A Framework for Design and Operation Optimization for Utilizing Low-Grade Industrial Waste Heat in District Heating and Cooling †
Abstract
:1. Introduction
2. Problem Statement
3. Mathematical Formulation
3.1. The First Step
3.1.1. Model of Absorption Chiller
3.1.2. Model of HEN
3.1.3. Model of Pipeline
3.1.4. Model of Pump
3.1.5. Calculation of Income
3.2. The Second Step
3.3. The Third Step
4. Solution Strategy
5. Case Study
5.1. Data
5.2. Results
5.3. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Abbreviations | |
DES | District energy supply |
DC | District cooling |
DH | District heating |
DHC | District heating and cooling |
HEN | Heat exchanger network |
HI | Heat Integration |
HRL | Heat recovery loop |
MP | Mathematical programming |
MINLP | Mixed integer nonlinear programming |
WHR | Waste heat recovery |
Subscripts | |
i | Hot stream index |
j | Consumer index |
s | Period index |
Parameters and Variables | |
Area of heat exchanger in period (m2) | |
Design area of heat exchanger (m2) | |
Af | Annual factor |
Ccu | Cost of cold utility (USD) |
Cexchanger | Capital cost of heat exchangers (USD) |
Cpipe,loop | Capital cost of pipeline in HRL (USD) |
Cpipe,DHC | Capital cost of pipeline in DHC system (USD) |
Cpump | Total cost of pump (USD) |
Cpump,cap | Capital cost of pump (USD) |
Cpump,op | Operation cost of pump (USD) |
Cstation | Capital cost of the station (USD) |
COPs | Coefficient of performance of the absorption chiller |
cpw | Specific heat capacity of water (kJ·kg−1·°C−1) |
dti,k,s | Temperature approach of heat exchanger (°C) |
Energy demand of consumer (kW) | |
Actual energy capacity should be supplied to consumer (kW) | |
Total capacity of energy supplied (kW) | |
Flow capacity of hot stream (kW·°C−1) | |
hw | Film heat transfer coefficient of hot water (kW·m−2·°C−1) |
Film heat transfer coefficient of hot stream (kW·m−2·°C−1) | |
IDHC | Income of the plant by district heating and cooling (USD) |
Lloop | Distance between station and production area (m) |
Distance between the plant and consumer (m) | |
LMTDi,k,s | Logarithmic mean temperature difference of heat exchanger (°C) |
Total mass flow rate of hot water (kg·s−1) | |
Mass flow rate of hot water in heat exchangers (kg·s−1) | |
Power of pump in each period (kW) | |
Prate | Rated power of pump (kW) |
Pculloop | Capital cost of the pipeline per unit length in HRL (USD·m−1) |
Capital cost of the pipeline per unit length in DHC system (USD·m−1) | |
qi,k,s | Heat load of heat exchanger (kW) |
Heat load of cooler (kW) | |
Total heat load of hot stream (kW) | |
Cooling output of chiller (kW) | |
Capacity of the waste heat recovered (kW) | |
QDC,max | District cooling potential of the plant (kW) |
QDH,max | District heating potential of the plant (kW) |
Time of each period (h) | |
ttotal | Time of total year (h) |
Initial temperature of hot stream (°C) | |
Target temperature of hot stream (°C) | |
Temperature node of hot stream in HEN (°C) | |
Temperature of hot water entering the chiller (°C) | |
Temperature of hot water leaving the chiller (°C) | |
Inlet temperature of hot water in HEN (°C) | |
Outlet temperature of hot water in HEN (°C) | |
Temperature node of hot water in HEN (°C) | |
TAC | Total annual cost in the first step (USD) |
TAC’ | Total annual cost in the third step (USD) |
TAP | Total annual profit of the DES system (USD) |
ucu | Unit price of cold utility (USD·kW−1·year−1) |
uDC | Unit price of district cooling (USD·MWh−1) |
uDH | Unit price of district heating (USD·MWh −1) |
ue | Unit price of electricity (USD·kWh −1) |
Binary parameter for pipeline combination | |
Binary variable for energy supply selection | |
zi,k | Binary variable for heat exchanger |
Δ | Pressure drop of hot water in long pipeline (Pa) |
Δ | Pressure drop of hot water in HEN (Pa) |
Δ | Pressure drop of hot water in each stage (Pa) |
Δ | Total pressure drop of hot water (Pa) |
Δ | Pressure drop of hot water in tube side of heat exchanger (Pa) |
ΔTmin | Minimum temperature difference (°C) |
η | Efficiency of pump |
μs | Viscosity of hot water (mPa·s−1) |
ρs | Density of hot water (kg·m−3) |
Γ | Upper bound of temperature difference (°C) |
References
- Ji, C.; Qin, Z.; Dubey, S.; Choo, F.H.; Duan, F. Three-dimensional transient numerical study on latent heat thermal storage for waste heat recovery from a low temperature gas flow. Appl. Energy 2017, 205, 1–12. [Google Scholar] [CrossRef]
- Klemeš, J.J.; Kravanja, Z. Forty years of Heat Integration: Pinch Analysis (PA) and Mathematical Programming (MP). Curr. Opin. Chem. Eng. 2013, 2, 461–474. [Google Scholar] [CrossRef]
- Linnhoff, B.; Hindmarsh, E. The pinch design method for heat exchanger networks. Chem. Eng. Sci. 1983, 38, 745–763. [Google Scholar] [CrossRef]
- Floudas, C.A.; Ciric, A.R.; Grossmann, I.E. Automatic synthesis of optimum heat exchanger network configurations. AIChE J. 1986, 32, 276–290. [Google Scholar] [CrossRef]
- Yee, T.F.; Grossmann, I.E. Simultaneous optimization models for heat integration II: Heat exchanger network synthesis. Comput. Chem. Eng. 1990, 14, 1165–1184. [Google Scholar] [CrossRef]
- Shang, J.; Ji, Z.; Qiu, M.; Ma, L. Multi-objective optimization of high-sulfur natural gas purification plant. Pet. Sci. 2019, 16, 1430–1441. [Google Scholar] [CrossRef] [Green Version]
- Forman, C.; Muritala, I.K.; Pardemann, R.; Meyer, B. Estimating the global waste heat potential. Renew. Sustain. Energy Rev. 2016, 57, 1568–1579. [Google Scholar] [CrossRef]
- Van de Bor, D.M.; Infante Ferreira, C.A.; Kiss, A.A. Low grade waste heat recovery using heat pumps and power cycles. Energy 2015, 89, 864–873. [Google Scholar] [CrossRef]
- Fang, H.; Xia, J.; Zhu, K.; Su, Y.; Jiang, Y. Industrial waste heat utilization for low temperature district heating. Energy Policy 2013, 62, 236–246. [Google Scholar] [CrossRef]
- Huang, F.; Zheng, J.; Baleynaud, J.M.; Lu, J. Heat recovery potentials and technologies in industrial zones. J. Energy Inst. 2017, 90, 951–961. [Google Scholar] [CrossRef]
- Gao, X.; Yin, X.; Yang, S.; Yang, D. Improved organic rankine cycle system coupled with mechanical vapor recompression distillation for separation of benzene-toluene mixture. Process Integr. Optim. Sustain. 2019, 3, 189–198. [Google Scholar] [CrossRef]
- Xia, L.; Liu, R.; Zeng, Y.; Zhou, P.; Liu, J.; Cao, X.; Xia, S. A review of low-temperature heat recovery technologies for industry processes. Chin. J. Chem. Eng. 2019, 27, 2227–2237. [Google Scholar] [CrossRef]
- Garcia, S.I.; Garcia, R.F.; Carril, J.C.; Garcia, D.I. A review of thermodynamic cycles used in low temperature recovery systems over the last two years. Renew. Sustain. Energy Rev. 2017, 81, 760–767. [Google Scholar] [CrossRef]
- Lund, H.; Werner, S.; Wiltshire, R.; Svendsen, S.; Thorsen, J.E.; Hvelplund, F.; Mathiesen, B.V. 4th generation district heating (4gdh): Integrating smart thermal grids into future sustainable energy systems. Energy 2014, 68, 1–11. [Google Scholar] [CrossRef]
- Li, Y.; Rezgui, Y.; Zhu, H. District heating and cooling optimization and enhancement—Towards integration of renewables, storage and smart grid. Renew. Sustain. Energy Rev. 2017, 72, 281–294. [Google Scholar] [CrossRef]
- Tveit, T.M.; Aaltola, J.; Laukkanen, T.; Laihanen, M.; Fogelholm, C.J. A framework for local and regional energy system integration between industry and municipalities—Case study UPM-Kymmene Kaukas. Energy 2006, 31, 2162–2175. [Google Scholar] [CrossRef]
- Kapil, A.; Bulatov, I.; Smith, R.; Kim, J.K. Process integration of low grade heat in process industry with district heating networks. Energy 2012, 44, 11–19. [Google Scholar] [CrossRef]
- Fang, H.; Xia, J.; Jiang, Y. Key issues and solutions in a district heating system using low-grade industrial waste heat. Energy 2015, 86, 589–602. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Z.; Zhou, D.; Sun, K. Key issues and novel optimization approaches of industrial waste heat recovery in district heating systems. Energy 2019, 188, 116005. [Google Scholar] [CrossRef]
- Fitó, J.; Hodencq, S.; Ramousse, J.; Wurtz, F.; Stutz, B.; Debray, F.; Vincent, B. Energy- and exergy-based optimal designs of a low-temperature industrial waste heat recovery system in district heating. Energy Convers. Manag. 2020, 211, 112753. [Google Scholar] [CrossRef]
- Khosravi, A.; Laukkanen, T.; Vuorinen, V.; Syri, S. Waste heat recovery from a data centre and 5G smart poles for low-temperature district heating network. Energy 2021, 218, 119468. [Google Scholar] [CrossRef]
- Srikhirin, P.; Aphornratana, S.; Chungpaibulpatana, S. A review of absorption refrigeration technologies. Renew. Sustain. Energy Rev. 2011, 5, 343–372. [Google Scholar] [CrossRef]
- Liew, P.Y.; Walmsley, T.G.; Wan Alwi, S.R.; Manan, Z.A.; Klemeš, J.J.; Varbanov, P.S. Integrating district cooling systems in Locally Integrated Energy Sectors through Total Site Heat Integration. Appl. Energy 2016, 184, 1350–1363. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Y.; Feng, X. Design and Operation Optimization of Industrial Waste Heat Recovery for District Heating and Cooling. In Proceedings of the 23rd Conference on Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction (PRES’20), Xi’an, China, 17–21 August 2020; p. 265. [Google Scholar]
- Söderman, J. Optimisation of structure and operation of district cooling networks in urban regions. Appl. Therm. Eng. 2007, 27, 2665–2676. [Google Scholar] [CrossRef]
- Chang, C.; Chen, X.; Wang, Y.; Feng, X. An efficient optimization algorithm for waste Heat Integration using a heat recovery loop between two plants. Appl. Therm. Eng. 2016, 105, 799–806. [Google Scholar] [CrossRef]
- Arabkoohsar, A.; Andresen, G.B. Supporting district heating and cooling networks with a bifunctional solar assisted absorption chiller. Energy Convers. Manag. 2017, 148, 184–196. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Feng, X. Optimal match between heat source and absorption refrigeration. Comput. Chem. Eng. 2017, 102, 268–277. [Google Scholar] [CrossRef]
- Chen, J.J.J. Comments on improvements on a replacement for the logarithmic mean. Chem. Eng. Sci. 1987, 42, 2488–2489. [Google Scholar] [CrossRef]
- Verheyen, W.; Zhang, N. Design of flexible heat exchanger network for multi-period operation. Chem. Eng. Sci. 2006, 61, 7730–7753. [Google Scholar]
- Peters, M.S.; Timmerhaus, K.D.; West, R.E. Plant Design and Economics for Chemical Engineers, 5th ed.; McGraw-Hill: Boston, MA, USA, 2003. [Google Scholar]
- Stijepovic, M.Z.; Linke, P. Optimal waste heat recovery and reuse in industrial zones. Energy 2011, 36, 4019–4031. [Google Scholar]
- Soltani, H.; Shafiei, S. Heat exchanger networks retrofit with considering pressure drop by coupling genetic algorithm with LP (linear programming) and ILP (integer linear programming) methods. Energy 2011, 36, 2381–2391. [Google Scholar] [CrossRef]
- Best, R.E.; Rezazadeh Kalehbasti, P.; Lepech, M.D. A novel approach to district heating and cooling network design based on life cycle cost optimization. Energy 2020, 194, 1–16. [Google Scholar] [CrossRef]
- Jabbari, B.; Tahouni, N.; Ataei, A.; Panjeshahi, M.H. Design and optimization of CCHP system incorporated into kraft process, using Pinch Analysis with pressure drop consideration. App. Therm. Eng. 2013, 61, 88–97. [Google Scholar] [CrossRef]
- Rosenthal, R.E. GAMS—A User’s Guide; GAMS Development Corporation: Washington, DC, USA, 2008. [Google Scholar]
i | (°C) | (°C) | (kW/°C) | (kW) | (kW/m2·°K) |
---|---|---|---|---|---|
H1 | 140 | 75 | 24 | 1560 | 2 |
H2 | 186 | 68 | 34 | 4012 | 2 |
H3 | 200 | 105 | 38 | 3610 | 2 |
H4 | 144 | 40 | 30 | 3120 | 2 |
H5 | 175 | 93 | 30 | 2460 | 2 |
H6 | 160 | 42 | 40 | 4720 | 2 |
H7 | 153 | 56 | 32 | 3104 | 2 |
H8 | 130 | 50 | 35 | 2800 | 2 |
H9 | 100 | 80 | 54 | 1080 | 2 |
H10 | 95 | 35 | 26 | 1560 | 2 |
j | (m) | (kW) | ||||
---|---|---|---|---|---|---|
s = Spring | s = Summer | s = Autumn | s = Winter | |||
N1 | 5200 | 0 | 0 | 0 | 4000 | 0 |
N2 | 6300 | 1000 | 2500 | 1000 | 2000 | 0 |
N3 | 7000 | 0 | 1800 | 0 | 3000 | 0 |
N4 | 7900 | 0 | 0 | 0 | 7000 | 0 |
N5 | 9500 | 2000 | 4000 | 2000 | 5000 | 1 |
N6 | 10,400 | 1800 | 2000 | 1800 | 6000 | 1 |
N7 | 11,000 | 0 | 0 | 0 | 8000 | 0 |
N8 | 11,800 | 0 | 3500 | 0 | 5000 | 0 |
s | (h) | ρs (kg/m3) | μs (mPa·s) |
---|---|---|---|
spring | 1500 | 945 | 0.242 |
summer | 2880 | 945 | 0.242 |
autumn | 1500 | 945 | 0.242 |
winter | 2880 | 980 | 0.430 |
Items | Remarks | Data |
---|---|---|
ΔTmin | Minimum approach temperature difference | 10 °C |
hw | Film heat transfer coefficient of hot water | 1.5 kW/m2 °C |
cpw | Specific heat capacity of hot water | 4.2 kJ/kg °C |
Φ | Viscosity correction factor | 1.05 |
k | Conductivity | 0.6 W/m °C |
di | Tube internal diameter of heat exchanger | 15.4 mm |
de | Tube external diameter of heat exchanger | 19.1 mm |
Lloop | Distance between station and production area | 400 m |
η | Pump efficiency | 0.7 |
Items | Remarks | Data |
---|---|---|
Af | Annualized factor [26] | 0.264 |
α | Cost parameters of heat exchanger [32] | 11,000 $ |
β | 150 $/m2 | |
γ | 1 | |
b1 | Cost parameters of cooling station [25] | 400,000 $ |
b2 | 400 $/kW | |
a1 | Cost parameters of pipe [32] | 0.82 $/kg |
a2 | 185 $/m1.48 | |
a3 | 6.8 $/m | |
a4 | 295 $/m2 | |
c1 | Cost parameters of pump [35] | 8600 $ |
c2 | 7310 $/W0.2 | |
c3 | 0.2 | |
ucu | Unit price of cold utility [26] | 15 $/kW·y |
ue | Unit price of electricity [26] | 0.1 $/kW·h |
uDC | Unit price of cooling [15] | 60 $/MW·h |
uDH | Unit price of heating [15] | 100 $/MW·h |
s | (kg/s) | (°C) | (°C) | (kW) | (kW) | (kW) | (kW) | COPs |
---|---|---|---|---|---|---|---|---|
summer | 177.4 | 40.0 | 75.7 | 4.204 | 27,016 | 27,016 | - | - |
winter | 180.2 | 103.9 | 121.0 | 5.348 | 12,744 | - | 8641 | 0.678 |
j | (kW) | |||
---|---|---|---|---|
s = Spring | s = Summer | s = Autumn | s = Winter | |
N1 | - | - | - | 4214.6 |
N2 | 1065.4 | 0 | 1065.4 | 0 |
N3 | - | 1931.2 | - | 0 |
N4 | - | - | - | 7578.4 |
N5 | 2200.4 | 4400.7 | 2200.4 | 5500.9 |
N6 | 1998.3 | 2220.4 | 1998.3 | 0 |
N7 | - | - | - | 8935.2 |
N8 | - | 0 | - | 0 |
s | (kg/s) | (°C) | (°C) | (kW) | (kW) | COPs |
---|---|---|---|---|---|---|
spring and autumn | 156.6 | 101.5 | 114.3 | 3.659 | 8420.0 | 0.625 |
summer | 156.3 | 105.2 | 124.0 | 4.391 | 12,341.0 | 0.693 |
winter | 160.4 | 40.0 | 78.9 | 5.097 | 26,229.1 | 0 |
IDHC (USD) | Cpipe,DHC (USD) | Cstation (USD) | TAP (USD) | |
9,953,280 | 3,168,591 | 1,007,949 | 5,776,740 | |
Ccu (USD) | Cexchanger (USD) | Cpipe,loop (USD) | Cpump (USD) | TAC’ (USD) |
185,439 | 75,447 | 96,061 | 18,312 | 375,259 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Wang, Y.; Feng, X. A Framework for Design and Operation Optimization for Utilizing Low-Grade Industrial Waste Heat in District Heating and Cooling. Energies 2021, 14, 2190. https://doi.org/10.3390/en14082190
Zhang L, Wang Y, Feng X. A Framework for Design and Operation Optimization for Utilizing Low-Grade Industrial Waste Heat in District Heating and Cooling. Energies. 2021; 14(8):2190. https://doi.org/10.3390/en14082190
Chicago/Turabian StyleZhang, Lingwei, Yufei Wang, and Xiao Feng. 2021. "A Framework for Design and Operation Optimization for Utilizing Low-Grade Industrial Waste Heat in District Heating and Cooling" Energies 14, no. 8: 2190. https://doi.org/10.3390/en14082190
APA StyleZhang, L., Wang, Y., & Feng, X. (2021). A Framework for Design and Operation Optimization for Utilizing Low-Grade Industrial Waste Heat in District Heating and Cooling. Energies, 14(8), 2190. https://doi.org/10.3390/en14082190