Application of Silicon Dioxide as the Inert Component or Oxide Component Enhancer in ANFO
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instrumental Methods
2.3. Thermodynamic Models
2.4. Blasting Tests
3. Results and Discussion
3.1. Morphology of Non-Ideal Explosives with the Addition of Silicon Dioxide
3.2. Morphology of Non-Ideal Explosives with Silicon Dioxide Addition
3.3. Results of Blasting Tests
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cummock, N.R.; Mares, J.O., Jr.; Gunduz, I.E.; Son, S.F. Relating a small-scale shock sensitivity experiment to large-scale failure diameter in an aluminized ammonium nitrate non-ideal explosive. Combust. Flame 2018, 194, 271–277. [Google Scholar] [CrossRef]
- Miyake, A.; Takahara, K.; Ogawa, T.; Ogata, Y.; Wada, Y.; Arai, H. Influence of physical properties of ammonium nitrate on the detonation behavior of ANFO. J. Loss Prev. Process. Ind. 2001, 14, 533–538. [Google Scholar] [CrossRef]
- Keshavarz, M.H.; Mofrad, R.T.; Poor, K.E.; Shokrollahi, A.; Zali, A.; Yousefi, M.H. Determination of performance of non-ideal aluminized explosives. J. Hazard. Mater. 2006, 137, 83–87. [Google Scholar] [CrossRef]
- Davis, W.; Fauquignon, C. Classical theory of detonation. J. Phys. IV Colloq. 1995, 5, C4-3–C4-21. [Google Scholar] [CrossRef]
- Smirnov, E.B.; Kostitsin, O.; Koval, A.V.; Akhlyustin, I.A. Model of non-ideal detonation of condensed high explosives. In Proceedings of the XXXI International Conference on Equations of State for Matter (ELBRUS 2016), Elbrus, Russia, 1–6 March 2016. [Google Scholar]
- Paszula, J.M.; Kowalewski, E. Study of the detonation development of non-ideal explosives. High-Energy Mater. 2015, 7, 95–105. [Google Scholar]
- Maranda, A. Influence of aluminum chemical activity on detonation parameters of composite explosive containing aluminum powders (CX-Al). Wiad. Chem. 2001, 55, 353–375. [Google Scholar]
- Kramarczyk, B.; Pytlik, M.; Mertuszka, P. Effect of aluminium additives on selected detonation parameters of a bulk emulsion explosive. High-Energy Mater. 2020, 12, 99–113. [Google Scholar]
- Buczkowski, D. Detonation properties of ammonium nitrate based fertilizers and fuels. Cent. Eur. J. Energ. Mater. 2011, 8, 99–106. [Google Scholar]
- Zygmunt, B. Detonation parameters of mixtures containing ammonium nitrate and aluminium. Cent. Eur. J. Energ. Mater. 2009, 6, 57–66. [Google Scholar]
- Biessikirski, A.; Ziąbka, M.; Dworzak, M.; Kuterasiński, Ł.; Twardosz, M. Effect of metal addition on ANFO’s morphology and energy detonation. Przem. Chem. 2019, 98, 928–931. [Google Scholar]
- Anderson, P.E.; Cook, P.; Kyle, A.D.; Mychajlonka, K.; Mileham. M. Silicon Fuel in High Performance Explosives. Prop. Explos., Pyrotech. 2014, 39, 74–78. [Google Scholar] [CrossRef]
- Barański, K. Analysis of the Possibility of Using “Green Pyrotechnics” in the Detonators MW. Ph.D. Thesis, Faculty of Mining and Geoengineering, AGH University of Science and Technology in Cracow, Cracow, Poland, 27 September 2019. [Google Scholar]
- Keshavarz, M.H.; Zamani, A.; Shafiee, M. Predicting detonation performance of CHNOFCl and aluminized explosives. Prop. Explos. Pyrotech. 2014, 39, 749–754. [Google Scholar] [CrossRef]
- Biessikirski, A.; Wądrzyk, M.; Janus, R.; Biegańska, J.; Jodłowski, G.; Kuterasiński, Ł. Study on fuel oils used in ammonium nitrate-based explosives. Przem. Chem. 2018, 97, 457–462. [Google Scholar]
- Niksiński, A. Górnicze Materiały Wybuchowe. Obliczanie Parametrów Użytkowych; BN-80/6091-42; Zakłady Tworzyw Sztucznych ERG: Bieruń, Poland, 1981. [Google Scholar]
- Mertuszka, P.; Pytlik, M. Analysis and comparison of the continuous detonation velocity measurement method with the standard method. High-Energy Mater. 2019, 11, 63–72. [Google Scholar]
- European Commission. Explosives for Civil Uses. High Explosives. Part 16: Detection and Measurement of Toxic Gases; EN 13631-16:2004; European Committee for Standardization: Brussels, Belgium, 2004. [Google Scholar]
- European Union. Council directive 93/15/EEC of 5 April 1993 on the harmonization of the provisions relating to the placing on the market and supervision of explosives for civil uses. Off. J. Eur. Union 1993, 12, 20–36. [Google Scholar]
- Sasoh, A.; Ogawa, T.; Takayama, K. Use of ammonium nitrate-alcohol (ANA) for ballistic range propellant. J. Shock Waves. 1999, 9, 291–294. [Google Scholar] [CrossRef]
- Theoret, A.; Sandorfy, C. Infrared spectra and crystalline phase transitions of ammonium nitrate. Can. J. Chem. 1964, 42, 57–62. [Google Scholar] [CrossRef]
- Biessikirski, A.; Kuterasiński, Ł.; Pyra, J.; Dworzak, M. Comparison of properties of ammonium nitrates used for production of fertilizers and explosive materials. Przem. Chem. 2016, 95, 1381–1384. [Google Scholar]
- Wu, H.B.; Chan, M.N.; Chan, K. FTIR characterization of polymorphic transformation of ammonium nitrate. Aerosol Sci. Technol. 2007, 41, 581–588. [Google Scholar] [CrossRef]
- Pretsch, E.; Buhlmann, P.; Badertscher, M. Structure Determination of Organic Compounds. Tables of Spectral Data; Springer: Berlin, Germany, 2009. [Google Scholar]
- Hendricks, S.B.; Posnjak, E.; Kracek, F.C. Molecular rotation in the solid state. The variation of the crystal structure of ammonium nitrate with temperature. J. Am. Chem. Soc. 1932, 54, 2766–2786. [Google Scholar] [CrossRef]
- Biessikirski, A.; Kuterasiński, Ł. Morphological properties of ANFO explosives obtained with the use of liquid combustibles. Przem. Chem. 2018, 97, 587–590. [Google Scholar]
- Vargeese, A.A.; Joshi, S.S.; Krishnamurthy, V.N. Effect of method of crystallization on the IV-III and IV-II polymorphic transitions of ammonium nitrate. J. Hazard. Mater. 2009, 161, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Huelser, T.; Schnurre, S.M.; Wiggers, H.; Schulz, C. Gas-Phase Synthesis of Highly-Specific Nanoparticles on the Pilot-Plant Scale; NSTI-Nanotech: Anaheim, CA, USA, 2010. [Google Scholar]
- Buczkowski, B.; Zygmunt, B. Modification of ammonium nitrate granules physical structure for ANFO production. Przem. Chem. 2008, 87, 707–710. [Google Scholar]
- Lotspeich, E.; Petr, V. The characterization of ammonium nitrate mini-prills. In Dynamic Behavior of Materials, Proceedings of the 2014 Annual Conference on Experimental and Applied Mechanics, Lombard, IL, USA, 3–5 June 2014; Song, B., Casem, D., Kimberley, J., Eds.; Springer: Cham, Switzerland, 2015; Volume 1, pp. 319–325. [Google Scholar]
- Biessikirski, A.; Kuterasiński, Ł. Research on Morphology and Topology of ANFO Based on Various Types of Oxygen Component; Wydawnictwa AGH: Kraków, Poland, 2018. [Google Scholar]
- Rao, K.V.R.; Hariharan, P.L.; Jagannathan, K.; Yoganarasimhan, S.R. Scanning electron microscopy of ammonium nitrate prills in relations to their application in ammonium nitrate-fuel oil systems. Fuel 1989, 68, 1118–1122. [Google Scholar]
- Viktorov, S.D.; Frantov, A.E.; Lapikov, I.N.; Andreev, V.V.; Starshinov, A.V. Effect of the microstructure of ammonium nitrate granules on the detonability of composite propellants based on it. Combust. Explos. Shock. Waves 2016, 52, 727–731. [Google Scholar] [CrossRef]
- Biessikirski, A. Research on the Physicochemical Properties of Non-ideal Explosives Based on Various Types of Ammonium Nitrate(V) and Fuel Oils; Wydawnictwa AGH: Kraków, Poland, 2020. [Google Scholar]
Non-Ideal Explosive | Content, wt.% | ||
---|---|---|---|
AN-PP | FO | SiO2 | |
Sample 1 | 94.0 | 6.0 | - |
Sample 2 | 94.0 | 5.0 | 1.0 |
Sample 3 | 94.0 | 4.0 | 2.0 |
Sample 4 | 93.07 | 5.94 | 0.99 |
Sample 5 | 92.15 | 5.89 | 1.96 |
Parameter | Composition: AN-PP:FO:SiO2 | ||||
---|---|---|---|---|---|
94.0:6.0:0.0 | 94.0:5.5:0.5 | 94.0:5.0:1.0 | 94.0:4.5:1.5 | 94.0:4.0:2.0 | |
Energy, kJ·kg−1 | −4274 | −4340 | −4406 | −4472 | −4538 |
Detonation pressure, MPa | 2797 | 2822 | 2770 | 2701 | 2628 |
Detonation temperature, K | 2663 | 2693 | 2613 | 2513 | 2411 |
Heat of explosion, kJ·kg−1 | 3958 | 3994 | 3809 | 3588 | 3367 |
Strength of explosion, kJ·kg−1 | 973 | 969 | 934 | 894 | 854 |
Post-blast volume, L·kg−1 | 997 | 982 | 976 | 971 | 967 |
Density, kg·m−3 | 830 | 839 | 848 | 857 | 866 |
Oxygen balance, % | −2.10 | −0.354 | 1.39 | 3,13 | 4.87 |
Parameter | Composition: AN-PP:FO:SiO2 | ||
---|---|---|---|
93.53:5.97:0.5 | 92.15:5.89:1.96 | 93.07:5.94:0.99 | |
Energy, kJ·kg−1 | −4274 | −4382 | −4485 |
Detonation pressure, MPa | 2797 | 2828 | 2898 |
Detonation temperature, K | 2663 | 2646 | 2627 |
Heat of explosion, kJ·kg−1 | 3958 | 3920 | 3881 |
Strength of explosion, kJ·kg−1 | 973 | 956 | 941 |
Post-blast volume, L·kg-1 | 997 | 987 | 978 |
Density, kg·m−3 | 830 | 839 | 857 |
Oxygen balance, % | −2.10 | −2.07 | −2.04 |
Parameter | Type and Size of SiO2 | Composition: AN-PP:FO:SiO2 | ||
---|---|---|---|---|
94.0:6.0:0.0 | 94.0:5.0:1.0 | 94.0:4.0:2.0 | ||
Density, kg⋅m−1 | Powder, 44 μm (M1) | 801 | 673 | 703 |
VOD, m⋅s−1 | 1622 | 485 | N/D | |
Volume of CO2, dm3⋅kg−1 | 94.19 | 83.66 | N/D | |
Volume of CO dm3⋅kg−1 | 13.91 | 4.70 | N/D | |
Volume of NO, dm3⋅kg−1 | 1.53 | 7.57 | N/D | |
Volume of NO2, dm3⋅kg−1 | 0.11 | 0.54 | N/D | |
Volume of NOx, dm3⋅kg−1 | 1.64 | 8.11 | N/D | |
Density, kg⋅m−1 | Powder, 63 μm (M2) | 801 | 753 | 770 |
VOD, m⋅s−1 | 1622 | 1609 | 1659 | |
Volume of CO2, dm3⋅kg−1 | 94.19 | 106.02 | 107.53 | |
Volume of CO dm3⋅kg−1 | 13.91 | 5.87 | 5.94 | |
Volume of NO, dm3⋅kg−1 | 1.53 | 12.92 | 12.81 | |
Volume of NO2, dm3⋅kg−1 | 0.11 | 2.71 | 2.78 | |
Volume of NOx, dm3⋅kg−1 | 1.64 | 15.63 | 15.59 | |
Density, kg⋅m−1 | Granule, 1.5–2.0 mm (M3) | 801 | 794 | 844 |
VOD, m⋅s−1 | 1622 | 422 | N/D | |
Volume of CO2, dm3⋅kg−1 | 94.19 | 120.04 | N/D | |
Volume of CO dm3⋅kg−1 | 13.91 | 4.47 | N/D | |
Volume of NO, dm3⋅kg−1 | 1.53 | 12.43 | N/D | |
Volume of NO2, dm3⋅kg−1 | 0.11 | 1.89 | N/D | |
Volume of NOx, dm3⋅kg−1 | 1.64 | 14.33 | N/D |
Parameter | Type and Size of SiO2 | Composition: AN-PP:FO:SiO2 | ||
---|---|---|---|---|
94.0:6.0:0.0 | 92.15:5.89:1.96 | 93.07:5.94:0.99 | ||
Density, kg⋅m−1 | Powder, 44 μm (M1) | 733 | 667 | 699 |
VOD, m⋅s−1 | 2230 | 1609 | 2568 | |
Volume of CO2, dm3⋅kg−1 | 92.63 | 90.37 | 92.81 | |
Volume of CO dm3⋅kg−1 | 5.70 | 5.09 | 6.28 | |
Volume of NO, dm3⋅kg−1 | 1.53 | 2.18 | 10.57 | |
Volume of NO2, dm3⋅kg−1 | 0.18 | 0.22 | 1.44 | |
Volume of NOx, dm3⋅kg−1 | 1.71 | 2.41 | 12.01 | |
Density, kg⋅m−1 | Powder, 63 μm (M2) | 733 | 715 | 721 |
VOD, m⋅s−1 | 2230 | 2451 | 2509 | |
Volume of CO2, dm3⋅kg−1 | 92.63 | 92.77 | 93.06 | |
Volume of CO dm3⋅kg−1 | 5.70 | 2.75 | 4.88 | |
Volume of NO, dm3⋅kg−1 | 1.53 | 8.08 | 9.63 | |
Volume of NO2, dm3⋅kg−1 | 0.18 | 1.26 | 1.64 | |
Volume of NOx, dm3⋅kg−1 | 1.71 | 9.34 | 11.27 | |
Density, kg⋅m−1 | Granule, 1.5–2.0 mm (M3) | 733 | 732 | 747 |
VOD, m⋅s−1 | 2230 | 2093 | 2196 | |
Volume of CO2, dm3⋅kg−1 | 92.63 | 91.58 | 92.35 | |
Volume of CO dm3⋅kg−1 | 5.70 | 4.89 | 5.12 | |
Volume of NO, dm3⋅kg−1 | 1.53 | 3.04 | 3.83 | |
Volume of NO2, dm3⋅kg−1 | 0.18 | 0.46 | 0.66 | |
Volume of NOx, dm3⋅kg−1 | 1.71 | 3.50 | 4.48 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biessikirski, A.; Barański, K.; Pytlik, M.; Kuterasiński, Ł.; Biegańska, J.; Słowiński, K. Application of Silicon Dioxide as the Inert Component or Oxide Component Enhancer in ANFO. Energies 2021, 14, 2152. https://doi.org/10.3390/en14082152
Biessikirski A, Barański K, Pytlik M, Kuterasiński Ł, Biegańska J, Słowiński K. Application of Silicon Dioxide as the Inert Component or Oxide Component Enhancer in ANFO. Energies. 2021; 14(8):2152. https://doi.org/10.3390/en14082152
Chicago/Turabian StyleBiessikirski, Andrzej, Krzysztof Barański, Mateusz Pytlik, Łukasz Kuterasiński, Jolanta Biegańska, and Konrad Słowiński. 2021. "Application of Silicon Dioxide as the Inert Component or Oxide Component Enhancer in ANFO" Energies 14, no. 8: 2152. https://doi.org/10.3390/en14082152
APA StyleBiessikirski, A., Barański, K., Pytlik, M., Kuterasiński, Ł., Biegańska, J., & Słowiński, K. (2021). Application of Silicon Dioxide as the Inert Component or Oxide Component Enhancer in ANFO. Energies, 14(8), 2152. https://doi.org/10.3390/en14082152