Effect of Temperature Conditions on Flame Evolutions of Turbulent Jet Ignition
Abstract
:1. Introduction
2. Computation Modeling and Methodology
2.1. Governing Equations
2.2. Numerical Methods
2.3. Computation Conditions
2.4. Independence of Computation Mesh
3. Results
3.1. Normal Combustion for Turbulent Jet Ignition at Low Temperatures
3.2. Pre-Flame Heat Release in Jet Nozzle at High Temperatures
3.3. Auto-Ignition in the Pre-Chamber at High Temperatures
3.4. Flame Propagation and Flame Structure
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alvarez, C.E.C.; Couto, G.E.; Roso, V.R.; Thiriet, A.B.; Valle, R.M. A review of prechamber ignition systems as lean combustion technology for SI engines. Appl. Eng. 2018, 128, 107–120. [Google Scholar] [CrossRef]
- Pera, C.; Knop, V.; Chevillard, S.; Reveillon, J. Effects of Residual Burnt Gas Heterogeneity on Cyclic Variability in Lean-burn SI Engines. Flow Turbul. Combust. 2014, 92, 837–863. [Google Scholar] [CrossRef]
- Hwang, J.; Bae, C.; Park, J.; Choe, W.; Cha, J.; Woo, S. Microwave-assisted plasma ignition in a constant volume combustion chamber. Combust. Flame 2016, 167, 86–96. [Google Scholar] [CrossRef]
- Srivastava, D.K.; Agarwal, A.K. Combustion characteristics of a variable compression ratio laser-plasma ignited compressed natural gas engine. Fuel 2018, 214, 322–329. [Google Scholar] [CrossRef]
- Ślefarski, R.; Gołębiewski, M.; Czyżewski, P.; Grzymisławski, P.; Wawrzyniak, J. Analysis of Combustion Process in Industrial Gas Engine with Prechamber-Based Ignition System. Energies 2018, 11, 336. [Google Scholar] [CrossRef] [Green Version]
- Tian, H.; Cui, J.; Yang, T.; Fu, Y.; Tian, J.; Long, W. Experimental Research on Controllability and Emissions of Jet-Controlled Compression Ignition Engine. Energies 2019, 12, 2936. [Google Scholar] [CrossRef] [Green Version]
- Gombosuren, N.; Yoshifumi, O.; Hiroyuki, A. A Charge Possibility of an Unfueled Prechamber and Its Fluctuating Phenomenon for the Spark Ignited Engine. Energies 2020, 13, 303. [Google Scholar] [CrossRef] [Green Version]
- Sens, M.; Binder, E. Pre-Chamber Ignition as a Key Technology for Future Powertrain Fleets. MTZ Worldw. 2019, 80, 44–51. [Google Scholar] [CrossRef]
- Tanoue, K.; Kimura, T.; Jimoto, T.; Hashimoto, J.; Moriyoshi, Y. Study of prechamber combustion characteristics in a rapid compression and expansion machine. Appl. Eng. 2017, 115, 64–71. [Google Scholar] [CrossRef]
- Gentz, G.; Thelen, B.; Gholamisheeri, M.; Litke, P.; Brown, A.; Hoke, J.; Toulson, E. A study of the influence of orifice diameter on a turbulent jet ignition system through combustion visualization and performance characterization in a rapid compression machine. Appl. Eng. 2015, 81, 399–411. [Google Scholar] [CrossRef]
- Gholamisheeri, M.; Givler, S.; Toulson, E. Large eddy simulation of a homogeneously charged turbulent jet ignition system. Int. J. Engine Res. 2017, 20, 181–193. [Google Scholar] [CrossRef]
- Biswas, S.; Qiao, L. Ignition of ultra-lean premixed H2/air using multiple hot turbulent jets generated by pre-chamber combustion. Appl. Eng. 2018, 132, 102–114. [Google Scholar] [CrossRef]
- Karimi, A.; Nalim, M.R. Ignition by Hot Transient Jets in Confined Mixtures of Gaseous Fuels and Air. J. Combust. 2016, 2016, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Reddy, H.; Abraham, J. A numerical study of vortex interactions with flames developing from ignition kernels in lean methane/air mixtures. Combust. Flame 2011, 158, 401–415. [Google Scholar] [CrossRef]
- Sidey, J.A.M.; Mastorakos, E. Pre-Chamber Ignition Mechanism: Simulations of Transient Autoignition in a Mixing Layer Between Reactants and Partially-Burnt Products. Flow Turbul. Combust. 2018, 101, 1093–1102. [Google Scholar] [CrossRef] [Green Version]
- Malé, Q.; Staffelbach, G.; Vermorel, O.; Misdariis, A.; Ravet, F.; Poinsot, T. Large Eddy Simulation of Pre-Chamber Ignition in an Internal Combustion Engine. Flow Turbul. Combust. 2019, 103, 465–483. [Google Scholar] [CrossRef] [Green Version]
- Reddy, H.; Abraham, J. Ignition kernel development studies relevant to lean-burn natural-gas engines. Fuel 2010, 89, 3262–3271. [Google Scholar] [CrossRef]
- Qin, F.; Shah, A.; Huang, Z.-W.; Peng, L.-N.; Tunestal, P.; Bai, X.-S. Detailed numerical simulation of transient mixing and combustion of premixed methane/air mixtures in a pre-chamber/main-chamber system relevant to internal combustion engines. Combust. Flame 2018, 188, 357–366. [Google Scholar] [CrossRef]
- Validi, A.; Jaberi, F. Numerical Study of Turbulent Jet Ignition in a Lean Premixed Configuration. Flow Turbul. Combust. 2018, 100, 197–224. [Google Scholar] [CrossRef]
- Validi, A.; Schock, H.; Jaberi, F. Turbulence–Combustion Interactions in Premixed and Non-premixed Flames Generated by Hot Active Turbulent Jets. Flow Turbul. Combust. 2020, 106, 849–880. [Google Scholar] [CrossRef]
- Pan, J.; Zheng, Z.; Wei, H.; Pan, M.; Shu, G.; Liang, X. An experimental investigation on pre-ignition phenomena: Emphasis on the role of turbulence. Proc. Combust. Inst. 2020. [Google Scholar] [CrossRef]
- Rimkus, A.; Žaglinskis, J.; Stravinskas, S.; Rapalis, P.; Matijošius, J.; Bereczky, Á. Research on the Combustion, Energy and Emission Parameters of Various Concentration Blends of Hydrotreated Vegetable Oil Biofuel and Diesel Fuel in a Compression-Ignition Engine. Energies 2019, 12, 2978. [Google Scholar] [CrossRef] [Green Version]
- Verhelst, S.; Wallner, T. Hydrogen-fueled internal combustion engines. Prog. Energy Combust. Sci. 2009, 35, 490–527. [Google Scholar] [CrossRef] [Green Version]
- Deiterding, R. Parallel Adaptive Simulation of Multi-Dimensional Detonation Structures. Ph.D. Thesis, Brandenburgische Technische Universität Cottbus-Senftenberg, Cottbus, Germany, 2003. [Google Scholar]
- Deiterding, R. High-Resolution Numerical Simulation and Analysis of Mach Reflection Structures in Detonation Waves in Low-Pressure H2–O2–Ar Mixtures: A Summary of Results Obtained with the Adaptive Mesh Refinement Framework AMROC. J. Combust. 2011, 2011, 18. [Google Scholar] [CrossRef] [Green Version]
- Cai, X.; Liang, J.; Deiterding, R.; Mahmoudi, Y.; Sun, M. Experimental and numerical investigations on propagating modes of detonations: Detonation wave/boundary layer interaction. Combust. Flame 2018, 190, 201–215. [Google Scholar] [CrossRef] [Green Version]
- Cerminara, A.; Deiterding, R.; Sandham, N. Direct Numerical Simulation of Blowing in a Hypersonic Boundary Layer on a Flat Plate with Slots. In Proceedings of the Fluid Dynamics Conference, AIAA AVIATION Forum, American Institute of Aeronautics and Astronautics, Barcelona, Spain, 25–29 June 2018. [Google Scholar]
- Liang, J.; Cai, X.; Lin, Z.; Deiterding, R. Effects of a hot jet on detonation initiation and propagation in supersonic combustible mixtures. Acta Astronaut. 2014, 105, 265–277. [Google Scholar] [CrossRef]
- Peng, H.; Huang, Y.; Deiterding, R.; Luan, Z.; Xing, F.; You, Y. Effects of jet in crossflow on flame acceleration and deflagration to detonation transition in methane–oxygen mixture. Combust. Flame 2018, 198, 69–80. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.; Zhang, X.; Zeng, H.; Deiterding, R.; Pan, J.; Zhou, L. Mechanism of end-gas autoignition induced by flame-pressure interactions in confined space. Phys. Fluids 2019, 31, 076106. [Google Scholar] [CrossRef]
- Li, J.; Zhao, Z.; Kazakov, A.; Dryer, F.L. An updated comprehensive kinetic model of hydrogen combustion. Int. J. Chem. Kinet. 2004, 36, 566–575. [Google Scholar] [CrossRef]
- Benekos, S.; Frouzakis, C.E.; Giannakopoulos, G.K.; Bolla, M.; Wright, Y.M.; Boulouchos, K. Prechamber ignition: An exploratory 2-D DNS study of the effects of initial temperature and main chamber composition. Combust. Flame 2020, 215, 10–27. [Google Scholar] [CrossRef]
- Benekos, S.; Frouzakis, C.E.; Giannakopoulos, G.K.; Altantzis, C.; Boulouchos, K. A 2-D DNS study of the effects of nozzle geometry, ignition kernel placement and initial turbulence on prechamber ignition. Combust. Flame 2021, 225, 272–290. [Google Scholar] [CrossRef]
- Pan, J.; Wei, H.; Shu, G.; Chen, R. Effect of pressure wave disturbance on auto-ignition mode transition and knocking intensity under enclosed conditions. Combust. Flame 2017, 185, 63–74. [Google Scholar] [CrossRef] [Green Version]
- Pan, J.; Dong, S.; Wei, H.; Li, T.; Shu, G.; Zhou, L. Temperature gradient induced detonation development inside and outside a hotspot for different fuels. Combust. Flame 2019, 205, 269–277. [Google Scholar] [CrossRef]
- Dai, P.; Chen, Z.; Chen, S.; Ju, Y. Numerical experiments on reaction front propagation in n-heptane/air mixture with temperature gradient. Proc. Combust. Inst. 2015, 35, 3045–3052. [Google Scholar] [CrossRef]
- Gu, X.J.; Emerson, D.R.; Bradley, D. Modes of reaction front propagation from hot spots. Combust. Flame 2003, 133, 63–74. [Google Scholar] [CrossRef]
Cases | TP (K) | TM (K) | P (atm) | φP | φM |
---|---|---|---|---|---|
A | 900 | 860 | 8.5 | 1.0 | 0.6 |
B | 1000 | 960 | 8.5 | 1.0 | 0.6 |
C | 1100 | 1060 | 8.5 | 1.0 | 0.6 |
D | 1200 | 1160 | 8.5 | 1.0 | 0.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, J.; He, Y.; Li, T.; Wei, H.; Wang, L.; Shu, G. Effect of Temperature Conditions on Flame Evolutions of Turbulent Jet Ignition. Energies 2021, 14, 2226. https://doi.org/10.3390/en14082226
Pan J, He Y, Li T, Wei H, Wang L, Shu G. Effect of Temperature Conditions on Flame Evolutions of Turbulent Jet Ignition. Energies. 2021; 14(8):2226. https://doi.org/10.3390/en14082226
Chicago/Turabian StylePan, Jiaying, Yu He, Tao Li, Haiqiao Wei, Lei Wang, and Gequn Shu. 2021. "Effect of Temperature Conditions on Flame Evolutions of Turbulent Jet Ignition" Energies 14, no. 8: 2226. https://doi.org/10.3390/en14082226
APA StylePan, J., He, Y., Li, T., Wei, H., Wang, L., & Shu, G. (2021). Effect of Temperature Conditions on Flame Evolutions of Turbulent Jet Ignition. Energies, 14(8), 2226. https://doi.org/10.3390/en14082226