Power-Generation Optimization Based on Piezoelectric Ceramic Deformation for Energy Harvesting Application with Renewable Energy
Abstract
:1. Introduction
2. Materials
2.1. Piezoelectric Material
2.2. Piezoelectric Effect
2.3. Mode (Piezoelectric Transverse Mode)
3. Experimental
3.1. Data Collection Method
3.2. Parameter
4. Results for the Charging Power
4.1. Diameter of The Piezoelectric Ceramic (Sx)
4.2. Depth to Which the Piezoelectric Ceramic is Compressed (Dx)
4.3. Input Frequency of the Plunger ()
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ellabban, O.; Abu-Rub, H.; Blaabjerg, F. Renewable energy resources: Current status, future prospects and their enabling technology. Renew. Sustain. Energy Rev. 2014, 39, 748–764. [Google Scholar] [CrossRef]
- Sawin, J.L.; Martinot, E. Renewables 2010-Global Status Report. REN21 Secretariat 2014. Available online: https://www.harbortaxgroup.com/wp-content/uploads/2014/07/REN21_GSR_2010_full_revised-Sept2010.pdf (accessed on 1 September 2010).
- Callaghan, J.; Boud, R. Future Marine Energy: Results of the Marine Energy Challenge: Cost Competitiveness and Growth of Wave and Tidal Stream Energy. Carbon Trust 2006, 40. Available online: https://www.bchydro.com/content/dam/hydro/medialib/internet/documents/planning_regulatory/iep_ltap/ror/appx_11a_marine_energy.pdf (accessed on 1 January 2006).
- Czech, B.; Bauer, P. Wave energy converter concept: Design challenges and classification. IEEE Ind. Electron. Mag. 2012, 6, 4–16. [Google Scholar] [CrossRef]
- Falnes, J. A review of wave-energy extraction. Mar. Struct. 2007, 20, 185–201. [Google Scholar] [CrossRef]
- Smil, V. Energy in Nature and Society: General Energetics of Complex Systems; MIT Press: Cambridge, MA, USA, 2008. [Google Scholar]
- Erturk, A.; Inman, B.J. Piezoelectric Energy Harvesting; John Willey & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Barbehenn, G.H. True grid independence: Robust energy harvesting system for wireless sensors uses piezoelectric energy harvesting power supply and li-poly batteries with shunt charger. LT J. Analog Innov. 2010, 20, 36–38. [Google Scholar]
- Rjafallah, A.; Hajjaji, A.; Guyomar, D. Modeling of polyurethane/lead zirconate titanate composites for vibration energy harvesting. J. Compos. Mater. 2018, 53, 613–623. [Google Scholar] [CrossRef]
- Gareh, S.; Kok, B.C.; Yee, M.H. Optimization of the Compression-Based Piezoelectric Traffic Model (CPTM) for Road Energy Harvesting Application. Int. J. Renew. Energy Res. 2019, 9, 1272–1282. [Google Scholar]
- Ballato, A. Piezoelectricity: Old, new thrusts. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1995, 42, 916–926. [Google Scholar] [CrossRef] [Green Version]
- Ballato, A. Piezoelectricity: History and new thrusts. IEEE Ultrason. Symp. Proc. 1996, 1, 575–783. [Google Scholar]
- Luo, Z.; Zhu, D.; Beeby, S.P. Multilayer ferroelectret-based energy harvesting insole. J. Phys. Conf. Ser. 2015, 660, 012118. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.N.; Chun, J.; Chae, S.A. Silk fibroin-based biodegradable piezoelectric composite nanogenerators using lead-free ferroelectric nanoparticles. Nano Energy 2015, 14, 87–94. [Google Scholar] [CrossRef]
- Platt, S.R.; Farritor, S.; Haider, H. On low-frequency electric power generation with PZT ceramics. IEEE/ASME Trans. Mechatron. 2005, 10, 240–252. [Google Scholar] [CrossRef]
- Yan, X.; Li, G.; Wang, Z. Recent progress on piezoelectric materials for renewable energy conversion. Nano Energy 2020. [Google Scholar] [CrossRef]
- Chen, H.; Jia, C. Power harvesting with PZT ceramics. In Proceedings of the 2007 IEEE International Symposium on Circuits and Systems, New Orleans, LA, USA, 27–30 May 2007; pp. 557–560. [Google Scholar]
- Liu, H.; Hua, R.; Lu, Y. Boosting the efficiency of a footstep piezoelectric-stack energy harvester using the synchronized switch technology. J. Intell. Mater. Syst. Struct 2019, 30, 813–822. [Google Scholar] [CrossRef]
- Sun, C.; Shang, G. Modeling for piezoelectric stacks in series and parallel. In Proceedings of the 2013 Third International Conference on Intelligent System Design and Engineering Applications, Hong Kong, China, 16–18 January 2013; pp. 954–957. [Google Scholar]
- Khalid, S.; Raouf, I.; Khan, A. A Review of Human-Powered Energy Harvesting for Smart Electronics: Recent Progress and Challenges. Int. J. Precis. Eng. Manuf. Green Technol. 2019, 6, 821–851. [Google Scholar] [CrossRef]
- Nguyen, C.H.; Hanke, U.; Halvorsen, E. Actuation of Piezoelectric Layered Beams With d31 and d33 Coupling. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2018, 65, 815–827. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.B.; Park, H. Comparison of MEMS PZT cantilevers based on d31 and d33 modes for vibration energy harvesting. J. Microelectromech. Syst. 2012, 22, 26–33. [Google Scholar] [CrossRef]
- Park, J.C.; Park, J.Y. Modeling and characterization of piezoelectric d33 mode MEMS energy harvester. J. Microelectromech. Syst. 2010, 19, 1215–1222. [Google Scholar] [CrossRef]
- Truitt, A. Energy Harvesting through Wind Excitation of a Piezoelectric Flag-Like Harvester. Ph.D. Thesis, University of Alabama Libraries, Tuscaloosa, AL, USA, 2013. Available online: https://ir.ua.edu/bitstream/handle/123456789/1714/file_1.pdf?sequence=1&isAllowed=y (accessed on 1 September 2020).
- Fang, H.B.; Liu, J.Q. Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting. Microelectron. J. 2006, 37, 1280–1284. [Google Scholar] [CrossRef]
- Erturk, A.; Inman, D.J. 1.4 Summary of the Theory of Linear Piezoelectricity. In Piezoelectric Energy Harvesting, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011; pp. 9–12. [Google Scholar]
- De Almeida, B.V.; Pavanello, R. Topology Optimization of the Thickness Profile of Bimorph Piezoelectric Energy Harvesting Devices. J. Appl. Comput. Mech. 2019, 5, 113–127. [Google Scholar]
- Chopra, I. Review of state of art of smart structures and integrated systems. AIAA J. 2002, 40, 2145–2187. [Google Scholar] [CrossRef]
- Maghsoudi Nia, E.; Wan Abdullah Zawawi, N.A.; Mahinder Singh, B.S. Design of a pavement using piezoelectric materials. Mater. Werkst. 2019, 50, 320–328. [Google Scholar] [CrossRef]
- Viet, N.V.; Xie, X.D. Energy harvesting from ocean waves by a floating energy harvester. Energy 2016, 112, 1219–1226. [Google Scholar] [CrossRef]
- Li, R.; Yu, Y. Harvesting energy from pavement based on piezoelectric effects: Fabrication and electric properties of piezoelectric vibrator. J. Renew. Sustain. Energy 2018, 10. [Google Scholar] [CrossRef]
- Mishra, S.; Unnikrishnan, L.; Nayak, S.K.; Mohanty, S. Advances in Piezoelectric Polymer Composites for Energy Harvesting Applications: A Systematic Review. Macromol. Mater. Eng. 2018, 304, 1800463. [Google Scholar] [CrossRef] [Green Version]
- Erturk, A.; Inman, D.J. 10.1.1 Effective Parameters of Various Soft Ceramics and Single Crystals. In Piezoelectric Energy Harvesting, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011; pp. 301–3022. [Google Scholar]
Parameter | Index |
---|---|
Diameter of the piezoelectric ceramic (PZT) | |
Deformation Depth of the piezoelectric ceramic (PZT) | |
Deformation Frequency of the piezoelectric ceramic (PZT) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, H.; Ko, J. Power-Generation Optimization Based on Piezoelectric Ceramic Deformation for Energy Harvesting Application with Renewable Energy. Energies 2021, 14, 2171. https://doi.org/10.3390/en14082171
Han H, Ko J. Power-Generation Optimization Based on Piezoelectric Ceramic Deformation for Energy Harvesting Application with Renewable Energy. Energies. 2021; 14(8):2171. https://doi.org/10.3390/en14082171
Chicago/Turabian StyleHan, Hyeonsu, and Junghyuk Ko. 2021. "Power-Generation Optimization Based on Piezoelectric Ceramic Deformation for Energy Harvesting Application with Renewable Energy" Energies 14, no. 8: 2171. https://doi.org/10.3390/en14082171
APA StyleHan, H., & Ko, J. (2021). Power-Generation Optimization Based on Piezoelectric Ceramic Deformation for Energy Harvesting Application with Renewable Energy. Energies, 14(8), 2171. https://doi.org/10.3390/en14082171