“Green Energy” and the Standard of Living of the EU Residents
Abstract
:1. Introduction
2. The Standard of Living and Renewable Energy—The Theoretical Aspect
- production and consumption, where it is expected that natural resources will be used in a rational way and energy will be used effectively, waste and poverty will be reduced and economic competitiveness will be strengthened.
- energy use and production, where it is expected that air quality will be improved, the energy intensity of production will be reduced, energy efficiency will be improved and that energy security and general access to clean energy will be increased. The area assumes that it is critically important to increase the use of renewable energy sources and slowly become less dependent on traditional energy sources (including oil and natural gas) [31].
- economic-better use of production resources-land, labour, capital; economic activation of local communities; lower energy production cost; reduced fuel imports.
- social-the creation of new workplaces; improvement of residents’ standard of living.
- environmental-improvement in the condition of the natural environment and reduction of greenhouse gas emissions, which will have an impact on limiting the extraction of fossil fuels and, as a result, decreasing environmental burden related to the exploitation of deposits and will reduce the risk of natural disasters.
3. Materials and Methods
- Index of the Economic Aspects of Welfare (EAW) is one of the first measures of economic welfare to more broadly incorporate the ecological aspect and a broad spectrum of qualitative factors. It was applied for the first time by X. Zolotas in 1981. Its structure is focused on the current flow of goods and services. It takes into account expenditures on public buildings, the value of household works, expenditures on durable consumer goods, advertising, the value of free time, the value of public sector services, corrected by the expenditures related to health care and education, costs of environmental pollution and the depletion of natural resources [59,60].
- Index of Sustainable Welfare (ISEW), developed in 1989 by H. Daly and J. Cobb. The first step in the construction of this measure is the correction of personal expenditures of a population by the income index spread. The obtained values are then modified by adding or subtracting monetary values of a predetermined set of factors (of social, economic and environmental nature), depending on whether a given factor has a positive or negative impact on welfare. Expenditures related to, among other things, public education and health care, or the value of services from domestic work, increase the base value and decrease, among other things, the costs of commuting, unemployment and natural environment exploitation as well as crime-related costs [61,62].
- Human Development Index (HDI), which is a complex measure based on the geometric mean of three (normalized) indicators relating to basic dimensions of human life: the ability to live a long and healthy life, measured by life expectancy at birth; the ability to acquire knowledge, measured by average years of education and the expected years of education; and the ability to attain a decent standard of living, measured by gross income per capita. Since 1900, the index has been recurrently published as part of the Human Development Report prepared by the UN Development Programme [63].
- Multidimensional Poverty Index (MPI), which replaced the HPI (Human Poverty Index) index applied since 1997. It comprises 10 elements aggregated into 3 dimensions [64]: I. Education (1. no household member has been receiving education for at least 6 years); 2. no school-age child is attending school); II. Health (1. at least one household member is malnourished; 2. child mortality); III. Living conditions (1. lack of access to electricity; 2. lack of access to clean drinking water; 3. lack of access to sanitary facilities; 4. use of “dirty cooking fuel” (e.g., charcoal); 5. disorder in the household; 6. owning at least one asset related to access to information (radio, television, telephone), mobility or supporting the household (fridge, arable land, livestock).
- Quality of Life Index (QoL), an indicator developed by “The Economist” and used for the first time in 2005 for 111 countries. The indicator is based on a unique methodology combining the results of subjective satisfaction with life and an examination of objective determinants of the quality of life. The following parameters are taken into account while calculating the index: financial situation, political stability and safety, family life (divorce rate per 1000 residents), community life (the rate of church attendance or trade union membership), climate and geography, job security (unemployment rate), political freedom, gender equality (the ratio of average earnings of men and women) [65].
- Better Life Index (BLI), created in 2011 by OECD for international comparison of social welfare. The index consists of 11 parameters: income and wealth (corrected net disposable income of a household, net household assets), work and remuneration (employment rate, long-term unemployment rate, average gross earnings of full-time employees, uncertainty in the labour market), housing (number of rooms per person, houses without basic amenities, housing expenditures), health (average life expectancy at birth, self-reported health), life and work (employees spending long hours at work (more than 50 h per week), time for leisure and personal care), education and skills (level of education, cognitive skills of students, expected years of education), social bonds (support in social media), civic involvement (participation in the development of legislation, voter turnout), quality of the natural environment (air pollution, satisfaction with water quality), personal security (homicide rates, the sense of safety while walking alone), satisfaction with life [66].
- The Happy Planet Index (HPI) was developed by the New Economics Foundation. It is used to measure the well-being in specific countries and is the product of the life expectancy and the citizens’ general satisfaction with life, as well as a measure reflecting the uneven distribution of life expectancy and the well-being experienced in a given country, divided by the so-called ecological footprint, i.e., the use of the natural environment [67].
- The Social Progress Index (SPI) is constructed based on 50 variables concerning 12 components, which are grouped into three categories: basic human needs, foundations of well-being and opportunity: nutrition and basic medical care, air, water and sanitation, shelter and personal safety (included in the 1st category), access to basic knowledge, access to information and communication, health and well-being, environmental quality (included in the 2nd category), personal rights, personal freedom and choice, inclusiveness and access to advanced education (included in the 3rd category) [68].
- Living Planet Index (LPI), an index promoted by the Word Wildlife Foundation, measuring biological diversity based on data on various species of vertebrae and calculating the average change in their number over time. The measurement aims to identify biodiversity threatened by human activity. The situation of the analysed populations is compared with the situation observed in 1970 [69].
- Ecological Footprint, used as a measure of human demand for broadly defined natural capital. The “Ecological Footprint” determines how many biologically productive land and sea areas are necessary to provide resources for consumption and absorb the generated waste, based on the existing technological solutions combined with specific resource management practices [70].
- Global Green Economy Index (GGEI)—developed in 2010 r. by Dual Citizens Inc. as a complex analytical tool offering stakeholders a system for improving their operation and image within the framework of “green economy”. In 2018, its structure was based on 20 partial indicators relating to four main thematic areas: leadership in green economy implementation (actions of public entities, managements, creation of institutions, international cooperation) and climate changes; effectiveness sectors (including construction, transport and energy); markets and investments; environment [71].
- demography: S1—Average life expectancy at birth; S2—The birth rate; S3—Population density; S4—Infant mortality rate; S5—Total birth rate. S6—Average age of mothers at birth.
- education: S7—Students enrolled in early childhood education (pre-school education) per 1000 inhabitants; S8—Percentage of young people not working or studying (aged 15–24); S9—Percentage of university students in relation to the population S10—Percentage of people with higher education in the age group 25–64 (variables S9 and S10 are similar, however, it is assumed that not every student completes his/her studies and obtains higher education).
- economy and labour market: S11—average remuneration; S12—gross domestic product in market prices per person; S13—long-term unemployment rate (12 months and more); S14—professional activity rate (age 15–74); S15—unemployment rate, S16—the percentage of people at risk of poverty and social exclusion.
- health: S17—available beds in hospitals (per 100,000 residents); S18—doctors (per 100,000 residents), S19—the percentage of people with chronic illnesses or health problems,
- tourism: S20—nights spent at tourist accommodation establishments (per 1000 residents); arrivals at tourist accommodation establishments (per 1,000 residents); S22—net occupancy of beds and rooms in hotels and similar establishments;
- transport: S23—cars per 1000 residents; S24—length of highways per 100 km2;
- housing conditions: S25—level of severe housing deprivation; S26—the average number of rooms per person,
- environmental protection: S27—forestation rate, S28—dangerous waste production (in tonnes per person); S29—the percentage of people exposed to pollution or other environmental problems.
- In turn, a set of 11 diagnostic variables, divided into two thematic groups, was used to determine the level of renewable energy development in individual EU countries.
- RES production: R1—production of electricity and derived heat based on hydroenergy (in TOE per 1000 residents); R2—production of electricity and derived heat based on wind energy (in TOE per 1000 residents); R3—production of electricity and derived heat based on photovoltaic energy (in TOE per 1000 residents), R4—production of electricity and derived heat based on biogas fuels (in TOE per 1000 residents) R5—production of electricity and derived heat based on communal waste (in TOE per 1000 residents), R6—share of energy from renewable sources in final electricity consumption, R7—share of energy from renewable energy sources in energy used for heating and cooling, R8—share of energy from renewable sources in energy used in transport,
- RES infrastructure: R9—installed heat pump capacity (in megawatts per 1000 residents), R10—solar collector surface (in km2 per 1000 residents), R11—“autoproducers” of electricity from renewable energy sources per 1000 residents.
- Creating a standardized decision matrix based on the quotient transformation.
- Constructing a matrix of weights using weighing of variables and subsequently creating a weighted standardized decision matrix (as a result of multiplying the standardized values by the weights):
- Based on the standardized decision matrix, the value vector for the pattern (A+) and the anti-pattern (A−) is determined:
- Indicating the distance from the pattern and the anti-pattern for each analysed object based on the Euclidean metric:
- Determining the value of the synthetic variable which defines the similarity of objects to the “model” solution, in accordance with the following formula:
- to describe a pre-selected set of variables characterising the standard of living, data aggregated at the level of NUTS-2 regions were used. Due to frequent data gaps for some regions: Guadeloupe (French overseas department in Central America), Martinique (French overseas department in the Caribbean Islands), Guyane (French overseas department located in the north-eastern part of South America on the Atlantic Ocean), Mayotte (French overseas department in the Indian Ocean) and La Réunion (French overseas department in the Indian Ocean)—those regions were excluded from further analyses. Ultimately, 235 EU regions were included in the canonical analysis,
- in the case of variables concerning the renewable energy sources, it was assumed that their values were distributed proportionally to the number of residents of those regions. It resulted from the lack of statistical data aggregated at the NUTS-2 regional level,
- due to lack of regional data for variables: S11, S16, S19, S25, S26, S27 and S28, it was assumed that values of these variables are identical across the country,
- if no data were available for 2019, data for 2018 were included.
4. Study Results: A Multivariate Analysis of Correlations Between the Standard of Living of the EU Residents and the Level of Renewable Energy Development
- the last group distinguished due to the standard of living of the inhabitants included the majority of countries that joined the EU in 2004 and later (Croatia),
- Sweden was placed in the first group due to the standard of living and the level of renewable energy development.
- as many as 10 countries ranked in the lowest-rated group in terms of the standard of living and the level of RES development (Bulgaria, Czech Republic, Croatia, Latvia, Lithuania, Hungary, Poland, Romania, Slovenia and Slovakia).
- Estonia was the only country ranked in the highest-rated group due to the standard of living and simultaneously in the lowest-rated due to the level of renewable energy development.
- the higher the production of electricity and derived heat based on hydroenergy (R1), wind energy (R2) and renewable municipal waste (R5), the higher the average wage of workers (S11);
- the higher the production of electricity and derived heat based on hydroenergy (R1), wind energy (R2) and renewable municipal waste (R5), the lower the generation of hazardous waste (S28),
- as the share of renewable energy in final electricity consumption (R6) and the share of renewable energy in energy consumption in transport (R8) increase, so does the forestation rate. Therefore, it is possible to presume that activities related to the “greening” of the economy go hand in hand.
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 | S11 | S12 | S13 | S14 | S15 | S16 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Belgium | 81.70 | 5.80 | 377.30 | 3.80 | 1.62 | 29.00 | 39.29 | 12.80 | 37.42 | 1.00 | 47.50 | 24193.00 | 41450.00 | 2.30 | 69.00 | 5.40 |
Bulgaria | 75.00 | −7.00 | 63.40 | 5.80 | 1.56 | 26.20 | 31.55 | 17.50 | 28.65 | 1.00 | 32.50 | 7051.00 | 8780.00 | 2.40 | 73.20 | 4.20 |
Czechia | 79.10 | 4.10 | 138.20 | 2.60 | 1.71 | 28.40 | 34.40 | 13.20 | 37.41 | 1.00 | 35.10 | 11996.00 | 20990.00 | 0.60 | 76.70 | 2.00 |
Denmark | 81.00 | 2.90 | 138.50 | 3.70 | 1.73 | 29.50 | 30.68 | 10.00 | 41.41 | 1.00 | 49.00 | 33932.00 | 53760.00 | 0.80 | 79.10 | 5.00 |
Germany | 81.00 | 1.80 | 235.20 | 3.20 | 1.57 | 29.70 | 28.41 | 9.30 | 54.50 | 1.00 | 35.50 | 26128.00 | 41510.00 | 1.20 | 79.20 | 3.10 |
Estonia | 78.50 | 3.10 | 30.50 | 1.60 | 1.67 | 27.70 | 50.60 | 11.60 | 29.65 | 1.00 | 46.20 | 13193.00 | 21220.00 | 0.90 | 78.90 | 4.40 |
Ireland | 82.30 | 12.20 | 71.90 | 2.90 | 1.75 | 30.50 | 25.06 | 12.60 | 48.24 | 1.00 | 55.40 | 32644.00 | 72260.00 | 1.60 | 73.30 | 5.00 |
Greece | 81.90 | −0.60 | 82.40 | 3.50 | 1.35 | 30.40 | 14.16 | 20.70 | 30.15 | 1.00 | 43.10 | 10068.00 | 17110.00 | 12.20 | 68.40 | 17.30 |
Spain | 83.50 | 8.40 | 93.80 | 2.70 | 1.26 | 31.00 | 27.61 | 16.00 | 35.42 | 1.00 | 44.70 | 19135.00 | 26430.00 | 5.30 | 73.80 | 14.10 |
France | 82.90 | 2.10 | 106.10 | 3.80 | 1.88 | 28.70 | 37.86 | 14.00 | 50.30 | 1.00 | 47.50 | 27062.00 | 35960.00 | 3.40 | 71.70 | 8.50 |
Croatia | 78.20 | −4.40 | 72.80 | 4.20 | 1.47 | 28.80 | 28.10 | 15.00 | 42.81 | 1.00 | 33.10 | 9227.00 | 13340.00 | 2.40 | 66.50 | 6.60 |
Italy | 83.40 | −2.90 | 201.50 | 2.80 | 1.29 | 31.20 | 24.71 | 23.80 | 29.42 | 1.00 | 27.60 | 20570.00 | 29660.00 | 5.60 | 65.70 | 10.00 |
Cyprus | 82.90 | 13.70 | 95.70 | 2.40 | 1.32 | 29.80 | 27.97 | 14.60 | 30.63 | 1.00 | 58.80 | 21492.00 | 25310.00 | 2.10 | 76.00 | 7.10 |
Latvia | 75.10 | −6.40 | 30.20 | 3.20 | 1.60 | 27.20 | 40.31 | 12.00 | 29.43 | 1.00 | 45.70 | 10852.00 | 15920.00 | 2.40 | 77.30 | 6.30 |
Lithuania | 76.00 | 0.00 | 44.60 | 3.40 | 1.63 | 27.80 | 37.01 | 11.60 | 58.82 | 1.00 | 57.80 | 10871.00 | 17460.00 | 1.90 | 78.00 | 6.30 |
Luxembourg | 82.30 | 19.70 | 239.80 | 4.30 | 1.38 | 30.90 | 28.64 | 6.90 | 36.58 | 1.00 | 56.20 | 48452.00 | 102200.00 | 1.30 | 72.00 | 5.60 |
Hungary | 76.20 | −0.30 | 107.10 | 3.30 | 1.55 | 28.20 | 31.83 | 14.60 | 40.09 | 1.00 | 33.40 | 7458.00 | 14950.00 | 1.10 | 72.60 | 3.40 |
Malta | 82.50 | 41.70 | 1595.10 | 5.60 | 1.23 | 29.20 | 19.10 | 9.60 | 25.89 | 1.00 | 38.10 | 17290.00 | 26670.00 | 0.90 | 75.90 | 3.60 |
Netherlands | 81.90 | 7.20 | 507.30 | 3.50 | 1.59 | 30.00 | 27.49 | 7.00 | 46.43 | 1.00 | 51.40 | 27213.00 | 46710.00 | 1.00 | 80.90 | 3.40 |
Austria | 81.80 | 4.80 | 107.60 | 2.70 | 1.47 | 29.50 | 29.04 | 9.20 | 38.52 | 1.00 | 42.40 | 28094.00 | 44780.00 | 1.10 | 77.10 | 4.50 |
Poland | 77.70 | −0.40 | 123.60 | 3.80 | 1.46 | 27.40 | 35.85 | 13.40 | 29.04 | 1.00 | 46.60 | 9317.00 | 13870.00 | 0.70 | 70.60 | 3.30 |
Portugal | 81.50 | 1.90 | 113.00 | 3.30 | 1.42 | 29.80 | 23.38 | 9.50 | 35.62 | 1.00 | 36.20 | 12962.00 | 20740.00 | 2.80 | 75.50 | 6.50 |
Romania | 75.30 | −4.40 | 82.70 | 6.00 | 1.76 | 26.70 | 26.84 | 17.30 | 37.60 | 1.00 | 25.80 | 6196.00 | 11510.00 | 1.70 | 68.60 | 3.90 |
Slovenia | 81.50 | 7.20 | 103.70 | 1.70 | 1.60 | 28.80 | 29.15 | 9.00 | 26.21 | 1.00 | 44.90 | 16048.00 | 23170.00 | 1.90 | 75.20 | 4.50 |
Slovakia | 77.40 | 1.40 | 112.00 | 5.00 | 1.54 | 27.10 | 30.51 | 17.20 | 46.64 | 1.00 | 40.10 | 9869.00 | 17210.00 | 3.40 | 72.70 | 5.80 |
Finland | 81.80 | 1.30 | 18.20 | 2.10 | 1.41 | 29.20 | 37.76 | 10.30 | 32.89 | 1.00 | 47.30 | 30065.00 | 43570.00 | 1.20 | 78.30 | 6.70 |
Sweden | 82.60 | 9.50 | 25.20 | 2.00 | 1.76 | 29.30 | 45.26 | 6.40 | 37.37 | 1.00 | 52.50 | 27419.00 | 46160.00 | 0.90 | 82.90 | 6.80 |
S17 | S18 | S19 | S20 | S21 | S22 | S23 | S24 | S25 | S26 | S27 | S28 | S29 | S30 | S31 | S32 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Belgium | 562.24 | 950.00 | 312.96 | 26.10 | 15.70 | 1860.06 | 760.71 | 46.00 | 0.84 | 511.00 | 57.75 | 5.10 | 2.10 | 22.58 | 5902.24 | 15.00 |
Bulgaria | 756.91 | 735.00 | 421.71 | 21.60 | 32.00 | 1382.13 | 588.61 | 42.10 | 0.52 | 396.00 | 6.86 | 6.40 | 1.20 | 35.15 | 18535.87 | 13.10 |
Czechia | 661.82 | 369.00 | 403.76 | 36.20 | 5.60 | 2802.33 | 1043.01 | 50.90 | 0.88 | 540.00 | 15.87 | 2.40 | 1.50 | 33.92 | 2621.03 | 11.10 |
Denmark | 242.97 | 442.00 | 419.44 | 31.30 | 2.80 | 3677.02 | 894.40 | 48.00 | 0.21 | 447.00 | 30.96 | 4.60 | 1.90 | 14.62 | 3693.70 | 8.40 |
Germany | 800.23 | 6203.00 | 431.09 | 43.20 | 7.10 | 4188.11 | 1754.77 | 45.71 | 0.61 | 567.00 | 36.77 | 3.50 | 1.80 | 31.95 | 4884.70 | 25.20 |
Estonia | 457.35 | 183.00 | 348.34 | 44.20 | 2.40 | 1956.05 | 1159.80 | 48.00 | 1.07 | 563.00 | 3.41 | 2.20 | 1.70 | 53.91 | 17500.93 | 10.20 |
Ireland | 297.39 | 324.00 | 327.94 | 27.70 | 8.10 | 3322.74 | 1761.88 | 54.00 | 0.53 | 445.00 | 13.12 | 2.20 | 2.10 | 11.15 | 2851.97 | 6.50 |
Greece | 419.77 | 1064.00 | 500.80 | 23.70 | 15.60 | 2202.70 | 854.44 | 49.50 | 3.53 | 487.00 | 0.00 | 5.60 | 1.20 | 29.55 | 4251.22 | 20.20 |
Spain | 297.15 | 5374.00 | 402.08 | 29.20 | 7.80 | 3637.26 | 1433.42 | 61.48 | 1.13 | 513.00 | 30.80 | 2.20 | 1.90 | 36.70 | 2936.34 | 9.90 |
France | 590.85 | 4851.00 | 317.08 | 38.00 | 3.00 | 4623.02 | 1831.68 | 50.00 | 0.44 | 478.00 | 18.43 | 4.20 | 1.90 | 27.12 | 5096.75 | 14.90 |
Croatia | 561.25 | 210.00 | 344.06 | 36.60 | 12.40 | 1730.50 | 541.05 | 60.30 | 27.91 | 409.00 | 23.15 | 5.90 | 1.10 | 34.22 | 1359.91 | 5.90 |
Italy | 314.05 | 5901.00 | 397.71 | 15.90 | 28.90 | 3579.82 | 1099.60 | 49.00 | 3.62 | 646.00 | 22.98 | 5.40 | 1.40 | 31.49 | 2857.92 | 12.40 |
Cyprus | 330.09 | 79.00 | 407.32 | 38.80 | 39.40 | 1156.03 | 632.05 | 71.80 | 0.93 | 629.00 | 27.78 | 0.90 | 2.00 | 0.13 | 2628.32 | 8.40 |
Latvia | 549.35 | 191.00 | 330.38 | 42.10 | 27.90 | 863.75 | 472.62 | 43.30 | 0.64 | 369.00 | 0.00 | 12.40 | 1.20 | 52.76 | 923.83 | 18.30 |
Lithuania | 643.40 | 241.00 | 459.78 | 36.80 | 12.30 | 1719.37 | 751.48 | 44.00 | 1.34 | 512.00 | 4.96 | 5.40 | 1.60 | 33.70 | 2534.03 | 17.10 |
Luxembourg | 450.70 | 22.00 | 298.49 | 25.10 | 16.60 | 566.15 | 202.22 | 30.87 | 0.69 | 676.00 | 63.81 | 3.20 | 2.00 | 34.30 | 14683.96 | 15.20 |
Hungary | 701.29 | 470.00 | 338.37 | 39.70 | 12.10 | 1785.31 | 745.49 | 41.90 | 0.45 | 373.00 | 21.31 | 6.80 | 1.50 | 22.09 | 1879.67 | 12.40 |
Malta | 430.84 | 88.00 | 397.21 | 30.50 | 14.40 | 962.30 | 407.40 | 66.20 | 0.49 | 608.00 | 0.00 | 1.40 | 2.20 | 1.46 | 5079.58 | 33.90 |
Netherlands | 316.55 | 1868.00 | 366.96 | 32.20 | 6.20 | 4148.33 | 1492.09 | 50.20 | 0.51 | 494.00 | 66.35 | 1.70 | 2.00 | 8.87 | 8404.10 | 14.90 |
Austria | 727.16 | 701.00 | 524.14 | 37.40 | 5.40 | 4120.70 | 1508.01 | 48.00 | 2.48 | 562.00 | 20.78 | 5.80 | 1.60 | 46.44 | 7412.55 | 10.50 |
Poland | 653.69 | 1677.00 | 237.75 | 39.20 | 23.40 | 1966.12 | 742.57 | 41.70 | 0.30 | 617.00 | 5.24 | 8.10 | 1.10 | 30.29 | 4612.34 | 13.80 |
Portugal | 344.51 | 934.00 | 442.42 | 41.20 | 14.80 | 2530.21 | 1137.99 | 51.05 | 0.70 | 514.00 | 33.23 | 5.40 | 1.70 | 35.91 | 1546.70 | 13.50 |
Romania | 696.83 | 814.00 | 304.70 | 18.90 | 13.90 | 1268.17 | 546.22 | 39.72 | 0.42 | 332.00 | 3.45 | 4.10 | 1.10 | 29.07 | 10466.60 | 13.50 |
Slovenia | 442.79 | 67.00 | 317.81 | 35.80 | 5.10 | 2115.91 | 733.83 | 43.99 | 4.60 | 549.00 | 30.73 | 4.50 | 1.60 | 61.16 | 3950.52 | 16.20 |
Slovakia | 569.62 | 124.00 | 397.34 | 31.80 | 13.50 | 2050.79 | 707.96 | 36.16 | 0.63 | 426.00 | 9.83 | 1.40 | 1.20 | 39.28 | 2275.40 | 9.50 |
Finland | 361.18 | 347.00 | 320.63 | 49.50 | 4.50 | 2906.83 | 1655.78 | 41.99 | 0.25 | 629.00 | 2.74 | 1.00 | 1.90 | 66.21 | 23232.55 | 9.40 |
Sweden | 213.79 | 738.00 | 426.52 | 36.90 | 3.70 | 4613.31 | 2393.94 | 45.00 | 0.43 | 476.00 | 4.86 | 3.60 | 1.80 | 63.80 | 13554.75 | 6.60 |
R1 | R2 | R3 | R4 | R5 | R6 | R7 | R8 | R9 | R10 | R11 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Belgium | 0.01 | 0.07 | 0.03 | 0.01 | 0.01 | 20.83 | 8.31 | 6.81 | 0.00 | 66.85 | 1.18 |
Bulgaria | 0.04 | 0.02 | 0.02 | 0.00 | 0.00 | 23.51 | 35.51 | 7.89 | 0.00 | 60.78 | 0.09 |
Czechia | 0.03 | 0.01 | 0.02 | 0.02 | 0.00 | 14.05 | 22.65 | 7.83 | 0.16 | 52.11 | 0.74 |
Denmark | 0.00 | 0.24 | 0.01 | 0.01 | 0.01 | 65.35 | 48.02 | 7.17 | 0.00 | 329.85 | 0.55 |
Germany | 0.03 | 0.13 | 0.05 | 0.03 | 0.01 | 40.82 | 14.55 | 7.68 | 0.08 | 232.79 | 0.59 |
Estonia | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 22.00 | 52.28 | 5.15 | 0.00 | 0.00 | 0.06 |
Ireland | 0.02 | 0.18 | 0.00 | 0.00 | 0.01 | 36.49 | 6.32 | 8.93 | 0.00 | 68.71 | 0.42 |
Greece | 0.03 | 0.06 | 0.04 | 0.00 | 0.00 | 31.30 | 30.19 | 4.05 | 0.79 | 453.86 | 0.21 |
Spain | 0.05 | 0.10 | 0.02 | 0.00 | 0.00 | 36.93 | 18.87 | 7.61 | 0.59 | 93.95 | 0.79 |
France | 0.08 | 0.04 | 0.02 | 0.00 | 0.00 | 22.38 | 22.46 | 9.25 | 0.87 | 49.16 | 0.32 |
Croatia | 0.13 | 0.03 | 0.00 | 0.01 | 0.00 | 49.78 | 36.79 | 5.86 | 0.00 | 66.78 | 0.09 |
Italy | 0.07 | 0.03 | 0.03 | 0.01 | 0.00 | 34.77 | 19.67 | 9.05 | 1.97 | 71.96 | 0.36 |
Cyprus | 0.00 | 0.02 | 0.02 | 0.01 | 0.00 | 9.76 | 35.10 | 3.32 | 0.00 | 1237.71 | 0.16 |
Latvia | 0.09 | 0.01 | 0.00 | 0.02 | 0.00 | 53.42 | 57.76 | 5.11 | 0.00 | 11.29 | 0.09 |
Lithuania | 0.03 | 0.05 | 0.00 | 0.00 | 0.00 | 18.79 | 47.36 | 4.05 | 0.02 | 0.00 | 0.28 |
Luxembourg | 0.13 | 0.04 | 0.02 | 0.01 | 0.01 | 10.86 | 8.71 | 7.66 | 0.02 | 112.77 | 0.46 |
Hungary | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 9.99 | 18.12 | 8.03 | 0.01 | 35.81 | 0.19 |
Malta | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 8.04 | 25.70 | 8.69 | 0.00 | 148.94 | 0.44 |
Netherlands | 0.00 | 0.06 | 0.03 | 0.00 | 0.01 | 18.22 | 7.08 | 12.51 | 0.00 | 39.98 | 1.59 |
Austria | 0.43 | 0.07 | 0.02 | 0.01 | 0.00 | 75.14 | 33.80 | 9.77 | 0.16 | 570.10 | 0.86 |
Poland | 0.01 | 0.03 | 0.00 | 0.00 | 0.00 | 14.36 | 15.98 | 6.12 | 0.03 | 71.00 | 0.44 |
Portugal | 0.09 | 0.11 | 0.01 | 0.00 | 0.00 | 53.77 | 41.65 | 9.09 | 1.02 | 131.17 | 0.84 |
Romania | 0.07 | 0.03 | 0.01 | 0.00 | 0.00 | 41.71 | 25.74 | 7.85 | 0.00 | 10.53 | 0.32 |
Slovenia | 0.19 | 0.00 | 0.01 | 0.00 | 0.00 | 32.63 | 32.16 | 7.98 | 0.00 | 107.80 | 0.36 |
Slovakia | 0.07 | 0.00 | 0.01 | 0.01 | 0.00 | 21.95 | 19.70 | 8.31 | 0.13 | 0.00 | 0.48 |
Finland | 0.19 | 0.09 | 0.00 | 0.01 | 0.01 | 38.07 | 57.49 | 21.29 | 0.00 | 13.23 | 1.86 |
Sweden | 0.55 | 0.17 | 0.01 | 0.00 | 0.01 | 71.19 | 66.12 | 30.31 | 0.47 | 44.87 | 0.66 |
References
- Bp p.l.c. Energy Outlook, 2020 Edition. Bp p.l.c. 2020. Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/energy-outlook/bp-energy-outlook-2020.pdf?utm_source=newsletter&utm_medium=email&utm_campaign=newsletter_axiosgenerate&stream=top (accessed on 2 March 2021).
- Fraunhofer ISE. Public Net Electricity Generation in Germany 2019: Share from Renewables Exceeds Fossil Fuels, FRAUNHOFER INSTITUTE FOR SOLAR ENERGY SYSTEMS ISE. 2020. Available online: https://www.ise.fraunhofer.de/content/dam/ise/en/documents/News/0120_e_ISE_News_Electricity%20Generation_2019.pdf (accessed on 28 March 2021).
- European Commission. Reflection Paper towards A Sustainable Europe by 2030; European Commission: Brussels, Belgium, 2019. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions the European Green Deal; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- Njiru, C.W.; Letema, S.C. Energy Poverty and Its Implication on Standard of Living in Kirinyaga, Kenya. J. Energy 2018, 2018, 3196567. [Google Scholar] [CrossRef] [Green Version]
- Getie, E.M. Poverty of Energy and Its Impact on Living Standards in Ethiopia. J. Electr. Comput. Eng. 2020, 2020, 7502583. [Google Scholar] [CrossRef]
- Hussein, M.A.; Filho, W.L. Analysis of energy as a precondition for improvement of living conditions and poverty reduction in sub-Saharan Africa. Sci. Res. Essays 2012, 7, 2656–2666. [Google Scholar]
- Eurostat. Available online: https://ec.europa.eu/eurostat/web/main/data/database (accessed on 20 February 2021).
- Zeliaś, A. Poziom życia w Polsce i krajach Unii Europejskie; PWE: Warszawa, Poland, 2004. [Google Scholar]
- Luszniewicz, A. Statsytyka Społeczna: Podstawowe Problemy i Metody; PWE: Warszawa, Poland, 1982. [Google Scholar]
- Grzega, U. Poziom życia Ludności w Polsce—Determinanty i Zróżnicowania; Wydawnictwo Uniwersytetu Ekonomicznego w Katowicach: Katowice, Poland, 2012. [Google Scholar]
- Mourad, M.; Perez, A.; Richardson, C. Digital Inclusion Social Impact Evaluation; Final Report; One Global Economy: Washington DC, USA, 2014. [Google Scholar]
- Słaby, T. Poziom i jakość życia. In Statystyka Społeczna; Panek, T., Ed.; PWE: Warszawa, Poland, 2007; pp. 99–130. [Google Scholar]
- Chabior, A.; Fabiś, A.; Wawrzyniak, J.K. Starzenie się i Starość w Perspektywie Pracy Socjalnej; Centrum Rozwoju Zasobów Ludzkich: Warszawa, Poland, 2014. [Google Scholar]
- Frieske, K.W.; Popławski, P. Opieka i Kontrola; Interart: Warszawa, Poland, 1996. [Google Scholar]
- Tomaszewski, T. Aktywność człowieka. In Kształtowanie Motywacji i Postaw. Socjotechniczne Problemy Działalności Ideowo-Wychowawczej; Czapów, C., Ed.; Książka i Wiedza: Warszawa, Poland, 1976; pp. 88–89. [Google Scholar]
- Max-Neef, M.A. Human Scale Development. In Conception, Application and Further Reflections; The Apex Press: New York, NY, USA; London, UK, 1991. [Google Scholar]
- Murray, M.; Pauw, C.; Holm, D. The House as a Satisfier for Human Needs: A Framework for Analysis, Impact Measurement and Design. In Proceedings of the XXXIII IAHS World Congress on Housing Transforming Housing Environments through Design, Pretoria, South Africa, 27–30 September 2005; pp. 1–9. [Google Scholar]
- Ding, H.; Jiang, T.; Riloff, E. Why is an Event Affective? Classifying Affective Events based on Human Needs. In Proceedings of the Workshops at the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; pp. 8–15. [Google Scholar]
- Słaby, T. Konsumpcja. Eseje Statystyczne; Difin: Warszawa, Poland, 2006. [Google Scholar]
- Sompolska-Rzechuła, A.; Oleńczuk-Paszel, A. Poziom życia ludności na obszarach wiejskich i miejskich w Polsce. Wieś Rol. 2017, 4, 77–96. [Google Scholar] [CrossRef]
- Piasny, J. Problem jakości życia ludności oraz źródła i mierniki ich określania. Ruch Prawniczy. Ekon. Socjol. 1993, 2, 73–92. [Google Scholar]
- Zeliaś, A. Dobór zmiennych diagnostycznych. In Taksonomiczna Analiza Przestrzennego Zróżnicowania Poziomu życia w Polsce W ujęciu Dynamicznym; Zeliaś, A., Ed.; Wydawnictwo Akademii Ekonomicznej w Krakowie: Kraków, Poland, 2000; pp. 35–55. [Google Scholar]
- Gotowska, M. Problemy definiowania poziomu i jakości życia. In Poziom i Jakość życia w Dobie Kryzysu; Gotowska, M., Wyszkowska, Z., Gotowska, M., Eds.; Wydawnictwo UTP: Bydgoszcz, Poland, 2013; pp. 11–24. [Google Scholar]
- Kryk, B. Jakość życia a społeczna odpowiedzialność przedsiębiorstwa za korzystanie ze środowiska. In Jakość życia w Perspektywie Nauk Humanistycznych, Ekonomicznych i Ekologii, Tomczyk-Tołkacz, J., Ed.; Akademia Ekonomiczna we Wrocławiu: Jelenia Góra, Poland, 2003; pp. 260–268. [Google Scholar]
- Sulich, A.; Grudziński, A.; Kulhánek, L. Zielony wzrost gospodarczy—Analiza porównawcza Czech i Polski. Pr. Nauk. Uniw. Ekon. Wrocławiu 2020, 64, 192–207. [Google Scholar] [CrossRef]
- Visser, W.; Pearce, D.; Markandya, A.; Barbier, E.B. Blueprint for a Green Economy; Greenleaf Publishing Limited: South Yorkshire, UK, 2013; pp. 70–76. [Google Scholar]
- UNEP. Towards a Green Economy: Pathways to Sustainable Development and Poverty Eradication—A Synthesis for Policy Makers; United Nations Environment Programme: Saint-Martin-Bellevue, France, 2011. [Google Scholar]
- Krakowińska, E. “Zielone” miejsca pracy w energetyce odnawialnej w Polsce i na Mazowszu. In Rola Odnawialnych źródeł Energii w Rozwoju Społeczno-Ekonomicznym Kraju i Regionu; Nowak, A.Z., Ed.; Wydawnictwo Naukowe Wydziału Zarządzania Uniwersytetu Warszawskiego: Warszawa, Poland, 2016; pp. 69–96. [Google Scholar]
- Maśloch, G. Construction Autonomous Energy Regions in Poland—Utopia or Necessity? Stud. Prawno-Ekon. 2018, 106, 251–264. [Google Scholar] [CrossRef]
- Nowak, A.Z.; Zaborowska, W. Wprowadzenie. In Rola Odnawialnych źródeł Energii w Rozwoju Społeczno-Ekonomicznym Kraju i Regionu; Nowak, A.Z., Ed.; Wydawnictwo Naukowe Wydziału Zarządzania Uniwersytetu Warszawskiego: Warszawa, Poland, 2016; pp. 10–13. [Google Scholar]
- Kochańska, E. Determinanty Rozwoju Odnawialnych źródeł Energii; Centrum Badań i Innowacji Pro-Akademia: Łódź, Poland, 2014. [Google Scholar]
- WWF. Demaskowanie Mitów: Obalanie Mitów o Energii Odnawialnej; WWF International: Gland, Switzerland; Warsaw, Poland, 2014. [Google Scholar]
- Gnutek, Z. Wybrane aspekty użytkowania energii w rolnictwie. Inżynieria Rol. 2011, 9, 49–56. [Google Scholar]
- Graczyk, A.M. Koordynacja polityki energetycznej—Regionalne ujęcie wsparcia odnawialnych źródeł energii w świetle Strategii rozwoju energetyki na Dolnym Śląsku. Barom. Reg. 2016, 14, 113–120. [Google Scholar]
- McLuhan, M.; Nevitt, B. Take Today—The Executive as Dropout; Harcourt Brace Jovanovich: San Diego, CA, USA, 1972. [Google Scholar]
- Zalega, T. Wykorzystanie Odnawialnych źródeł Energii w Gospodarstwach Domowych seniorów w Polsce w świetle wyników badań własnych. In Rola Odnawialnych źródeł Energii w Rozwoju Społeczno-Ekonomicznym Kraju i Region; Nowak, A.Z., Ed.; Wydawnictwo Naukowe Wydziału Zarządzania Uniwersytetu Warszawskiego: Warszawa, Poland, 2016; pp. 48–68. [Google Scholar]
- Borys, G. System wsparcia energetyki prosumenckiej w Polsce. Studia Ekonomiczne. Zesz. Nauk. Uniw. Ekon. Katowicach 2014, 198, 35–43. [Google Scholar]
- Woźniak, M.; Saj, B. Odnawialne źródła energii w badaniach ankietowych mieszkańców województwa podkarpackiego. Zesz. Nauk. Inst. Gospod. Surowcami Miner. Energią PAN 2018, 61–80. [Google Scholar] [CrossRef]
- Creţan, R.; Vesalon, L. The Political Economy of Hydropower in the Communist Space: Iron Gates Revisited. Tijdschr. Econ. Soc. Geogr. 2017, 108, 688–701. [Google Scholar] [CrossRef]
- Vãran, C.; Creţan, R. Place and the spatial politics of intergenerational remembrance of the Iron Gates displacements in Romania, 1966–1972. Area 2018, 50, 509–519. [Google Scholar] [CrossRef]
- Świątek, M.; Cedro, A. Odnawialne źródła Energii w Polsce ze Szczególnym Uwzględnieniem Województwa Zachodniopomorskiego; Uniwersytet Szczeciński: Szczecin, Poland, 2017. [Google Scholar]
- European Commission. Communication from the Commission. A Clean Planet for All. A European Strategic Long-Term Vision for a Prosperous, Modern, Competitive and Climate Neutral Economy; COM(2018) 773 Final; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Jędrak, J.; Konduracka, E.; Badyda, A.J.; Dąbrowiecki, P. Wpływ Zanieczyszczeń Powietrza na Zdrowie [Impact of Air Pollution on Health]; Krakowski Alarm Smogowy: Kraków, Poland, 2017. [Google Scholar]
- Szyszkowicz, M.; Willey, J.B.; Grafstein, E.; Rowe, B.H.; Colman, I. Air Pollution and Emergency Department Visits for Suicide Attempts in Vancouver, Canada. Environ. Health Insights 2010, 4, EHI.S5662. [Google Scholar] [CrossRef] [PubMed]
- Rzędowska, A.; Rzędowski, J. Smog. Czas na Decydujące Starcie. Raport; Instytut Jagielloński: Warszawa, Poland, 2018. [Google Scholar]
- WHO Regional Office for Europe—OECD. Economic Cost of the Health Impact of Air Pollution in Europe: Clean Air, Health and Wealth; WHO Regional Office for Europe: Copenhagen, Denmark, 2015. [Google Scholar]
- Tomala, M. Energia odnawialna jako kluczowy element bezpieczeństwa zaopatrzenia energetycznego i środowiskowego państw nordyckich, Bezpieczeństwo. Teor. Prakt. 2016, 1, 105–117. [Google Scholar]
- Ignarska, M. Odnawialne źródła energii w Polsce. Poliarchia 2013, 1, 57–72. [Google Scholar] [CrossRef]
- Skubiak, B. Rola Samorządów w Przezwyciężaniu Barier Rozwoju Odnawialnych źródeł Energii. In Trendy i Wyzwania ZrównOważonego Rozwoju; Kryk, B., Ed.; Uniwersytet Szczeciński: Szczecin, Poland, 2011; pp. 275–294. [Google Scholar]
- Ligus, M.; Poskrobko, T.; Sidorczuk-Pietraszko, E. Pozaśrodowiskowe Efekty Zewnętrzne w Lokalnych Systemach Energetycznych; Fundacja Ekonomistów Środowiska i Zasobów Naturalnych: Białystok, Poland, 2015. [Google Scholar]
- REN21. Renewables 2020 Global Status Report; REN21 Secretariat: Paris, France, 2020. [Google Scholar]
- BP p.l.c. BP Statistical Review of World Energy 2020, 69th ed.; Statistical Review of World Energy: London, UK, 2020. [Google Scholar]
- IRENA. Renewable Capacity Statistics 2019; International Renewable Energy Agency (IRENA): Abu Dhabi, United Arab Emirates, 2019.
- Simionescu, M.; Bilan, Y.; Krajňáková, E.; Streimikiene, D.; Gędek, S. Renewable Energy in the Electricity Sector and GDP per Capita in the European Union. Energies 2019, 12, 2520. [Google Scholar] [CrossRef] [Green Version]
- Grabara, J.; Tleppayev, A.; Dabylova, M.; Mihardjo, L.W.W.; Dacko-Pikiewicz, Z. Empirical Research on the Relationship Amongst Renewable Energy Consumption, Economic Growth and Foreign Direct Investment in Kazakhstan and Uzbekistan. Energies 2021, 14, 332. [Google Scholar] [CrossRef]
- Llamosas, C.; Sovacool, B.K. The future of hydropower? A systematic review of the drivers, benefits and governance dynamics of transboundary dams. Renew. Sustain. Energy Rev. 2021, 137, 110495. [Google Scholar] [CrossRef]
- Walesiak, M. Uogólniona Miara Odległości GDM w Statystycznej Analizie Wielowymiarowej z Wykorzystaniem Programu R; Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu: Wrocław, Poland, 2011. [Google Scholar]
- Redclif, M. Critical Concepts in the Social Sciences; Routledge Taylor & Francis: London, UK; New York, NY, USA, 2005. [Google Scholar]
- Bleys, B. Alternative Welfare Measures. MOSI Work. Pap. 2005, 12, 1–15. [Google Scholar]
- Lawn, P.A. A theoretical foundation to support the Index of Sustainable Economic Welfare (ISEW), Genuine Progress Indicator (GPI), and other related indexes. Ecol. Econ. 2003, 44, 105–118. [Google Scholar] [CrossRef]
- Gasparatos, A.; El-Haram, M.; Horner, M. A critical review of reductionist approaches for assessing the progress towards sustainability. Environ. Impact Assess. Rev. 2008, 28, 286–311. [Google Scholar] [CrossRef]
- UNDP. Human Development Indices and Indicators 2018 Statistical Update; United Nations Development Programme: Washington, DC, USA, 2018. [Google Scholar]
- UNDP. Human Development Report 2015. Work for Human Development—TECHNICAL NOTES. 2015, pp. 1–10. Available online: http://hdr.undp.org/sites/default/files/hdr2015_technical_notes.pdf (accessed on 6 March 2021).
- The Economist Intelligence Unit’s Quality-of-Life Index. 2005. Available online: https://www.economist.com/media/pdf/quality_of_life.pdf (accessed on 6 March 2021).
- OECD. Better Life Index: Definitions and Metadata. 2019. Available online: https://www.oecd.org/statistics/OECD-Better-Life-Index-definitions-2019.pdf (accessed on 6 March 2021).
- NEF. Happy Planet Index 2016 Methods Paper. Available online: https://static1.squarespace.com/static/5735c421e321402778ee0ce9/t/578cc52b2994ca114a67d81c/1468843308642/Methods+paper_2016.pdf (accessed on 28 March 2021).
- Green, M.; Harmacek, J.; Krylova, P. 2020 Social Progress Index; Executive Summary; Social Progress Imperative: Washington, DC, USA, 2020; Available online: https://www.socialprogress.org/static/37348b3ecb088518a945fa4c83d9b9f4/2020-social-progress-index-executive-summary.pdf (accessed on 28 March 2021).
- Almond, R.E.A.; Grooten, M.; Petersen, T. Living Planet Report—2020: Ratunek dla Różnorodności Biologicznej; WWF: Gland, Switzerland, 2020. [Google Scholar]
- Lazarus, E.; Zokai, G.; Borucke, M.; Panda, D.; Iha, K.; Morales, J.C.; Wackernagel, M.; Galli, A.; Gupta, N. Working Guidebook to the National Footprint Accounts; Global Footprint Network: Oakland, CA, USA, 2014. [Google Scholar]
- The Global Green Economy Index. Available online: https://dualcitizeninc.com/global-green-economy-index/ (accessed on 28 March 2021).
- Karpińska-Mizielińska, W. Instytucje Infrastruktury Rynkowej w Kreowaniu Przedsiębiorczości Lokalnej; Fundacja Promocji Rozwoju im. E. Lipińskiego: Warszawa, Poland, 1999. [Google Scholar]
- Nermend, K. Metody Analizy Wielokryterialnej i Wielowymiarowej We Wspomaganiu Decyzji; PWN: Warszawa, Poland, 2017. [Google Scholar]
- Kuc, M. Konwergencja społeczna i ekonomiczna regionów państw nordyckich. Coll. Econ. Anal. Ann. 2016, 41, 175–188. [Google Scholar]
- Malinowski, M.; Smoluk-Sikorska, J. Spatial Relations between the Standards of Living and the Financial Capacity of Polish District-Level Local Government. Sustainability 2020, 12, 1825. [Google Scholar] [CrossRef] [Green Version]
- Wysocki, F. Metody Taksonomiczne w Rozpoznawaniu Typów Ekonomicznych Rolnictwa i Obszarów Wiejskich; Wydawnictwo Uniwerystetu Przyrodncizego w Poznaniu: Poznań, Poland, 2010. [Google Scholar]
- Młodak, A. Analiza Taksonomiczna w Statystyce Regionalnej; Difin: Warszawa, Poland, 2006. [Google Scholar]
- Hwang, C.L.; Yoon, K. Multiple Attribute Decision Making: Methods and Applications; Springer: New York, NY, USA, 1981. [Google Scholar]
- Korol, J.; Szczuciński, P. Ekonometryczne Modelowanie Procesów Gospodarki Regionalnej Opartej na Wiedzy; Wydawnictwo Adam Marszałek: Toruń, Poland, 2009. [Google Scholar]
- Kaufman, L.; Rousseeuw, P.J. Finding Groups in Data: An Introduction to Cluster Analysis; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2005. [Google Scholar]
- UNESCO. IDAMS. Internationally Developed Data Analysis and Management Software Package; UNESCO: Paris, France, 2008. [Google Scholar]
- Ter Braak, C.J.F. Interpreting canonical correlation analysis through biplots of structure correlations and weights. Psychometrika 1990, 55, 519–531. [Google Scholar] [CrossRef]
- Cavadias, G.S.; Ouarda, T.B.M.J.; Bobée, B.; Girard, C. A canonical correlation approach to the determination of homogeneous regions for regional flood estimation of ungauged basins. Hydrol. Sci. J. 2001, 46, 499–512. [Google Scholar] [CrossRef]
- Hardoon, D.R.; Szedmak, S.; Shawe-Taylor, J. Canonical Correlation Analysis. In An Overview with Application to Learning Methods; University of London: London, UK, 2003. [Google Scholar]
- Weenink, D. Canonical Correlation Analysis. IFA Proc. 2003, 25, 81–99. [Google Scholar]
- Naylor, M.G.; Lin, X.; Weiss, S.T.; Raby, B.A.; Lange, C. Using Canonical Correlation Analysis to Discover Genetic Regulatory Variants. PLoS ONE 2010, 5, e10395. [Google Scholar] [CrossRef] [Green Version]
- Krzyśko, M.; Łukaszonek, W.; Wołyński, W. Canonical Correlation Analysis in the Case of Multivariate Repeated Measures Data. Stat. Transit. New Ser. 2018, 19, 75–85. [Google Scholar] [CrossRef] [Green Version]
- Ebenezer, O.R. Canonical Correlation Analysis of Poverty and Literacy Levels in Ekiti State, NIGERIA. Math. Theory Model. 2012, 2, 31–39. [Google Scholar]
- Chin-Tsai, K. Life Quality and Job Satisfaction: A Case Study on Job Satisfaction of Bike Participants in Chiayi County Area. J. Int. Manag. Stud. 2011, 6, 1–9. [Google Scholar]
- Saeed, T.; Tularam, G.A. Relations between fossil fuel returns and climate change variables using canonical correlation analysis. Energy Sources Part B Econ. Plan. Policy 2017, 12, 675–684. [Google Scholar] [CrossRef]
- Santos-Alamillos, F.J.; Pozo-Vázquez, D.; Ruiz-Arias, J.A.; Lara-Fanego, V.; Tovar-Pescador, J. Analysis of Spatiotemporal Balancing between Wind and Solar Energy Resources in the Southern Iberian Peninsula. J. Appl. Meteorol. Clim. 2012, 51, 2005–2024. [Google Scholar] [CrossRef]
- Panek, T.; Zwierzchowski, J. Statystyczne Metody Wielowymiarowej Analizy Porównawczej: Teoria i Zastosowania; Oficyna Wydawnicza SGH: Warszawa, Poland, 2013. [Google Scholar]
- Jaba, E. The “3 sigma” rule used for the identification of the regional disparities. Yearbook of the “Gheorghe Zane”. Inst. Econ. Res. 2007, 16, 47–57. [Google Scholar]
- Kasunic, M.; McCurley, J.; Goldenson, D.; Zubrow, D. An Investigation of Techniques for Detecting Data Anomalies in Earned Value Management Data; Software Engineering Institute: Pittsburgh, PA, USA, 2011. [Google Scholar]
- Noble, R.B., Jr. Multivariate Applications of Bayesian Model Averaging; Virginia Polytechnic Institute: Blacksburg, VA, USA, 2000. [Google Scholar]
- Tadeusiewicz, R.; Izworski, A.; Majewski, J. Biometria; AGH: Kraków, Poland, 1993. [Google Scholar]
- Thompson, B. Fundamentals of Canonical Correlation Analysis: Basics and Three Common Fallacies in Interpretation; University of New Orleans and Louisiana State University Medical Center: New Orleans, LA, USA, 1987. [Google Scholar]
- World Economic Forum. Fostering Effective Energy Transition, 2020 ed.; WWF: Cologny, Germany; Geneva, Switzerland, 2020. [Google Scholar]
- GUS. Energia ze źródeł Odnawialnych w 2019 r; Główny Urząd Statystyczny: Warszawa, Poland, 2020.
- Kopczewska, K.; Kopczewski, T.; Wójcik, P. Metody Ilościowe w R. Aplikacje Ekonomiczne i Finansowe; CeDeWu: Warszawa, Poland, 2009. [Google Scholar]
- Więcek, G.; Sękowski, A. Powodzenie w kształceniu integracyjnym a wybrane zmienne psychospołeczne—Weryfikacja modelu teoretycznego. Rocz. Psychol. 2007, 10, 89–111. [Google Scholar]
Max-Neef [10] | 1. Subsistence; 2. Protection; 3. Affection, 4. Understanding; 5. Participation; 6. Idleness; 7. Creation; 8. Identity; 9. Freedom. |
Słaby [6] | 1. Biological condition (food, housing, health, natural environment, leisure); 2 Professional status (having a job, working hours, wages); 3. Material status (savings, prices, durable goods); 4. Educational status (education of children and youth, education of adults, culture and art); 5. Social status (social security, income egalitarianism, social pathology, family and social bonds, politics). |
Murray, Pauw, Holm [11] | 1. Subsistence; 2. intactness, arrangement, intake, waste, movement, temperature, receptivity); 2. Protection (e.g., maintain physical subsistence);3. Affection (e.g., pleasure, trust, loyalty, respect); 4. Participation (receiving, giving); 5. Understanding (perception, cognition, emotion, reflex); 6. Creation (transform matter, transform symbols, procreate). 7. Idleness (catharsis, revitalization); 8. Identity (e.g., physical disposition and appearance, personality); 9. Freedom (choice, value); 10. Transcendence (affirmation of life, overcome meaninglessness). |
Ding, Jiang, Riloff [12] | 1. Physiological Needs; 2. Physical Health and Safety Needs; 3. Leisure and Aesthetic Needs; 4. Social, Self-Worth, and Self-Esteem Needs; 5. Finances, Possessions, and Job Needs; 6. Cognition and Education Needs; 7. Freedom of Movement and Accessibility Needs. |
RES | Advantages | Disadvantages |
---|---|---|
Solar energy |
|
|
Wind energy |
|
|
Water energy |
|
|
Biomass |
|
|
Geothermal energy |
|
|
Standard of Living | Renewable Energy | ||
---|---|---|---|
Country | I | Country | II |
Sweden | 0.5432 | Sweden | 0.5628 |
France | 0.5200 | Austria | 0.4312 |
Finland | 0.5114 | Denmark | 0.4189 |
Germany | 0.5005 | Italy | 0.3869 |
Netherlands | 0.4921 | Germany | 0.3644 |
Malta | 0.4900 | Finland | 0.3549 |
Belgium | 0.4879 | Cyprus | 0.3365 |
Estonia | 0.4859 | Portugal | 0.3285 |
Austria | 0.4819 | Greece | 0.3079 |
Cyprus | 0.4788 | Netherlands | 0.2819 |
Ireland | 0.4787 | Ireland | 0.2735 |
Denmark | 0.4722 | Belgium | 0.2543 |
Spain | 0.4680 | Spain | 0.2510 |
Luxembourg | 0.4652 | France | 0.2345 |
Czechia | 0.4558 | Malta | 0.2278 |
Lithuania | 0.4495 | Luxembourg | 0.2081 |
Poland | 0.4397 | Croatia | 0.1937 |
Slovenia | 0.4261 | Slovenia | 0.1918 |
Slovakia | 0.4260 | Latvia | 0.1884 |
Portugal | 0.4179 | Romania | 0.1725 |
Bulgaria | 0.4146 | Bulgaria | 0.1521 |
Greece | 0.3999 | Czechia | 0.1440 |
Romania | 0.3855 | Slovakia | 0.1249 |
Croatia | 0.3830 | Estonia | 0.1214 |
Latvia | 0.3826 | Hungary | 0.1129 |
Italy | 0.3815 | Lithuania | 0.0877 |
Hungary | 0.3727 | Poland | 0.0747 |
Variation | |||
AA | 0.4522 | AA | 0.2514 |
Vs [in %] | 10.5792% | Vs (in %) | 47.3466% |
SD | 0.0478 | SD | 0.1190 |
MED | 0.4652 | MED | 0.2345 |
Q1 | 0.4162 | Q1 | 0.1623 |
Q3 | 0.4869 | Q3 | 0.3325 |
Standard of Living | |||
---|---|---|---|
I | II | III | IV |
Estonia, Finland, Sweden | Belgium, Denmark, Germany, Ireland, France, Cyprus, Luxembourg, Malta, Netherlands, Austria | Greece, Spain, Italy | Bulgaria, Czechia, Croatia, Latvia, Lithuania, Hungary, Poland, Portugal, Romania, Slovenia, Slovakia |
Renewable Energy | |||
Sweden | Denmark, Germany, Ireland, Greece, Spain, France, Italy, Austria, Portugal, Finland | Cyprus | Belgium, Bulgaria, Czechia, Estonia Croatia, Latvia, Lithuania Luxembourg, Hungary Malta, Netherlands Poland, Romania Slovenia, Slovakia |
Root Removed | Canonical Correlation | χ2 Test Value | Number of Degrees of Freedom for χ2 Test | Probability Level p for χ2 Test | Value of Wilks’ Lambda Statistics |
---|---|---|---|---|---|
0 | 0.9400 | 1290.3840 | 184 | 0.0000 | 0.0027 |
1 | 0.8354 | 821.5867 | 154 | 0.0000 | 0.0231 |
2 | 0.7428 | 560.6475 | 126 | 0.0000 | 0.0764 |
3 | 0.6642 | 385.7014 | 100 | 0.0000 | 0.1705 |
4 | 0.6197 | 258.8623 | 76 | 0.0000 | 0.3050 |
5 | 0.5317 | 153.2339 | 54 | 0.0000 | 0.4951 |
6 | 0.4853 | 80.7912 | 34 | 0.0000 | 0.6903 |
7 | 0.3115 | 22.2584 | 16 | 0.1351 | 0.9029 |
Canonical Weights | Factor Loadings | |||||||||||||
Variables Related to the Standard of Living of Residents | ||||||||||||||
I | II | III | IV | V | VI | VII | 1 | II | III | IV | V | VI | VII | |
S2 | 0.01 | −0.07 | −0.31 | −0.48 | −0.37 | 0.29 | −0.01 | 0.17 | 0.33 | −0.35 | −0.14 | −0.35 | 0.15 | 0.22 |
S3 | 0.03 | 0.01 | 0.03 | −0.25 | −0.08 | 0.10 | 0.11 | −0.02 | −0.02 | −0.15 | −0.15 | −0.09 | 0.05 | −0.04 |
S4 | 0.09 | −0.11 | −0.23 | −0.12 | −0.15 | 0.05 | 0.09 | −0.28 | −0.04 | −0.13 | −0.12 | −0.22 | −0.08 | 0.09 |
S5 | 0.06 | −0.07 | 0.30 | 0.34 | 0.06 | −0.04 | 0.30 | 0.15 | 0.29 | 0.18 | 0.02 | −0.06 | −0.08 | 0.37 |
S7 | −0.23 | 0.36 | 0.09 | −0.11 | 0.17 | 0.16 | −0.57 | 0.17 | 0.35 | 0.30 | 0.37 | −0.30 | 0.16 | −0.24 |
S8 | −0.07 | 0.22 | −0.10 | 0.21 | 0.27 | −0.32 | 0.32 | −0.22 | −0.24 | −0.02 | 0.17 | 0.20 | 0.11 | −0.25 |
S10 | −0.13 | 0.30 | 0.16 | 0.77 | −0.10 | −0.52 | 0.08 | 0.29 | 0.50 | −0.12 | 0.18 | −0.17 | −0.17 | −0.06 |
S11 | 0.75 | −0.08 | −0.40 | −0.29 | −0.03 | −1.22 | −0.70 | 0.48 | 0.25 | −0.09 | −0.39 | 0.32 | −0.28 | −0.12 |
S13 | −0.64 | −0.24 | 0.11 | −0.22 | −0.76 | 1.19 | −1.64 | −0.20 | −0.33 | −0.10 | 0.15 | 0.23 | 0.15 | −0.40 |
S15 | 0.50 | −0.02 | −0.07 | 0.28 | 0.50 | −1.20 | 1.31 | −0.06 | −0.24 | −0.06 | 0.20 | 0.28 | 0.17 | −0.36 |
S16 | −0.54 | −0.12 | 0.77 | −0.43 | 0.30 | 0.15 | −0.52 | −0.22 | −0.34 | 0.18 | −0.30 | 0.56 | 0.01 | −0.09 |
S17 | −0.20 | −0.30 | −0.20 | −0.06 | −0.71 | −0.21 | 0.27 | −0.28 | −0.28 | 0.04 | −0.20 | −0.35 | −0.30 | 0.46 |
S18 | 0.15 | 0.00 * | −0.46 | −0.11 | 0.78 | −0.11 | 0.29 | 0.15 | −0.34 | −0.37 | −0.19 | 0.38 | −0.10 | 0.20 |
S19 | −0.24 | 0.41 | 0.45 | 0.01 | 0.23 | −0.60 | 0.08 | 0.16 | 0.17 | 0.17 | 0.00 * | −0.13 | −0.23 | 0.45 |
S20 | −0.19 | −0.13 | 0.16 | −0.32 | −0.06 | −0.39 | −0.11 | 0.01 | −0.20 | −0.18 | −0.08 | 0.02 | −0.08 | 0.12 |
S21 | 0.06 | 0.03 | 0.34 | 0.02 | 0.35 | −0.02 | 0.58 | 0.19 | 0.04 | 0.35 | −0.19 | 0.37 | 0.07 | 0.35 |
S22 | 0.20 | −0.01 | −0.49 | 0.49 | −0.07 | 0.70 | −0.13 | 0.10 | −0.06 | −0.23 | 0.23 | 0.24 | 0.25 | 0.09 |
S23 | −0.15 | 0.09 | −0.12 | −0.03 | −0.09 | 0.20 | 0.11 | −0.01 | −0.01 | 0.11 | −0.17 | 0.13 | 0.08 | −0.06 |
S24 | 0.08 | −0.22 | 0.28 | −0.10 | −0.21 | −0.18 | −0.25 | 0.03 | 0.20 | −0.02 | −0.15 | −0.14 | −0.13 | −0.36 |
S25 | 0.23 | −0.4 | −0.28 | 0.21 | 0.00 * | 0.29 | −0.05 | −0.18 | −0.40 | 0.06 | 0.36 | −0.22 | −0.20 | −0.10 |
S26 | −0.06 | −0.08 | −0.61 | 0.04 | −0.11 | 1.62 | 0.32 | 0.23 | 0.43 | −0.14 | −0.33 | 0.25 | 0.01 | 0.06 |
S27 | 0.73 | −0.84 | 0.17 | 0.2 | −0.59 | 0.53 | 0.03 | 0.68 | −0.32 | 0.40 | 0.10 | −0.16 | 0.21 | 0.08 |
S28 | −0.02 | 0.46 | 0.25 | −0.63 | 0.08 | 0.28 | −0.17 | 0.49 | 0.41 | 0.29 | −0.32 | −0.21 | 0.09 | 0.01 |
Variables Related to the Level of Renewable Energy Development | ||||||||||||||
I | II | III | IV | V | VI | VII | I | II | III | IV | V | VI | VII | |
R1 | 0.33 | −0.4 | 0.15 | 0.64 | −1.02 | −0.01 | −0.01 | 0.79 | −0.12 | −0.01 | 0.24 | −0.51 | 0.06 | −0.14 |
R2 | 0.01 | 0.56 | −0.59 | 1.23 | 0.03 | 0.50 | 1.14 | 0.52 | 0.43 | −0.51 | 0.39 | 0.14 | −0.22 | −0.06 |
R3 | −0.01 | 0.06 | −0.75 | −0.60 | −0.32 | 0.83 | 0.25 | −0.02 | 0.23 | −0.72 | −0.25 | −0.32 | 0.38 | −0.22 |
R5 | 0.25 | 0.10 | 0.22 | −1.01 | 0.18 | −1.09 | −1.53 | 0.63 | 0.51 | −0.25 | −0.01 | −0.07 | −0.26 | −0.38 |
R6 | 0.46 | −0.67 | −0.40 | −0.66 | 0.51 | −0.26 | 0.19 | 0.78 | −0.40 | −0.18 | −0.06 | 0.35 | −0.10 | 0.23 |
R8 | 0.30 | 0.71 | 0.46 | −0.06 | 0.29 | 0.80 | 0.42 | 0.76 | 0.34 | 0.40 | −0.09 | 0.12 | 0.35 | 0.04 |
R9 | −0.04 | −0.28 | 0.04 | 0.34 | 0.45 | 0.31 | −0.81 | 0.12 | −0.28 | −0.16 | 0.40 | 0.38 | 0.49 | −0.59 |
R10 | −0.03 | 0.22 | 0.08 | 0.19 | 0.29 | −0.53 | −0.23 | −0.02 | 0.26 | −0.48 | 0.13 | 0.01 | −0.11 | −0.02 |
Specification | Set of Variables Related to the Level of RES Development | Set of Variables Reflecting the Standard of Living of the EU Inhabitants | ||
---|---|---|---|---|
Isolated Variance | Redundancy | Isolated Variance | Redundancy | |
First canonical variable | 0.3112 | 0.2749 | 0.0685 | 0.0605 |
Second canonical variable | 0.1163 | 0.0812 | 0.0821 | 0.0573 |
Third canonical variable | 0.1613 | 0.0890 | 0.0437 | 0.0241 |
Fourth canonical variable | 0.0571 | 0.0252 | 0.0491 | 0.0216 |
Fifth canonical variable | 0.0831 | 0.0319 | 0.0689 | 0.0265 |
Sixth canonical variable | 0.0803 | 0.0227 | 0.0250 | 0.0071 |
Seventh canonical variable | 0.0771 | 0.0182 | 0.0601 | 0.0142 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malinowski, M. “Green Energy” and the Standard of Living of the EU Residents. Energies 2021, 14, 2186. https://doi.org/10.3390/en14082186
Malinowski M. “Green Energy” and the Standard of Living of the EU Residents. Energies. 2021; 14(8):2186. https://doi.org/10.3390/en14082186
Chicago/Turabian StyleMalinowski, Mariusz. 2021. "“Green Energy” and the Standard of Living of the EU Residents" Energies 14, no. 8: 2186. https://doi.org/10.3390/en14082186
APA StyleMalinowski, M. (2021). “Green Energy” and the Standard of Living of the EU Residents. Energies, 14(8), 2186. https://doi.org/10.3390/en14082186