What Is the Macroeconomic Impact of Higher Decarbonization Speeds? The Case of Greece
Abstract
:1. Introduction
2. Literature Review
2.1. Modeling Approaches
2.2. Relevant Work
3. Experimental Design
3.1. NECP Scenarios
3.2. Models
- 1
- GDP growth: Provided by Greece’s MoF and Organization for Economic Co-operation and Development (OECD) [77] for Greece and RoW, respectively.
- 2
- 3
- Endowments growth:
- Capital growth: Capital accumulation, K, is calculated as proposed by Fouré et al. [78]:
4. Results
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BAU | Business as Usual |
CGE | Computable General Equilibrium |
CI | Confidence Interval |
CPI | Consumer Price Index |
CRES | Center for Renewable Energy Sources and Saving |
DSGE | Dynamic Stochastic General Equilibrium |
EC | European Commission |
ETS | Emissions Trading System |
EU | European Union |
GDP | Gross Domestic Product |
GFEC | Gross Final Energy Consumption |
GFElC | Gross Final Electricity Consumption |
GHG | Greenhouse Gases |
GIEC | Gross Inland Energy Consumption |
GTAP | Global Trade Analysis Project |
IEA | International Energy Agency |
IIASA | International Institute for Applied Systems Analysis |
MoF | Ministry of Finance |
NECP | National Energy and Climate Plan |
OECD | Organization for Economic Co-operation and Development |
PPI | Producer Price Index |
Primes | Price-Induced Market Equilibrium System |
RES | Renewable Energy Sources |
RoW | Rest of World |
SAM | Social Accounting Matrix |
SSP | Shared Socioeconomic Pathway |
TIMES | Integrated MARKAL-EFOM2 System |
References
- European Commission. 2050 Long-Term Strategy. 2020. Available online: https://ec.europa.eu/clima/policies/strategies/2050_en (accessed on 4 September 2020).
- European Council. Governance of the Energy Union: Council Confirms Deal Reached with the European Parliament. 2020. Available online: https://www.consilium.europa.eu/en/press/press-releases/2018/06/29/governance-of-the-energy-union-council-confirms-deal-reached-with-the-european-parliament/ (accessed on 20 September 2020).
- European Commission. National Energy and Climate Plans (NECPs). 2020. Available online: https://ec.europa.eu/energy/topics/energy-strategy/national-energy-climate-plans_en (accessed on 7 May 2020).
- D’Alessandro, S.; Luzzati, T.; Morroni, M. Erratum to “Energy transition towards economic and environmental sustainability: Feasible paths and policy implications”. J. Clean. Prod. 2010, 18, 531. [Google Scholar] [CrossRef]
- Fermeglia, M.; Bevilacqua, P.; Cafaro, C.; Ceci, P.; Fardelli, A. Legal Pathways to Coal Phase-Out in Italy in 2025. Energies 2020, 13, 5605. [Google Scholar] [CrossRef]
- Kotze, R.; Brent, A.C.; Musango, J.; de Kock, I.; Malczynski, L.A. Investigating the Investments Required to Transition New Zealand’s Heavy-Duty Vehicles to Hydrogen. Energies 2021, 14, 1646. [Google Scholar] [CrossRef]
- European Commission. European Green Deal: What Role Can Taxation Play? 2020. Available online: https://ec.europa.eu/taxation_customs/commission-priorities-2019-24/european-green-deal-what-role-can-taxation-play_en (accessed on 7 May 2020).
- Roser, M. Why did Renewables Become Thus, Cheap Thus, Fast? In addition, What Can We do to Use This Global Opportunity for Green Growth? 2020. Available online: https://ourworldindata.org/cheap-renewables-growth#:~:text=In%20most%20places%20in%20the,declines%20by%20the%20same%20fraction (accessed on 1 December 2020).
- Parry, I.; Bento, A. Tax deductions, environmental policy, and the ’double dividend’ hypothesis. J. Environ. Econ. Manag. 2000, 39, 67–96. [Google Scholar] [CrossRef] [Green Version]
- Freire-González, J. Environmental taxation and the double dividend hypothesis in CGE modelling literature: A critical review. J. Policy Model. 2018, 40, 194–223. [Google Scholar] [CrossRef]
- Wesseh, P.K., Jr.; Lin, B. Environmental policy and ‘double dividend’ in a transitional economy. Energy Policy 2019, 134. [Google Scholar] [CrossRef]
- Chepeliev, M.; Diachuk, O.; Podolets, R. Transition towards High Share of Renewables in Ukraine: Linked Energy System and CGE Model Approach, 2018. Available online: https://ssrn.com/abstract=3231225 (accessed on 10 August 2020).
- Köhlin, G.; Pattanayak, S.; Sills, E.; Mattsson, E.; Ostwald, M.; Salas, A.; Ternald, D. In Search of Double Dividends from Climate Change Interventions Evidence from Forest Conservation and Household Energy Transitions. 2015. Available online: https://eba.se/rapporter/in-search-of-double-dividends-from-climate-change-interventions-evidence-from-forest-conservation-and-household-energy-transitions/3226/ (accessed on 9 September 2020).
- Newell, P.; Mulvaney, D. The political economy of the ‘just transition’. Geogr. J. 2013, 179, 132–140. [Google Scholar] [CrossRef]
- Alexander, S.; Floyd, J. The Political Economy of Deep Decarbonization: Tradable Energy Quotas for Energy Descent Futures. Energies 2020, 13, 4304. [Google Scholar] [CrossRef]
- HMEE. National Energy and Climate Plan; Hellenic Ministry of Environment and Energy. 2019. Available online: https://ec.europa.eu/energy/sites/ener/files/el_final_necp_main_en.pdf (accessed on 30 August 2020).
- Nikas, A.; Neofytou, H.; Karamaneas, A.; Koasidis, K.; Psarras, J. Sustainable and socially just transition to a post-lignite era in Greece: A multi-level perspective. Energy Sources Part B Econ. Plan. Policy 2020, 15, 513–544. [Google Scholar] [CrossRef]
- Roser, M. Coal Types. 2021. Available online: https://energyeducation.ca/encyclopedia/Coal_types (accessed on 24 March 2021).
- PPC. Mines. 2020. Available online: https://www.dei.gr/en/i-dei/i-etairia/tomeis-drastiriotitas/oruxeia (accessed on 23 November 2020).
- Dedi, D.V.; Mavroeidis-Kamperis, P. Natural Gas in Greece: The Bridge to Decarbonization. 2020. Available online: https://energypress.eu/natural-gas-in-greece-the-bridge-to-decarbonization/ (accessed on 30 September 2020).
- HAEE. Greek Energy Market, Report 2019. Available online: https://www.haee.gr/media/4858/haees-greek-energy-market-report-2019-upload-version.pdf (accessed on 23 November 2020).
- Marinakis, V.; Flamos, A.; Stamtsis, G.; Georgizas, I.; Maniatis, Y.; Doukas, H. The Efforts towards and Challenges of Greece’s Post-Lignite Era: The Case of Megalopolis. Sustainability 2020, 12, 575. [Google Scholar] [CrossRef]
- European Commission. Employment and Social Developments in Europe 2019. Available online: https://op.europa.eu/en/publication-detail/-/publication/747fefa1-d085-11e9-b4bf-01aa75ed71a1/language-en (accessed on 10 January 2021).
- Kumbaroğlu, G.; Canaz, C.; Deason, J.; Shittu, E. Profitable Decarbonization through E-Mobility. Energies 2020, 13, 4042. [Google Scholar] [CrossRef]
- Greenleaf, J.; Harmsen, R.; Angelini, T.; Green, D.; Williams, A.; Rix, O.; Lefevre, N.; Blyth, W. Analysis of Impacts of Climate Change Policies on Energy Security–Final Report. 2009. Available online: https://ec.europa.eu/environment/integration/energy/pdf/cces.pdf (accessed on 5 October 2020).
- Nikas, A.; Doukas, H.; Papandreou, A. A Detailed Overview and Consistent Classification of Climate-Economy Models; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–54. [Google Scholar] [CrossRef] [Green Version]
- Doukas, H.; Nikas, A.; González-Eguino, M.; Arto, I.; Anger-Kraavi, A. From integrated to integrative: Delivering on the paris agreement. Sustainability 2018, 10, 2299. [Google Scholar] [CrossRef] [Green Version]
- Herbst, A.; Toro, F.; Reitze, F.; Jochem, E. Introduction to energy systems modelling. Swiss J. Econ. Stat. 2012, 148, 111–135. [Google Scholar] [CrossRef] [Green Version]
- Helgesen, P.I. Top-Down and Bottom-Up: Combining Energy System Models and Macroeconomic General Equilibrium Models. 2013. Available online: https://www.ntnu.no/documents/7414984/202064323/2013-12-11+Linking+models_444.pdf/4252b320-d68d-43df-81b8-e8c72ea1bfe1 (accessed on 15 October 2020).
- Herbst, M.; Toro, F.; Reitze, F.; Eberhard, J. Bridging Macroeconomic and Bottom up Energy Models-the Case of Efficiency in Industry. 2012. Available online: https://www.eceee.org/library/conference_proceedings/eceee_Industrial_Summer_Study/2012/3-matching-policies-and-drivers-policies-and-directives-to-drive-industrial-efficiency/bridging-macroeconomic-and-bottom-up-energy-models-the-case-of-efficiency-in-industry/ (accessed on 15 October 2020).
- Catenazzi, G. Advances in Techno-Economic Energy Modeling. Costs, Dynamics and Hybrid Aspects. Ph.D. Thesis, ETH Zurich, Zurich, Switzerland, 2009. [Google Scholar] [CrossRef]
- Burfisher, M.E. Introduction to Computable General Equilibrium Models, 2nd ed.; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar] [CrossRef]
- Perali, F.; Scandizzo, P. DSGE vs. CGE Models: Modelling Sustainable Development in a Computable General Equilibrium Context. 2020. Available online: https://siecon3-607788.c.cdn77.org/sites/siecon.org/files/media_wysiwyg/297-perali-scandizzo_0.pdf (accessed on 30 December 2020).
- Khansari, F. General Equilibrium Models and Uncertainty in Environmental Policies: Implications for Australia. 2015. Available online: https://ro.uow.edu.au/cgi/viewcontent.cgi?article=1954&context=buspapers (accessed on 10 December 2020).
- Nilsson, L. Reflections on the economic modelling of free trade agreements. J. Glob. Econ. Anal. 2018, 3, 156–186. [Google Scholar] [CrossRef] [Green Version]
- Lucas, R.J. Econometric policy evaluation: A critique. Carnegie Rochester Conf. Ser. Public Policy 1976, 1, 19–46. [Google Scholar] [CrossRef] [Green Version]
- Krook-Riekkola, A.; Berg, C.; Ahlgren, E.; Söderholm, P. Challenges in top-down and bottom-up soft-linking: Lessons from linking a Swedish energy system model with a CGE model. Energy 2017, 141, 803–817. [Google Scholar] [CrossRef]
- Katris, A.; Calvillo-Muñoz, C.; Figus, G.; Riddoch, F.; Turner, K.; McGregor, P.; Lecca, P.; Swales, K. Workshop on Linking CGE and TIMES Models: Lessons Learned and Next, Steps; 2017; International Public Policy Institute Policy Brief, University of Strathclyde, 2017. An “Occasional Paper” Published by the University of Strathclyde’s International Public Policy Institute (IPPI); Available online: https://pureportal.strath.ac.uk/en/publications/workshop-on-linking-cge-and-times-models-lessons-learned-and-next (accessed on 10 September 2020).
- LEFEVRE, J. Hybridization Challenges in Energy-Economy Integrated Models and Representation of the Low Carbon Transition: An Application to the Brazilian Case. Theses, Université Paris Saclay, 2016. Available online: https://hal.archives-ouvertes.fr/tel-01685944 (accessed on 10 September 2020).
- IEA-ETSAP. IEA-ETSAP Optimization Modeling Documentation. 2020. Available online: https://iea-etsap.org/index.php/etsap-tools/model-generators/times (accessed on 7 May 2020).
- E3MLab. The PRIMES Model. 2020. Available online: http://www.e3mlab.eu/e3mlab/index.php?option=com_content&view=category&id=35 (accessed on 7 May 2020).
- Fortes, P.; Pereira, A.M.; Pereira, R.M.; Seixas, J. Integrated Technological-Economic Modeling Platform for Energy and Climate Policy Analysis. Working Papers 148, Department of Economics, College of William and Mary, 2014. Available online: https://ideas.repec.org/p/cwm/wpaper/148.html (accessed on 15 September 2020).
- Bye, B.; Espegren, K.; Fæhn, T.; Rosendahl, E.; Rosnes, O. Energy Technology and Energy Economics: Analysis of Energy Policy in Two Different Model Traditions, 2016. IAEE. Available online: https://www.iaee.org/proceedings/article/14502 (accessed on 15 September 2020).
- Glynn, J.; Fortes, P.; Krook-Riekkola, A.; Labriet, M.; Vielle, M.; Kypreos, S.; Lehtilä, A.; Mischke, P.; Dai, H.; Gargiulo, M.; et al. Economic Impacts of Future Changes in the Energy System—Global Perspectives. In Informing Energy and Climate Policies Using Energy Systems Models: Insights from Scenario Analysis Increasing the Evidence Base; Springer International Publishing: Cham, Switzerland, 2015; pp. 333–358. [Google Scholar] [CrossRef]
- Labriet, M.; Drouet, L.; Vielle, M.; Loulou, R.; Kanudia, A.; Haurie, A. Assessment of the Effectiveness of Global Climate Policies Using Coupled Bottom-up and Top-down Models. Working Papers 2015.23, Fondazione Eni Enrico Mattei, 2015. Available online: https://ssrn.com/abstract=2580216 (accessed on 15 September 2020).
- Delzeit, R.; Beach, R.; Bibas, R.; Britz, W.; Chateau, J.; Freund, F.; Lefevre, J.; Schuenemann, F.; Sulser, T.; Valin, H.; et al. Linking Global CGE Models with Sectoral Models to Generate Baseline Scenarios: Approaches, Challenges, and Opportunities. J. Glob. Econ. Anal. 2020, 5, 162–195. [Google Scholar] [CrossRef]
- Doukas, H.; Nikas, A. Decision support models in climate policy. Eur. J. Oper. Res. 2020, 280, 1–24. [Google Scholar] [CrossRef]
- Nikas, A.; Gambhir, A.; Trutnevyte, E.; Koasidis, K.; Lund, H.; Thellufsen, J.; Mayer, D.; Zachmann, G.; Miguel, L.; Ferreras-Alonso, N.; et al. Perspective of comprehensive and comprehensible multi-model energy and climate science in Europe. Energy 2021, 215. [Google Scholar] [CrossRef]
- Adams, P. Interpretation of results from CGE models such as GTAP. J. Policy Model. 2005, 27, 941–959. [Google Scholar] [CrossRef]
- Forouli, A.; Gkonis, N.; Nikas, A.; Siskos, E.; Doukas, H.; Tourkolias, C. Energy efficiency promotion in Greece in light of risk: Evaluating policies as portfolio assets. Energy 2019, 170, 818–831. [Google Scholar] [CrossRef]
- Calise, F.; Cappiello, F.L.; Vicidomini, M.; Song, J.; Pantaleo, A.M.; Abdelhady, S.; Shaban, A.; Markides, C.N. Energy and Economic Assessment of Energy Efficiency Options for Energy Districts: Case Studies in Italy and Egypt. Energies 2021, 14, 1012. [Google Scholar] [CrossRef]
- Nasirov, S.; O’Ryan, R.; Osorio, H. Decarbonization Tradeoffs: A Dynamic General Equilibrium Modeling Analysis for the Chilean Power Sector. Sustainability 2020, 12, 8248. [Google Scholar] [CrossRef]
- Gonzalez-Salazar, M.; Langrock, T.; Koch, C.; Spieß, J.; Noack, A.; Witt, M.; Ritzau, M.; Michels, A. Evaluation of Energy Transition Pathways to Phase out Coal for District Heating in Berlin. Energies 2020, 13, 6394. [Google Scholar] [CrossRef]
- Chepeliev, M. Simulation and Economic Impact Evaluation of Ukrainian Electricity Market Tariff Policy Shift, 2014. Available online: https://ssrn.com/abstract=2608980 (accessed on 20 August 2020).
- Renner, M.; Garcia-Banos, C.; Nagpal, D.; Khalid, A. Renewable Energy and Jobs—Annual Review 2018. Available online: https://www.irena.org/publications/2018/May/Renewable-Energy-and-Jobs-Annual-Review-2018#:~:text=The%20industry%20created%20more%20than,million%20for%20the%20first%20time (accessed on 20 December 2020).
- Ram, M.; Aghahosseini, A.; Breyer, C. Job creation during the global energy transition towards 100% renewable power system by 2050. Technol. Forecast. Soc. Chang. 2020, 151, 119682. [Google Scholar] [CrossRef]
- Rutovitz, J.; Dominish, E.; Downes, J. Calculating Global Energy Sector Jobs: 2015 Methodology, 2015. Available online: http://hdl.handle.net/10453/43718 (accessed on 20 September 2020).
- Almutairi, K.; Thoma, G.; Durand-Morat, A. Ex-ante analysis of economic, social and environmental impacts of large-scale renewable and nuclear energy targets for global electricity generation by 2030. Sustainability 2018, 10, 2884. [Google Scholar] [CrossRef] [Green Version]
- EIA, U. The International Energy Outlook 2016 (IEO2016). 2017. Available online: https://www.eia.gov/outlooks/ieo/ (accessed on 2 December 2020).
- Truong, T.P.; Kemfert, C.; Burniaux, J.M. GTAP-E: An Energy-Environmental Version of the GTAP Model with Emission Trading; Number 668 in DIW Discussion Papers; Deutsches Institut für Wirtschaftsforschung (DIW): Berlin, Germany, 2007; Available online: http://hdl.handle.net/10419/18400 (accessed on 20 September 2020).
- Hertel, T.W. Global Trade Analysis: Modeling and Applications; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar] [CrossRef]
- Grottera, C.; Rovere, E.L.L.; Wills, W.; Pereira, A.O., Jr. The role of lifestyle changes in low-emissions development strategies: An economy-wide assessment for Brazil. Clim. Policy 2020, 20, 217–233. [Google Scholar] [CrossRef]
- Lefevre, J. A description of the IMACLIM-BR Model: A Modeling Framework to Assess Climate and Energy Policy in Brazil. CIRED Working Papers hal-01685947, HAL, 2016. Available online: https://ideas.repec.org/p/hal/ciredw/hal-01685947.html (accessed on 15 December 2020).
- Antosiewicz, M.; Nikas, A.; Szpor, A.; Witajewski-Baltvilks, J.; Doukas, H. Pathways for the transition of the Polish power sector and associated risks. Environ. Innov. Soc. Transitions 2020, 35, 271–291. [Google Scholar] [CrossRef]
- Bukowski, M.; Kowal, P. Large Scale, Multi-Sector DSGE Model as a Climate Policy Assessment Tool—Macroeconomic Mitigation Options (MEMO) Model for Poland. IBS Working Papers 3/2010, Instytut Badan Strukturalnych, 2010. Available online: https://ideas.repec.org/p/ibt/wpaper/wp032010.html (accessed on 20 December 2020).
- NGFS. Guide to Climate Scenario Analysis for Central Banks and Supervisors. Available online: https://www.ngfs.net/sites/default/files/medias/documents/ngfs_guide_scenario_analysis_final.pdf (accessed on 20 November 2020).
- Makridakis, S.; Assimakopoulos, V.; Spiliotis, E. Objectivity, reproducibility and replicability in forecasting research. Int. J. Forecast. 2018, 34, 835–838. [Google Scholar] [CrossRef]
- Eurostat. Glossary: Energy Intensity. 2020. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Energy_intensity (accessed on 7 May 2020).
- HMEE. National Energy and Climate Plan; Hellenic Ministry of Environment and Energy (Draft Version). 2019. Available online: https://ec.europa.eu/energy/sites/ener/files/documents/ec_courtesy_translation_el_necp.pdf (accessed on 30 August 2020).
- Aguiar, A.; Narayanan, B.; McDougall, R. An Overview of the GTAP 9 Data Base. J. Glob. Econ. Anal. 2016, 1, 181–208. [Google Scholar] [CrossRef]
- Aguiar, A.; Chepeliev, M.; Corong, E.L.; McDougall, R.; van der Mensbrugghe, D. The GTAP data base: Version 10. J. Glob. Econ. Anal. 2019, 4, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Koutsandreas, D.; Spiliotis, E.; Petropoulos, F.; Assimakopoulos, V. On the selection of forecasting accuracy measures. J. Oper. Res. Soc. 2021. [Google Scholar] [CrossRef]
- Narayanan, B.; McDougall, R. Guide to the GTAP Data Base. 2015. Available online: https://www.gtap.agecon.purdue.edu/resources/res_display.asp?RecordID=4819 (accessed on 1 December 2020).
- Riahi, K.; van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.; Fujimori, S.; Bauer, N.; Calvin, K. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Chang. 2017, 42, 153–168. [Google Scholar] [CrossRef] [Green Version]
- Rogelj, J.; Popp, A.; Calvin, K.V.; Luderer, G.; Emmerling, J.; Gernaat, D.; Fujimori, S.; Strefler, J. Scenarios towards limiting global mean temperature increase below 1.5 °C. Nat. Clim. Chang. 2018, 8, 325–332. [Google Scholar] [CrossRef]
- Gidden, M.J.; Riahi, K.; Smith, S.J.; Fujimori, S.; Luderer, G.; Kriegler, E.; van Vuuren, D.P.; van den Berg, M. Global emissions pathways under different socioeconomic scenarios for use in CMIP6: A dataset of harmonized emissions trajectories through the end of the century. Geosci. Model Dev. 2019, 12, 1443–1475. [Google Scholar] [CrossRef] [Green Version]
- OECD. OECD Economic Outlook, Volume 2020 Issue 2; OECD Publishing: Paris, France, 2020; p. 264. [Google Scholar] [CrossRef]
- Fouré, J.; Bénassy-Quéré, A.; Fontagné, L. The Great Shift: Macroeconomic Projections for the World Economy at the 2050 Horizon. Working Papers hal-00962464, HAL, 2012. Available online: https://ideas.repec.org/p/hal/wpaper/hal-00962464.html (accessed on 10 September 2020).
- ELSTAT. Gross Fixed Capital Formation. 2020. Available online: https://www.statistics.gr/en/statistics/-/publication/SEL81/- (accessed on 30 June 2020).
- Worldbank. Gross Fixed Capital Formation (Constant 2010 US$). 2020. Available online: https://data.worldbank.org/indicator/NE.GDI.FTOT.KD (accessed on 30 June 2020).
- Eurostat. Glossary: Gross Inland Energy Consumption. 2018. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php/Glossary:Gross_inland_energy_consumption (accessed on 7 May 2020).
- Arndt, C.; Pearson, K.R. How to Carry out Systematic Sensitivity Analysis via Gaussian Quadrature and GEMPACK. 1998. Available online: https://www.copsmodels.com/ftp/gpssatp3/tp3.pdf (accessed on 10 July 2020).
- Pearson, K.; Horridge, M. Hands-On Computing with RunGTAP and WinGEM to Introduce GTAP and GEMPACK (GTAP Resource No. 1638). 2005. Available online: https://www.gtap.agecon.purdue.edu/resources/res_display.asp?RecordID=1638 (accessed on 10 July 2020).
- Horridge, J.M.; Jerie, M.; Mustakinov, D.; Schiffmann, F. GEMPACK Manual, GEMPACK Software. 2018. Available online: https://www.copsmodels.com/gpmanual.htm (accessed on 10 July 2020).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar] [CrossRef]
- Schreyer, P.; Pilat, D. Measuring productivity. OECD Econ. Stud. 2001, 33, 127–170. [Google Scholar]
- Pegkas, P. The Effect of Government Debt and Other Determinants on Economic Growth: The Greek Experience. Economies 2018, 6, 10. [Google Scholar] [CrossRef] [Green Version]
- Doukas, H.; Nikas, A.; Stamtsis, G.; Tsipouridis, I. The Green Versus Green Trap and a Way Forward. Energies 2020, 13, 5473. [Google Scholar] [CrossRef]
- Forouli, A.; Nikas, A.; Van de Ven, D.J.; Sampedro, J.; Doukas, H. A multiple-uncertainty analysis framework for integrated assessment modelling of several sustainable development goals. Environ. Model. Softw. 2020, 131. [Google Scholar] [CrossRef]
- Haldane, A.; Turrell, A. Drawing on different disciplines: Macroeconomic agent-based models. J. Evol. Econ. 2019, 29, 39–66. [Google Scholar] [CrossRef]
- Nikas, A.; Stavrakas, V.; Arsenopoulos, A.; Doukas, H.; Antosiewicz, M.; Witajewski-Baltvilks, J.; Flamos, A. Barriers to and consequences of a solar-based energy transition in Greece. Environ. Innov. Soc. Transit. 2020, 35, 383–399. [Google Scholar] [CrossRef]
- European Union. 2030 Climate & Energy Framework: Greenhouse Gas Emissions—Raising the Ambition. 2020. Available online: https://ec.europa.eu/clima/policies/strategies/2030_en (accessed on 10 January 2020).
Variable | Final NECP | 2030 Targets Draft NECP | Final Targets Aspiration |
---|---|---|---|
RES Share in Gross Final Energy Consumption | ≥35% | 31% | Increased ambitious (core EU target 32%) |
RES Share in Gross Final Electricity Consumption | 61–64% | 56% | — |
Final Energy Consumption | Mtoe (≥38% vs. 2007 predictions) | 18.1 Mtoe; 17.3 Mtoe without ambient heat (32% vs. 2007 predictions) | Increased ambitious (core EU target 32.5 %) |
Share of Lignite in Power Generation | 0% | 16.50% | — |
Reduced Greenhouse Gases | ≥42%
vs. 1990; ≥56% vs. 2005 | 33% vs. 1990; 49% vs. 2005 | Same level of ambitious (overcompliance in non-ETS sectors) |
Additional Investments | 43.8 billion | 34.7 billion | — |
Year | Results | Input | ||||
---|---|---|---|---|---|---|
Energy Intensity (ktoe/ mil. Euro) | GIEC (ktoe) | GDP mil. Euro | Population (Million People) | |||
Draft NECP | Final NECP | Draft NECP | Final NECP | |||
2020 | 0.12 | 0.12 | 23,442.94 | 23,442.94 | 200,082 | 10.691 |
2025 | 0.10 | 0.10 | 21,246.34 | 22,149.48 | 221,662 | 10.538 |
2030 | 0.09 | 0.08 | 21,429.67 | 20,657.10 | 244,733 | 10.368 |
Variables | Growth Rates (%) | |||
---|---|---|---|---|
Greece | RoW | |||
2020–2025 | 2020–2030 | 2020–2025 | 2020–2030 | |
GDP | +10.79 | +22.32 | +16.19 | +33.42 |
Population | −1.43 | −3.02 | +4.48 | +8.55 |
Labor force | −2.08 | −4.37 | +4.43 | +8.05 |
Capital | −4.78 | −5.59 | +15.22 | +32.76 |
Variables | Shock Rates (%) | |||
---|---|---|---|---|
Rapid Delignitization | Mild Delignitization | |||
2020–2025 | 2020–2030 | 2020–2025 | 2020–2030 | |
Primary Energy Production | −5.52 | −11.88 | −9.37 | −8.59 |
Energy Imports | −5.52 | −11.88 | −9.37 | −8.59 |
Energy Exports | +5.52 | +11.88 | +9.37 | +8.59 |
Total Investments | +73 | +152 | +57 | +121 |
Country | Final NECP Target Scenario Shocks (%) Over 2020–2030 | Macroeconomic Impacts (% Deviation vs. BAU Over 2020–2030) | |||||||
---|---|---|---|---|---|---|---|---|---|
GHG Emissions [×] | RES Share (%) | Consumption | Investments (% of GDP per Annum) | GDP | Employment | Income | |||
GFEC | GFElC | Final | Primary | ||||||
Austria | ≈ [#] | +11 | +5 | −2 | −3 | +3.9 | +0.3 | - | |
Croatia | ≈−5 | +7.8 | +16.8 | −2 | −23 | +3.6 | +2.5 [⊕] | +2.4 [⊗] | - |
Cyprus | −19 | +8.1 | +14.5 | −3 | −4 | +2.26 | +0.25 | +0.25 | - |
Finland | −25 | +10 | +12 | −6 | −3 | +0.8 | −0.59 | −0.15 | - |
France | −29 | +10 | - | −8 | −8 | +2.44 | +2 | +400 K [∓] | - |
Germany | −27 | +19.2 | +19.7 | −12 | −18 | +0.8 | +1.5 | +0.5 [*] | +1.7 [*] |
Greece | −26 | +15.3 | +31.8 | −2.5 | −17 | +2 | - | +59.4 K [∓] | - |
Italy | −19 | +11 | +18.8 | −11 | −12 | +6.75 | −0.18 | +1170 K [∓] | - |
Latvia | −18 [#] | +10 | +16.8 | −11 | −11 | +2.65 | - | +10.7 K [∓] | - |
Lithuania | −24 | +15 | +15 | −19 | −19 | - | +1.72 | +1.56 | +2.1 |
Luxembourg | −38 [#] | +14 | +21.7 | −22 | - | +0.72 | +1.1 | +0.3 | −0.9 |
Malta | +14 [□] | +2.2 | ≈+1 | ≈+30 | ≈+30 | +4 | - | +200 [∓] | - |
Poland | −13 | +8 | +9.7 | −6 | −5 | +3 | 0 | 0 | - |
Romania | −4 | +6.3 | +8.4 | +4 | - | +5.76 | >+30 | - | +34 [*] |
Slovakia | −17 | +5.2 | +4.9 | −0.43 | +0.51 | +0.8 | +0.9 | - | - |
Slovenia | −21 | +2 | +9.8 | −4 | −6 | +4.14 | +2.4 | +1.39 [*] | +2.26 [*] |
Spain | −31 | +21.8 | +32 | −15 | −19 | +1.82 | +2.1 | +1.7 [*] | - |
Sweden | - | +16 | - | −13 | −14 | - | −0.35 [*] | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koutsandreas, D.; Spiliotis, E.; Doukas, H.; Psarras, J. What Is the Macroeconomic Impact of Higher Decarbonization Speeds? The Case of Greece. Energies 2021, 14, 2235. https://doi.org/10.3390/en14082235
Koutsandreas D, Spiliotis E, Doukas H, Psarras J. What Is the Macroeconomic Impact of Higher Decarbonization Speeds? The Case of Greece. Energies. 2021; 14(8):2235. https://doi.org/10.3390/en14082235
Chicago/Turabian StyleKoutsandreas, Diamantis, Evangelos Spiliotis, Haris Doukas, and John Psarras. 2021. "What Is the Macroeconomic Impact of Higher Decarbonization Speeds? The Case of Greece" Energies 14, no. 8: 2235. https://doi.org/10.3390/en14082235
APA StyleKoutsandreas, D., Spiliotis, E., Doukas, H., & Psarras, J. (2021). What Is the Macroeconomic Impact of Higher Decarbonization Speeds? The Case of Greece. Energies, 14(8), 2235. https://doi.org/10.3390/en14082235