxic chlorophyll-a maximum persists within the Pacific oxygen minimum zone off Mexico. Deep. Res. Part II Top. Stud. Oceanogr. 2019, 169–170, 104686. [Google Scholar] [CrossRef]
- Lara-Lara, J.R. Distribución de clorofila y producción primaria por clases de tamaño en la costa del Pacífico mexicano. Ciencias Mar. 2005, 31, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Rioja-Nieto, R.; Garza-Pérez, R.; Álvarez-Filip, L.; Mariño-Tapia, I.; Enríquez, C. The Mexican Caribbean: From Xcalak to Holbox, 2nd ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Athie, G.; Candela, J.; Sheinbaum, J.; Badan, A.; Ochoa, J. Yucatan Current variability through the Cozumel and Yucatan channels. Ciencias Mar. 2011, 37, 471–492. [Google Scholar] [CrossRef] [Green Version]
- Bárcenas-Graniel, J. Evaluación del Potencial de Conversión de Energía Renovable en el Caribe Mexicano. Master’s Thesis, Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Mexico City, Mexico, 2014. [Google Scholar]
- GEBCO. General Bathymetric Chart of the Oceans. Available online: https://www.gebco.net/ (accessed on 15 January 2018).
- NOAA. National Oceanic and Atmospheric Administration, WOA (2013), World Ocean Atlas. 2013. Available online: https://www.nodc.noaa.gov/OC5/woa13/ (accessed on 5 February 2019).
- Stewart, R.H. Introduction to Physical Oceanography; Prentice Hall: Hoboken, NJ, USA, 2008; p. 353. [Google Scholar]
- Cerdeira-Estrada, S.; López-Saldaña, G. A novel Satellite-based Ocean Monitoring System for Mexico. Ciencias Mar. 2011, 37, 237–247. [Google Scholar] [CrossRef] [Green Version]
- Cerdeira-Estrada, S.; Martell-Dubois, R.; Valdéz-Chavarin, J.; Rosique-de la Cruz, L.; Perera-Valderrama, S.; López-Perea, J.; Caballero-Aragón, H.; Ressl, R. Marine-Coastal Information and Analysis System (SIMAR). CONABIO, Mexico. Available online: https://simar.conabio.gob.mx (accessed on 24 November 2019).
- Rajagopalan, K.; Nihous, G.C. An Assessment of Global Ocean Thermal Energy Conversion Resources with a High-Resolution Ocean General Circulation Model. J. Energy Resour. Technol. 2013, 135, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Departamento de Comercio de los EE.UU; Agencia Nacional del Océano y la Atmósfera de los EE.UU. (NOAA). Ciclones Tropicales. Guía de Preparación; 2013. Available online: https://www.weather.gov/media/owlie/ciclones_tropicales11.pdf (accessed on 31 August 2020).
- Centro Nacional de Prevención de Desastres (CENAPRED). Atlas Nacional de Riesgo. México. 2017. Available online: http://www.atlasnacionalderiesgos.gob.mx/app/peligro_ciclones_tropi.php (accessed on 31 August 2020).
- Centro Nacional de Control de la Energía (CENACE). Diagramas Unifilares del Sistema Eléctrico Nacional. Programa Ampl. Mod. 2016, 1, 141. [Google Scholar]
- Centro Nacional de Control de la Energía (CENACE). Programa de Ampliación y Modernización de la Red Nacional de Transmisión y Redes Generales de Distribución del Mercado Electro Mayorista. PRODESEN 2019–2033; México. 2019. Available online: https://www.energiaestrategica.com/el-prodesen-2019-2033-planea-mas-de-50-proyectos-de-expansion-de-redes-de-transmision-y-distribucion-para-lograr-una-mejor-integracion-de-renovables/ (accessed on 31 August 2020).
- Instituto Nacional de Estadística y Geografía (INEGI). Encuesta Intercensal. México. 2015. Available online: https://www.inegi.org.mx/programas/intercensal/2015/default.html#Microdatos (accessed on 31 August 2020).
- Consejo Nacional de Población y Vivienda (CONAPO). Índice de marginación por entidad Federativa y Municipio 2010. México; 2010. Available online: http://www.conapo.gob.mx/es/CONAPO/Datos_Abiertos_del_Indice_de_Marginacion (accessed on 28 August 2020).
- Comisión Nacional de Áreas Naturales Protegidas (CONANP). Áreas Naturales Protegidas Federales de la República Mexicana. México; 2017. Available online: http://sig.conanp.gob.mx/website/pagsig/info_shape.htm (accessed on 31 August 2020).
- Consejo Nacional de Población (CONAPO). Grado de Marginación por Localidad y Municipio. México; 2019. Available online: https://www.gob.mx/conapo/documentos/indice-de-marginacion-por-localidad (accessed on 31 August 2020).
- Secretaría de Desarrollo Social (SEDESOL). México. 2010. Available online: https://www.gob.mx/inea/documentos/secretaria-de-desarrollo-social-164377 (accessed on 1 September 2020).
- Doorga, J.R.S.; Gooroochurn, O.; Motah, B.A.; Ramchandur, V.; Sunassee, S. A novel modelling approach to the identification of optimum sites for the placement of ocean thermal energy conversion (OTEC) power plant: Application to the tropical island climate of Mauritius. Int. J. Energy Environ. Eng. 2018, 9, 363–382. [Google Scholar] [CrossRef] [Green Version]
- Cahyaningwidi, A. Assessment of Economic Potential of Ocean Thermal Energy Conversion in Indonesia. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 2018. [Google Scholar]
- Secretaría de Marina (SEMAR). San Miguel de Cozumel, Quintana Roo. México; 2012. Available online: https://digaohm.semar.gob.mx/derrotero/cuestionarios/cnarioCozumel.pdf (accessed on 23 February 2021).
- Secretaría de Marina (SEMAR). Lázaro Cárdenas, Michoacán. México; 2012. Available online: https://digaohm.semar.gob.mx/cuestionarios/cnarioLazaro.pdf (accessed on 18 February 2021).
- Secretaría de Energía (SENER). Metodología, Criterios y Términos para Contratos Legados. 2017. Available online: https://www.gob.mx/cms/uploads/attachment/file/258363/ANEXO_D.pdf (accessed on 20 February 2021).
- Gobierno del Estado de Baja California Sur. Información Estratégica. México, Baja California Sur; 2015. Available online: https://www.coneval.org.mx/sitios/RIEF/Documents/Bajacaliforniasur-informacion-estrategica-2015.pdf (accessed on 26 March 2018).
- Secretaría de Marina (SEMAR). Cabo San Lucas, Baja California Sur. México; 2012. Available online: http://digaohm.semar.gob.mx/cuestionarios/cnarioCabosnlucas.pdf (accessed on 30 June 2018).
- Secretaría de Marina (SEMAR). Puerto ángel, Oaxaca. México; 2012. Available online: https://digaohm.semar.gob.mx/derrotero/cuestionarios/cnarioPtoangel.pdf. (accessed on 30 June 2018).
- Cabral, J.; Zanazzi, J. Scikit-Criteria: Colección de métodos de análisis multi-criterio integrado al stack científico de Python. In Proceedings of the XIV Simposio Argentino de Investigación Operativa (SIO 2016)-JAIIO 45; Available online: http://sedici.unlp.edu.ar/handle/10915/58577 (accessed on 30 March 2021).
- Rikalovic, A.; Cosic, I.; Lazarevic, D. GIS based multi-criteria analysis for industrial site selection. Procedia Eng. 2014, 69, 1054–1063. [Google Scholar] [CrossRef] [Green Version]
- Roy, B.; Słowiński, R. Questions guiding the choice of a multicriteria decision aiding method. EURO J. Decis. Process. 2013, 1, 69–97. [Google Scholar] [CrossRef] [Green Version]
- Saaty, T.L. How to make a decision: The analytic hierarchy process. Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
- Kacprzak, D. An extended TOPSIS method based on ordered fuzzy numbers for group decision making. Artif. Intell. Rev. 2020, 53, 2099–2129. [Google Scholar] [CrossRef] [Green Version]
- Krohling, A.; Pacheco, A.G.C. A-TOPSIS—An approach based on TOPSIS for ranking evolutionary algorithms. Procedia Comput. Sci. 2015, 55, 308–317. [Google Scholar] [CrossRef] [Green Version]
- Lara-Zúñiga, C.A. Diseño de la protección catódica para los condensadores de las unidades 1 y 2 de la C.T. Plutarco Elías Calles. Tecnolab. XIII. Scielo México 1997, 71, 18–24. [Google Scholar]
- Comisión Intersecretarial de Bioseguridad de los Organismos Genéticamente Modificados (CIBIOGEM). Áreas naturales protegidas del Estado de Quintana Roo. Available online: https://www.conacyt.gob.mx/cibiogem/index.php/anpl/quintana-roo (accessed on 18 January 2021).
- Heckel, G.; Ruiz-Mar, M.G.; Schramm, Y.; Gorter, U. Atlas de Distribución y Abundancia de Mamíferos Marinos en México; CEMIE-Océano: Campeche, Mexico, 2018. [Google Scholar]
- Sands, M.D. Ocean Thermal Energy Conversion (OTEC) Programmatic Environmental Analysis, 1st ed.; U.S Department of Commerce Nacional Oceanic and Atmospheric Administration: Berkeley, CA, USA, 1980. [Google Scholar]
- Rivera, G.; Felix, A.; Mendoza, E. A review on environmental and social impacts of thermal gradient and tidal currents energy conversion and application to the case of chiapas, Mexico. Int. J. Environ. Res. Public Health 2020, 17, 7791. [Google Scholar] [CrossRef] [PubMed]
- Dulce, O. La SCJN da Fallo Histórico a Favor de los Indígenas de Juchitán y en Contra de Parque Eólico Español; Sin Embargo: Mexico City, Mexico, 2018. [Google Scholar]
- Altamirano, C. Se Intensifican las Amenazas Contra Opositores al Gasoducto en Comunidad Yaqui de Sonora, Animal Politico, México, 30-Nov-2018. Available online: https://www.animalpolitico.com/2018/11/amenazas-yaqui-gasoducto-sonora/ (accessed on 11 March 2021).
- Hansen, L.; Hammarlund, L.K.; Sorensen, K.; Christensen, H. Public Acceptance of Wave Energy, Proceedings from the 5 European Wave Energy Conference; University College: Dublin, Ireland, 2003. [Google Scholar]
- Muralidharan, S. Assessment of Ocean Thermal Energy Conversion. Master’s Thesis, University of Mumbai, Mumbai, India, 2012. [Google Scholar]
- Martel, L.; Smith, P.; Rizea, S.; Van Ryzin, J.; Morgan, C.; Noland, G.; Pavlosky, R.; Thomas, M.; Halkyard, J. Ocean Thermal Energy Conversion Life Cycle Cost Assessment; U.S. Department of Energy Office of Scientific and Technical Information: Washington, DC, USA, 2012. [Google Scholar]
- Ikegami, Y. The advanced technology and future prospect of OTEC for Island. In IEA Committee on Energy Research and Technology; Saga University: Tokyo, Japan, 2015. [Google Scholar]
- García-Huante, A. Posibles Efectos Oceanográficos Por La Operación De Una Planta OTEC (Ocean Thermal Energy Conversion) en La Zona De Puerto Ángel; Universidad Nacional Autónoma de México: Mexico City, México, 2015. [Google Scholar]
- Osorio, A.F.; Arias-Gaviria, J.; Devis-Morales, A.; Acevedo, D.; Velasquez, H.I.; Arango-Aramburo, S. Beyond electricity: The potential of ocean thermal energy and ocean technology ecoparks in small tropical islands. Energy Policy 2016, 98, 713–724. [Google Scholar] [CrossRef]
Regions | Coastal States | Main Characteristics | Ref. |
---|---|---|---|
(NP) Northwestern Pacific and (GC) Gulf of California | Baja California and Baja California Sur | The ocean circulation is influenced by the California Current, where the 300 m surface layer has velocities of ~0.3–0.4 m s−1, temperatures between 12 °C ≤ SST < 18 °C and salinities >34.5 ups. The mean depth estimated for the euphotic zone is 39 m. The differences between the SST and the temperature at a depth of 1000 m is around 18 °C. | [27,28,29] |
(CMP) Central MP | Jalisco, Colima, Michoacan, Guerrero and part of Oaxaca | The region is affected by the Ekman transport, the anticyclonic circulation of the Tehuantepec Bowl, the Costa Rica Coastal Current and West Mexican Current. It is generally covered by the Eastern Pacific Warm Pool, where the SST is warmer than 28.5 °C throughout the year. The temperature differences are between 22 °C and 24 °C. The euphotic zone is >25 m year-round. | [27,28,30] |
(SMP) Southern MP | Oaxaca and Chiapas | Comprises the Gulf of Tehuantepec, is strongly influenced by northerly winds, called “Tehuanos”, that produce sea surface mixing, giving a thermocline upwelling bringing SST anomalies. Thermal differences are over 26 °C, and the euphotic zone is 48 m | [27,28,31] |
Sites | Thermal Power | Energy Need | Energy Cost | Extreme Events | Tourist Activity | Industrial Activity |
---|---|---|---|---|---|---|
Cozumel | H | M | H | H | H | M |
Lazaro Cardenas | M | L | L | M | M | H |
Cabo San Lucas | L | M | M | H | H | M |
Puerto Angel | H | H | M | L | M | L |
Sites | 1 Latitude (°) | 1 Longitude (°) | 2 Latitude (°) | 2 Longitude (°) | Distance to Cold Water Intake (km) | |
---|---|---|---|---|---|---|
Cozumel | 20.52 | −86.94 | 20.25 | −86.93 | 5.4 | 29.07 |
Lazaro Cardenas | 17.96 | −102.19 | 17.78 | −102.06 | 21.9 | 29.52 |
Cabo San Lucas | 22.89 | −109.92 | 22.83 | −109.91 | 7.5 | 28.62 |
Puerto Angel | 15.67 | −96.49 | 15.63 | −96.47 | 3.9 | 29.41 |
Floating Sites | <10.0 | 10.0–12.49 | 12.5–24.9 | 25.0–49.9 | ≥50.0 |
---|---|---|---|---|---|
Cozumel | 0 | 0 | 0 | 0 | 100% |
Lazaro Cardenas | 0 | 0 | 0 | 0 | 100% |
Cabo San Lucas | 32% | 0 | 0 | 26% | 42% |
Puerto Angel | 0 | 0 | 0 | 0 | 100% |
Sites | States | Distance to the Electricity Grid (km) | OTEC Production (GWh/yr) | % of the State´s Energy Consumption |
---|---|---|---|---|
Cozumel | Quintana Roo | 44 | 402.96 | 9% |
Lazaro Cardenas | Michoacan | 32 | 402.96 | 6% |
Cabo San Lucas | Baja California Sur | 7 | 105.95 | 2% |
Puerto Angel | Oaxaca | 13 | 402.96 | 16% |
Site | Population | Number of Households | % of Homes without Electricity |
---|---|---|---|
Cozumel | 86,415 | 18,579 | 0.22 |
Lazaro Cardenas | 183,185 | 44,973 | 0.43 |
Cabo San Lucas | 81,111 | 18,829 | 0.63 |
Puerto Angel | 2645 | 675 | 3.28 |
Criteria | Type (min/max) | Weighing |
---|---|---|
Distance to cold-water intake at 1000 m depth (km) | min | 0.18 |
Temperature difference (°C) | max | 0.23 |
Power availability (%) | max | 0.23 |
Extreme events | min | 0.08 |
Protected areas | min | 0.08 |
Marginalization index | max | 0.05 |
Home without electricity (%) | max | 0.05 |
Local marginal price (USD/MWh) | max | 0.05 |
Distance to the electricity grid (km) | min | 0.04 |
nmax = 10.09, CI = 0.14, CR = 0.09 |
Alternatives | Ranking |
---|---|
Cozumel | 3 |
Lazaro Cardenas | 4 |
Cabo San Lucas | 2 |
Puerto Angel | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garduño-Ruiz, E.P.; Silva, R.; Rodríguez-Cueto, Y.; García-Huante, A.; Olmedo-González, J.; Martínez, M.L.; Wojtarowski, A.; Martell-Dubois, R.; Cerdeira-Estrada, S. Criteria for Optimal Site Selection for Ocean Thermal Energy Conversion (OTEC) Plants in Mexico. Energies 2021, 14, 2121. https://doi.org/10.3390/en14082121
Garduño-Ruiz EP, Silva R, Rodríguez-Cueto Y, García-Huante A, Olmedo-González J, Martínez ML, Wojtarowski A, Martell-Dubois R, Cerdeira-Estrada S. Criteria for Optimal Site Selection for Ocean Thermal Energy Conversion (OTEC) Plants in Mexico. Energies. 2021; 14(8):2121. https://doi.org/10.3390/en14082121
Chicago/Turabian StyleGarduño-Ruiz, Erika Paola, Rodolfo Silva, Yandy Rodríguez-Cueto, Alejandro García-Huante, Jorge Olmedo-González, M. Luisa Martínez, Astrid Wojtarowski, Raúl Martell-Dubois, and Sergio Cerdeira-Estrada. 2021. "Criteria for Optimal Site Selection for Ocean Thermal Energy Conversion (OTEC) Plants in Mexico" Energies 14, no. 8: 2121. https://doi.org/10.3390/en14082121
APA StyleGarduño-Ruiz, E. P., Silva, R., Rodríguez-Cueto, Y., García-Huante, A., Olmedo-González, J., Martínez, M. L., Wojtarowski, A., Martell-Dubois, R., & Cerdeira-Estrada, S. (2021). Criteria for Optimal Site Selection for Ocean Thermal Energy Conversion (OTEC) Plants in Mexico. Energies, 14(8), 2121. https://doi.org/10.3390/en14082121