Relative Permeability: A Critical Parameter in Numerical Simulations of Multiphase Flow in Porous Media
Abstract
:1. Introduction
2. Study Site: Farnsworth Unit, Texas
3. Numerical Model Development
3.1. FWU Geological Model
3.2. Relative Permeability
3.3. Farnsworth Units Model Domain
3.4. Well Operations Schedule and Model Fit
4. Discussion
4.1. Carbon Dioxide Storage
4.2. Oil Production
4.3. Pressure
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Appendix A
References
- Yang, C.; Dai, Z.; Romanak, K.D.; Hovorka, S.D.; Treviño, R.H. Inverse Modeling of Water-Rock-CO2 Batch Experiments: Potential Impacts on Groundwater Resources at Carbon Sequestration Sites. Environ. Sci. Technol. 2014, 48, 2798–2806. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Middleton, R.; Viswanathan, H.; Fessenden-Rahn, J.; Bauman, J.; Pawar, R.; Lee, S.-Y.; McPherson, B. An Integrated Framework for Optimizing CO2 Sequestration and Enhanced Oil Recovery. Environ. Sci. Technol. Lett. 2014, 1, 49–54. [Google Scholar] [CrossRef]
- Bachu, S. Identification of oil reservoirs suitable for CO2-EOR and CO2 storage (CCUS) using reserves databases, with application to Alberta, Canada. Int. J. Greenh. Gas Control. 2016, 44, 152–165. [Google Scholar] [CrossRef]
- Bacon, D.H.; Qafoku, N.P.; Dai, Z.; Keating, E.H.; Brown, C.F. Modeling the impact of carbon dioxide leakage into an unconfined, oxidizing carbonate aquifer. Int. J. Greenh. Gas Control. 2016, 44, 290–299. [Google Scholar] [CrossRef] [Green Version]
- Dai, Z.; Stauffer, P.H.; Carey, J.W.; Middleton, R.S.; Lu, Z.; Jacobs, J.F.; Hnottavange-Telleen, K.; Spangler, L.H. Pre-site Characterization Risk Analysis for Commercial-Scale Carbon Sequestration. Environ. Sci. Technol. 2014, 48, 3908–3915. [Google Scholar] [CrossRef] [PubMed]
- Metz, B.; Davidson, O.; de Coninck, H.X.; Loos, M.; Meyer, L. Carbon Dioxide Capture and Storage: Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Dietrich, J.K.; Bondor, P.L. Three-Phase Oil Relative Permeability Models. Soc. Pet. Eng. 1976, 6044, 1976. [Google Scholar]
- Oak, M.; Baker, L.; Thomas, D. Three-Phase Relative Permeability of Berea Sandstone. J. Pet. Technol. 1990, 42, 1054–1061. [Google Scholar] [CrossRef]
- Saraf, D.; Batycky, J.; Jackson, C.; Fisher, D. An Experimental Investigation of Three-Phase Flow of Water-Oil-Gas Mixtures Through Water-Wet Sandstones. Soc. Pet. Eng. 1982, 10761. [Google Scholar] [CrossRef]
- Corey, A.T. The interrelation between gas and oil relative permeabilities. Prod. Mon. 1954, 19, 38–41. [Google Scholar]
- Land, C.S. Calculation of Imbibition Relative Permeability for Two- and Three-Phase Flow From Rock Properties. Soc. Pet. Eng. J. 1968, 8, 149–156. [Google Scholar] [CrossRef]
- Stone, H. Probability Model for Estimating Three-Phase Relative Permeability. J. Pet. Technol. 1970, 22, 214–218. [Google Scholar] [CrossRef]
- Stone, H. Estimation of Three-Phase Relative Permeability And Residual Oil Data. J. Can. Pet. Technol. 1973, 12, 53–61. [Google Scholar] [CrossRef]
- Baker, L.E. Three-Phase Relative Permeability Corrections. In Proceedings of the Enhanced Oil Recovery Symposium, Tulsa, Oklahoma, 16–21 April 1988; Society of Petroleum Engineers: Tulsa, Oklahoma, 1988. [Google Scholar]
- Moodie, N.; McPherson, B.; Lee, S.-Y.; Mandalaparty, P. Fundamental Analysis of the Impacts Relative Permeability has on CO2 Saturation Distribution and Phase Behavior. Transp. Porous Media 2014, 108, 233–255. [Google Scholar] [CrossRef]
- Ampomah, W.; Balch, R.S.; Grigg, R.B.; Will, R.; Dai, Z.; White, M.D. Farnsworth Field CO2-EOR Project: Performance Case History. In Proceedings of the SPE Improved Oil Recovery Conference, Tulsa, OK, USA, 11–13 April 2016. [Google Scholar]
- Dullien, F.A.L. Porus Media: Fluid Transport and Pore Structure, Second; Academic Press, Inc.: San Diego, CA, USA, 1992. [Google Scholar]
- Sarem, A. Three-Phase Relative Permeability Measurements by Unsteady-State Method. Soc. Pet. Eng. J. 1966, 6, 199–205. [Google Scholar] [CrossRef]
- PNNL. STOMP—Subsurface Transport Over Multiple Phases; Pacific Northwest National Laboratory: Richland, WA, USA, 2015; Available online: http://stomp.pnnl.gov/ (accessed on 1 June 2015).
- Schlumberger. Eclipse: Technical Description, Eclipse Reservoir Simulation Software; Schlumberger Ltd.: Houston, TX, USA, 2010. [Google Scholar]
- May, R.S. A Numerical Simulation Study of the Farnsworth Unit Waterflood (West Side); UNOCAL Corporation: El Segundo, CA, USA, 1987. [Google Scholar]
- May, R.S. A Simulation Study for the Evaluation of Tertiary Oil Recovery by Co2 Injection in the Farnsworth Unit; UNOCAL Corporation: El Segundo, CA, USA, 1988. [Google Scholar]
- Munson, T.W. Depositional, Diagenetic, and Production History of the Upper Morrowan Buckhaults Sandstone, Farnsworth Field, Ochiltree County Texas. 1994. Available online: https://www.osti.gov/pages/servlets/purl/1639065 (accessed on 21 April 2021).
- Bolyard, D.W. Upper Morrowan B sandstone reservoir, Flank field, Baca County, Colorado. In Search for the Subtle Trap, Hydrocarbon Exploration in Mature Basins; West Texas Geological Society: Midland, TX, USA, 1989; pp. 255–268. [Google Scholar]
- Ampomah, W.; Balch, R.S.; Grigg, R.B.; Dai, Z.; Pan, F. Compositional Simulation of CO2 Storage Capacity in Depleted Oil Reservoirs. In Proceedings of the Carbon Management Technology Conference, Sugar Land, TX, USA, 17–19 November 2015. [Google Scholar]
- Ross-Coss, D.; Ampomah, W.; Cather, M.; Balch, R.S.; Mozley, P.; Rasmussen, L. An Improved Approach for Sandstone Reservoir Characterization. In Proceedings of the SPE Western Regional Meeting, Anchorage, AK, USA, 23–26 May 2016; p. SPE-180375. [Google Scholar] [CrossRef]
- Czoski, P. Geologic Characterization of the Morrow B Reservoir in Farnsworth Unit, TX Using 3D VSP Seismic, Seismic Attributes, and Well Logs; New Mexico Institute of Mining and Technology, Department of Earth and Environmental Science, Geophysics: Socorro, NM, USA, 2014. [Google Scholar]
- Hutton, A.C. Geophysical Modeling and Structural Interpretation of a 3D Reflection Seismic Survey in Farnsworth Unit, TX; New Mexico Institute of Mining and Technology: Socorro, NM, USA, 2015. [Google Scholar]
- Cather, S.M.; Cather, M.C. Comparative petrography and paragenesis of Pennsylvanian (Upper Morrow) sandstones from the Farnsworth Unit 13-10A, 13-14, and 32-8 wells, Ochiltree County, Texas. PRRC Rep. 2016, 1–16. Available online: https://www.mdpi.com/1996-1073/12/19/3663/htm (accessed on 21 April 2021).
- Moodie, N.; Ampomah, W.; Jia, W.; Heath, J.; McPherson, B. Assignment and calibration of relative permeability by hydrostratigraphic units for multiphase flow analysis, case study: CO2-EOR operations at the Farnsworth Unit, Texas. Int. J. Greenh. Gas Control. 2019, 81, 103–114. [Google Scholar] [CrossRef]
- Hinds, R.F. Reservoir Fluid Study, Messall No. Well, Farnsworth (Upper Morrow) Field; Core Laboratories, Inc.: Amsterdam, The Netherlands, 1956. [Google Scholar]
- Ampomah, W.; Gunda, D. Farnsworth Field Reservoir Fluid Analysis; New Mexico Tech; Petroleum Recovery Research Center: Socorro, NM, USA, 2015. [Google Scholar]
Lambda(G/O) | Lambda(O/W) | |||||||
---|---|---|---|---|---|---|---|---|
Model | Sgr | Str | Slr | Snr | Oil | Gas | Oil | Water |
C1 | 0.020 | 0.540 | 0.310 | 0.270 | 1.000 | 1.250 | 1.250 | 1.250 |
C2 | 0.01 | 0.25 | 0.2 | 0.05 | 1 | 1.25 | 1.25 | 1.25 |
C3 | 0.01 | 0.25 | 0.2 | 0.05 | 1 | 1.25 | 1.25 | 1.25 |
C4 | 0.07 | 0.2 | 0.2175 | 0.0875 | 1 | 1.25 | 1.25 | 1.25 |
C5 | 0.0325 | 0.3325 | 0.2275 | 0.105 | 1.875 | 1.8125 | 2.0625 | 2.4375 |
C6 | 0.0325 | 0.3325 | 0.2275 | 0.105 | 1.875 | 1.8125 | 2.0625 | 2.4375 |
C7 | 0.13 | 0.1433 | 0.2533 | 0.12 | 1.875 | 1.8125 | 2.0625 | 2.4375 |
C8 | 0.055 | 0.415 | 0.255 | 0.16 | 2.75 | 2.375 | 2.875 | 3.625 |
C9 | 0.055 | 0.415 | 0.255 | 0.16 | 2.75 | 2.375 | 2.875 | 3.625 |
C10 | 0.08 | 0.1 | 0.15 | 0.09 | 2.75 | 2.375 | 2.875 | 3.625 |
C11 | 0.0775 | 0.4975 | 0.2825 | 0.215 | 3.625 | 2.9375 | 3.6875 | 4.8125 |
C12 | 0.0775 | 0.4975 | 0.2825 | 0.215 | 3.625 | 2.9375 | 3.6875 | 4.8125 |
C13 | 0.0733 | 0.26 | 0.3 | 0.153 | 3.625 | 2.9375 | 3.6875 | 4.8125 |
C14 | 0.1 | 0.58 | 0.31 | 0.27 | 4.5 | 3.5 | 4.5 | 6 |
C15 | 0.1 | 0.58 | 0.31 | 0.27 | 4.5 | 3.5 | 4.5 | 6 |
C16 | 0.12 | 0.13 | 0.215 | 0.15 | 4.5 | 3.5 | 4.5 | 6 |
Model | krn(St)Max | krg(St)Max | krl(Sl)Max | krn(Sl)Max |
---|---|---|---|---|
C1 | 0.8 | 0.95 | 0.27 | 0.8 |
C2 | 0.8 | 0.95 | 0.4 | 0.8 |
C3 | 0.8 | 0.95 | 0.27 | 0.8 |
C4 | 0.8 | 0.95 | 0.27 | 0.8 |
C5 | 0.7625 | 0.9125 | 0.3375 | 0.7625 |
C6 | 0.8 | 0.95 | 0.27 | 0.8 |
C7 | 0.8 | 0.95 | 0.27 | 0.8 |
C8 | 0.725 | 0.875 | 0.275 | 0.725 |
C9 | 0.8 | 0.95 | 0.27 | 0.8 |
C10 | 0.8 | 0.95 | 0.27 | 0.8 |
C11 | 0.6875 | 0.8375 | 0.2125 | 0.6875 |
C12 | 0.8 | 0.95 | 0.27 | 0.8 |
C13 | 0.8 | 0.95 | 0.27 | 0.8 |
C14 | 0.65 | 0.8 | 0.15 | 0.65 |
C15 | 0.8 | 0.95 | 0.27 | 0.8 |
C16 | 0.8 | 0.95 | 0.27 | 0.8 |
Model | Supercritical CO2 | CO2 in Oil | CO2 in Water | Total | |||
---|---|---|---|---|---|---|---|
(Tons) | (%) | (Tons) | (%) | (Tons) | (%) | (Tons) | |
BC | 8.98 × 105 | 30% | 1.88 × 106 | 62% | 2.61 × 105 | 9% | 3.04 × 106 |
C1 | 1.28 × 106 | 46% | 1.24 × 106 | 44% | 2.79 × 105 | 10% | 2.80 × 106 |
C2 | 1.37 × 106 | 47% | 1.24 × 106 | 42% | 3.24 × 105 | 11% | 2.94 × 106 |
C3 | 1.18 × 106 | 41% | 1.41 × 106 | 49% | 2.80 × 105 | 10% | 2.87 × 106 |
C4 | 1.35 × 106 | 46% | 1.27 × 106 | 44% | 2.89 × 105 | 10% | 2.90 × 106 |
C5 | 1.08 × 106 | 36% | 1.63 × 106 | 54% | 3.18 × 105 | 10% | 3.03 × 106 |
C6 | 1.16 × 106 | 39% | 1.54 × 106 | 52% | 2.81 × 105 | 9% | 2.99 × 106 |
C7 | 1.28 × 106 | 42% | 1.48 × 106 | 49% | 2.77 × 105 | 9% | 3.04 × 106 |
C8 | 7.30 × 105 | 24% | 2.05 × 106 | 67% | 2.97 × 105 | 10% | 3.08 × 106 |
C9 | 9.46 × 105 | 31% | 1.89 × 106 | 61% | 2.66 × 105 | 9% | 3.10 × 106 |
C10 | 1.03 × 106 | 33% | 1.83 × 106 | 59% | 2.50 × 105 | 8% | 3.11 × 106 |
C11 | 5.14 × 105 | 17% | 2.22 × 106 | 74% | 2.75 × 105 | 9% | 3.01 × 106 |
C12 | 7.27 × 105 | 23% | 2.17 × 106 | 69% | 2.53 × 105 | 8% | 3.15 × 106 |
C13 | 7.48 × 105 | 24% | 2.06 × 106 | 67% | 2.69 × 105 | 9% | 3.08 × 106 |
C14 | 2.84 × 105 | 10% | 2.34 × 106 | 82% | 2.28 × 105 | 8% | 2.85 × 106 |
C15 | 5.08 × 105 | 16% | 2.43 × 106 | 76% | 2.52 × 105 | 8% | 3.19 × 106 |
C16 | 5.77 × 105 | 20% | 2.11 × 106 | 73% | 2.22 × 105 | 8% | 2.91 × 106 |
Model | Oil Produced (STB) | |
---|---|---|
Total | Delta vs. BC Model | |
BC | 2.16 × 107 | 0 |
C1 | 2.68 × 107 | 5.14 × 106 |
C2 | 2.57 × 107 | 4.08 × 106 |
C3 | 2.32 × 107 | 1.59 × 106 |
C4 | 2.77 × 107 | 6.03 × 106 |
C5 | 2.20 × 107 | 3.56 × 105 |
C6 | 2.04 × 107 | −1.23 × 106 |
C7 | 2.60 × 107 | 4.39 × 106 |
C8 | 1.89 × 107 | −2.77 × 106 |
C9 | 1.77 × 107 | −3.96 × 106 |
C10 | 2.30 × 107 | 1.38 × 106 |
C11 | 2.63 × 107 | 4.69 × 106 |
C12 | 2.90 × 107 | 7.40 × 106 |
C13 | 2.26 × 107 | 9.84 × 105 |
C14 | 2.60 × 107 | 4.33 × 106 |
C15 | 1.51 × 107 | −6.54 × 106 |
C16 | 1.75 × 107 | −4.17 × 106 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moodie, N.; Ampomah, W.; Jia, W.; McPherson, B. Relative Permeability: A Critical Parameter in Numerical Simulations of Multiphase Flow in Porous Media. Energies 2021, 14, 2370. https://doi.org/10.3390/en14092370
Moodie N, Ampomah W, Jia W, McPherson B. Relative Permeability: A Critical Parameter in Numerical Simulations of Multiphase Flow in Porous Media. Energies. 2021; 14(9):2370. https://doi.org/10.3390/en14092370
Chicago/Turabian StyleMoodie, Nathan, William Ampomah, Wei Jia, and Brian McPherson. 2021. "Relative Permeability: A Critical Parameter in Numerical Simulations of Multiphase Flow in Porous Media" Energies 14, no. 9: 2370. https://doi.org/10.3390/en14092370
APA StyleMoodie, N., Ampomah, W., Jia, W., & McPherson, B. (2021). Relative Permeability: A Critical Parameter in Numerical Simulations of Multiphase Flow in Porous Media. Energies, 14(9), 2370. https://doi.org/10.3390/en14092370