In the literature, three approaches are adopted to perform optimal DSM in SG via DR programs: mathematical methods, game theory-based methods, and heuristic algorithms. The mathematical techniques are classified into two classes, namely, deterministic and stochastic methods. The difference between stochastic and deterministic methods is the initialization of the initial solution, deterministic methods generate the same initial solution when addressing the same problem, and stochastic methods randomly initialize solutions that permit various solutions for the given problem in each run [
2]. A novel modular modelling Energy Management System (EMS) is developed for urban multi-energy systems [
3]. To evaluate the proposed EMS’s saving potential, an extensive case study is conducted compared to the traditional control strategies. It can be evident from the results that an annual cost-saving potential between 3 and 6 percent can be attained when the proposed EMS model is used in combination with additional components such as battery and thermal energy storage. However, there are still no open source solvers available to handle large-scale Mixed Integer Linear Programming (MILP). Furthermore, in large-scale EMS applications (e.g., city districts) such as IBM ILOG CPLEX or GUROBI, the monetary benefit is usually high enough to justify commercial solvers’ costs. A Mixed Integer Linear Programming (MILP)-based scheme is introduced for energy-efficient management in SG [
4]. The developed scheme optimally plans smart devices and the charging and discharging of electric vehicles to reduce energy costs. In the developed model, users can produce their energy from microgrids containing wind turbines, solar panels, and Energy Storage System (ESS). The results confirm that the proposed MILP-based energy management is more effective and productive than legacy models. However, how to handle the intermittent nature of renewable energy sources is not discussed. A combination of Sequential Quadratic Programming algorithm (SQP) and Binary Particle Swarm Optimization (BPSO)-based optimization model is proposed in [
5]. The proposed combination model is applied for energy management of the residential sector. The results validated that the proposed model performed energy management efficiently. However, for reliability in DR programming, the irregular and indeterminate renewable energy characteristics will raise substantial challenges. Thus, to improve the reliability of the renewable energy uncertainty, an appropriate uncertainty processing technology such as chance-constrained technique and Model Predictive Control (MPC) can be incorporated into the MINLP model presented in the proposed work. The authors in [
6] proposed a smart home energy management system model including power generation, solar panels, small wind turbine, battery, and appliances. The proposed model efficiently schedules household thermal and electrical appliances using time-varying pricing to minimize financial expenses and to ensure peak demand clipping. A DR program is employed at different levels [
7]: single home, combined home, network level, and market level for consumers to actively participate in DSM. Electric Vehicles (EVs), Energy Storage Systems (ESSs), and RESs are actively engaged in the DR program in each scenario. The mathematical formulation of each level is implemented with uncertainty consideration. However, the technology barriers such as sensing, controlling, monitoring, and communication infrastructure and markets such as policies, regulation, and structure are not considered. The authors considered the DSM of a home including smart appliances, EVs, ESS, and PV microgeneration in [
8]. The resources and loads are coordinated using indexed pricing models for DSM to maximize self-generation and to minimize cost by reducing utility purchase. However, an investigation on minimum software and hardware requirements for the unit hosting the Smart Home Controller (SHC) module (an issue that is strictly related to the task of developing efficient and tailored solution algorithms) and a comprehensive and detailed cost–benefit analysis of the proposed residential EMS were performed using approaches such as the ones presented to generate highly realistic sequences of events. EMS’s modular design for a grid-connected battery-based microgrid was presented in [
9]. The developed model was for power generation-side using MILP to handle charging and discharging of batteries, to encourage self-consumption, and to reduce operating costs. The proposed model has been tested and experimentally validated at Alborg University at the Microgrid Research Laboratory. However, this optimization problem can be enhanced if power losses and DR programs are considered. In [
10], a complete scheduling scheme including distributed generation and residential load was modeled using RESs. However, the carbon emission was not considered, which is interdependent in distributed generation. To resolve the problems accompanied by mathematical methods, game-theoretic-based approaches are adopted. For example, in [
11], an adaptive game-theoretic-based model is proposed to solve the DSM problem by reducing the Peak to Average Ratio (PAR) and saves the nearby cost location. A Nash game theory-based optimization model is developed for scheduling building energy consumption under utility and RESs. The proposed model minimizes energy cost, maintains consumers’ comfort levels, and reduces peak demands within the imposed constraints. The model is verified with the case studies of the nearby location in Sydney. It also makes sure that the user does not make a profit if the user diverges from the consumption pattern assigned to the user. The numerous algorithms’ performance parameters are assessed, and their effects have been discussed on the PAR and energy costs. However, the mechanism of Common Storage Facility (CSF) discharge on a bidding process has not been considered. In [
12], a game theory-based, dynamic pricing strategy for the commercial and residential sector electricity market of Singapore was proposed. The model was evaluated with five loads and datasets prices to cover all events, i.e., weekdays, weekends, public holidays, and the highest/lowest demand in the year. Three strategies of the prices were compared and evaluated, i.e., the half-hourly Real-Time Pricing (RTP), Time-of-Use Price (TOUP), and Day-Night (DN) pricing. The outcomes show that the RTP increases the peak load reduction for the residential and commercial sectors by 10% and 5% percent. Furthermore, an increase in the profit by 15.5 percent and 18.7 percent has been observed, and a reduction in the total load is minimized for a realistic scenario. Moreover, tests on the satisfaction functions that are different from one another were performed, which includes many user types who knows the impact of RESs on DSM by taking the dynamic pricing technique and know that the impact of dynamic pricing on short-term Priced Elasticity Demands (PEDs) for the long term is not catered. The Stackelberg game approach and the DR model for trading electricity between utility companies were developed in [
13]. The purpose was to balance the supply and demand by smoothing the load demand curve. The 1-leader was expressed by the interaction between the leader utility company and follower N-follower. The Stackelberg game was employed for solving the optimization problem. The RTP as a pricing function was adopted with the primary aim to encourage the user to join the game to determine the optimal power generation and power demands. However, the distribution network evaluation with the nodal pricing approach was not discussed. A hierarchical system model was introduced in [
14], where multiple providers and prosumers interacted to set the best price and demands for the electricity market. The purpose of the model for overall energy management was to increase a prosumer’s capacity to produce more energy and to reduce the dependency on the utility electricity service providers. Thus, in the proposed work, the price and demands have been improved considering the limitations and various providers and prosumers by creating a Stackelberg game to model two types of interactions: (i) provider–consumer and (ii) prosumer–prosumer. Hence, it is verified that there is a unique equilibrium solution, and it is evident from the results that the proposed method improves energy consumption and cost. A voltage and frequency relaying scheme-based DSM model is proposed in [
15]. The purpose is to minimize the load on 11 kV distribution feeders in peak hours without blanket load shedding. This model’s development is a crucial step towards cleaner production that minimizes load during peak hours and Green House Gas (GHG) emission. However, classification modeling to learn anomalous events and vitals are not considered. Game theory methods have their inherent limitations, which deprived them of optimal solutions. Thus, heuristic algorithms are adopted to cater to DSM problems. For instance, DSM framework is presented in [
16], PSO algorithm is used to minimize the PAR and cost of the electricity, which results in achievement of the optimal sharing schedule and sharing the PEV battery with those nearby. However, the resultant system is complex. In [
17], an optimal energy scheduling strategy for Home Energy Management (HEM) was developed. The purpose is to acquire the desired tradeoff between cost and benefit. However, the user comfort in terms of waiting time is increased while reducing cost and increasing benefits. The authors presented an efficient DSM system that minimizes the cost of electricity and PAR in [
18]. However, users face frustration in terms of waiting time while reducing their costs. In [
19], the authors presented a generic DSM model for HEM to minimize electricity cost, appliance waiting time, and PAR. However, the power grid’s reliability and sustainability, and balance between supply and demand were not catered to, which are indispensable in DSM. The residential loads were controlled and monitored for a smart home in [
20], in which the author has proposed the Grey Wolf Accretive Satisfaction Algorithm (GWASA) and have compared the achieved results with other algorithms that resultantly reduced the cost of electricity. However, the PAR was not addressed. In [
21], an efficient heuristic algorithm-based EMC utilizing RESs, and TOUP and Incline Block Rate (IBR) tariffs was developed for DSM. The DSM problem formulated was mapped to reduce the electricity cost, user discomfort, and PAR. The simulation results confirmed that the required objectives were obtained and that the sustainability of the SG increased. However, the authors do not address the following issues: (i) appliances waiting time, (ii) frequency of interruption, and (iii) demand curve smoothing. An innovative home appliance scheduling framework was proposed in [
22]. The Grey Wolf and Crow Search Optimization (GWCSO) algorithm was used and reduced the PAR and electricity cost. However RESs were not addressed. To reduce the PAR, appliance waiting time, and electricity cost for residential consumers, the generic DSM model was studied in [
23]. A GA-based Energy Management Controller (EMC) was developed for DSM under DR program. The GA-based EMC scheduled the residential load, keeping in view the operation limitations of users. To avoid rebound peaks, a combined RTP and IBR tariff was used. The developed model is useful for both single and multiple users. However, the balance between supply and demand, user comfort, reliability, and sustainability of the grid was not catered. In [
24], the authors proposed an incentive-based optimal energy consumption scheduling algorithm in HEM. The energy demand during peak hours were minimized using the TOUP and DR program. To enhance the cost-saving, a heuristic BPSO technique was used for appliance scheduling based on HEM and RES. However, Consumers’ comfort were ignored, which is essential in energy consumption scheduling. An EMC was designed based on heuristic algorithms such as GA, Bacterial Foraging Optimization Algorithm (BFOA), Wind Driven Optimization (WDO), PSO, and Genetic Binary Particle Swarm Optimization (GBPSO) algorithms in [
25] to reduce electricity price and PAR. However, the system model was more complicated. In [
26], an optimal control strategy was proposed using GA to obtain the minimum cost of electricity based on the user’s response, dynamic pricing, and equipment operating power. The proposed technique determines the optimal operating parameters of each piece of equipment. However, a limited number of appliances were taken into account. The residential consumer power scheduling for DR was discussed in [
27]. For scheduling, two types of electric appliances, power-flexible and time-flexible, were considered. However, the PAR was ignored, which is strongly related to electricity cost. In SG, an advanced RTP algorithm for DSM was presented in [
28] to reduce electricity cost. The main aim was to communicate among smart meters and utility by exchanging control messages, including real-time cost information and consumer energy consumption. However, the DSM was performed on increased system complexity. A device and ESS scheduling schemes were presented in [
29]. The consumers scheduled their devices by observing the low peak hours and by extending the electricity cost using smart electricity storage. The latest and updated comprehensive review of the literature in terms of proposed algorithms, objectives, and limitations are conducted and listed in
Table 1.
The above-discussed methods are valuable assets of literature, and all are capable of solving DSM problems. However, the mathematical techniques suffer from several drawbacks such as the incapability to cater to stochastic and nonlinear effects, the necessity of considering all the periods at once, shifting the load to unfeasible hours, and the risk of high-dimensionality of the problem. Furthermore, the mathematical models are much more complex and exhaust too much time, and returned solutions are not robust in a real-world context. The game theory-based methods suffer due to the techniques of solving games involving mixed strategies, particularly in a large pay-off matrix, being very complicated, and the competitive problems cannot be analyzed with the help of game theory. Furthermore, the assumption that players know their pay-offs and pay-offs of others is not practical. Similarly, heuristic algorithms suffer from the vast majority of cases being unable to deliver an optimal solution to the scheduling problem. For example, heuristic algorithms suffer from premature convergence that leads to losing population diversity and does not have standard parameters adjustment and termination criteria. Moreover, the above-discussed literature did not cater to electricity cost, carbon emission, user comfort, and PAR simultaneously. In this work, a novel HGACO algorithm-based energy management framework is proposed to simultaneously solve the DSM problems and to cater to all objectives. The novelty and major contribution of this work is as follows.