Design and Implementation of Maiden Dual-Level Controller for Ameliorating Frequency Control in a Hybrid Microgrid
Abstract
:1. Introduction
- To develop a distributed hybrid microgrid (DHμG) model consisting of wind, tidal and biodiesel generators, hybrid plug-in electric vehicle and nonsensitive electric water heater.
- Implementation of novel dual-level {PI − (1 + DD)} controller to achieve the system dynamic by controlling the tuning parameters.
- To study the dynamic responses of {PI − (1 + DD)}, CPID and PI controller separately to find the best one.
- Extensive tests have been performed to compare system dynamics of the proposed controller with other classical PI/CPID controllers in terms of peak frequency deviations, stabilization time and objective function J index.
- To explore the dynamic performance of MBA, PSO and FF techniques using the best controller obtained in (3).
- To exemplify and validate that the proposed strategy is under real-time wind data.
2. Investigated System Modeling
2.1. Mathematical Modeling of Generating Units
2.1.1. Wind Power System (WPS)
2.1.2. Tidal Power Generation System (TPGS)
2.1.3. Bio-Diesel Power Generator (BDPG)
2.1.4. Hybrid Plug-in Electric Vehicle (HPEV)
2.2. Controllable Electric Water Heater (EWH) Modeling
2.3. Dynamic Modeling of Power System and Load
3. Proposed Dual-Level PI − (1 + DD) Controller Design
4. Mine Blast Algorithmic Technique (MBA)
5. Simulation Studies
5.1. Scenario 1: Nonavailability of All Renewable Power Generations
5.2. Scenario 2: Availability of Concurrent Random Renewable Generations with Load Perturbation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Chen, Q.; Gu, Y.; Tang, Z.; Wei, W.; Sun, Y. Assessment of low-carbon iron and steel production with CO2 recycling and utilization technologies: A case study in China. Appl. Energy 2018, 220, 192–207. [Google Scholar] [CrossRef]
- Foumani, K.M. Smith-Miles The impact of various carbon reduction policies on green flowshop scheduling. Appl. Energy 2019, 249, 300–315. [Google Scholar] [CrossRef]
- Bevrani, H.; Hiyama, T. Intelligent Automatic Generation Control; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Aftab, M.A.; Hussain, S.S.; Latif, A.; Das, D.C.; Ustun, T.S. IEC 61850 communication based dual stage load frequency controller for isolated hybrid microgrid. Int. J. Electr. Power Energy Syst. 2021, 130, 106909. [Google Scholar] [CrossRef]
- Rahmani, M.; Sadati, N. Hierarchical optimal robust load-frequency control for power systems. IET Gener. Transm. Distrib. 2012, 6, 303–312. [Google Scholar] [CrossRef]
- Yazdizadeh, A.; Ramezani, M.H.; Hamedrahmat, E. Decentralized load frequency control using a new robust optimal MISO PID controller. Int. J. Electr. Power Energy Syst. 2012, 35, 57–65. [Google Scholar] [CrossRef]
- Liao, K.; Xu, Y. A robust load frequency control scheme for power systems based on second-order sliding mode and extended disturbance observer. IEEE Trans. Ind. Inform. 2017, 14, 3076–3086. [Google Scholar] [CrossRef]
- Ojaghi, P.; Rahmani, M. LMI-based robust predictive load frequency control for power systems with communication delays. IEEE Trans. Power Syst. 2017, 32, 4091–4100. [Google Scholar] [CrossRef]
- Latif, A.; Hussain, S.M.S.; Das, D.C.; Ustun, T.S. State-of-the-art of controllers and soft computing techniques for regulated load frequency management of single/multiarea traditional and renewable energy based power systems. Appl. Energy 2020, 266, 114858. [Google Scholar] [CrossRef]
- Das, D.C.; Roy, A.K.; Sinha, N. GA based frequency controller for solar thermal–diesel–wind hybrid energy generation/energy storage system. Int. J. Electr. Power Energy Syst. 2012, 43, 262–279. [Google Scholar] [CrossRef]
- Das, D.C.; Sinha, N.; Roy, A.K. Automatic generation control of an organic rankine cycle solar-thermal/wind-diesel hybrid energy system. Energy Technol. 2014, 2, 721–731. [Google Scholar] [CrossRef]
- Rout, U.K.; Sahu, R.K.; Panda, S. Design and analysis of differential evolution algorithm based automatic generation control for interconnected power system. Ain Shams Eng. J. 2013, 4, 409–421. [Google Scholar] [CrossRef] [Green Version]
- Hussain, I.; Ranjan, S.; Das, D.C.; Sinha, N. Performance analysis of flower pollination algorithm optimized PID controller for wind-PV-SMES-BESS-diesel autonomous hybrid power system. Int. J. Renew. Energy Res. 2017, 7, 643–651. [Google Scholar]
- Hussain, I.; Das, D.C.; Sinha, N.; Latif, A.; Hussain, S.M.S.; Ustun, T.S. Performance Assessment of an Islanded Hybrid Power System with Different Storage Combinations Using an FPA-Tuned Two-Degree-of-Freedom (2DOF) Controller. Energies 2020, 13, 5610. [Google Scholar] [CrossRef]
- Dash, P.; Saikia, L.C.; Sinha, N. Flower Pollination Algorithm Optimized PI-PD Cascade Controller in Automatic Generation Control of a Multi-area Power System. Int. J. Electr. Power Energy Syst. 2016, 82, 19–28. [Google Scholar] [CrossRef]
- Latif, A.; Das, D.C.; Ranjan, S.; Hussain, I. Integrated demand side management and generation control for frequency control of a microgrid using PSO and FA based controller. Int. J. Renew. Energy Res. 2018, 8, 188–199. [Google Scholar]
- Latif, A.; Pramanik, A.; Das, D.C.; Hussain, I.; Ranjan, S. Plug in hybrid vehicle-wind-diesel autonomous hybrid power system: Frequency control using FA and CSA optimized controller. Int. J. Syst. Assur. Eng. Manag. 2018, 9, 1147–1158. [Google Scholar] [CrossRef]
- Gorripotu, T.S.; Ramana, P.; Sahu, R.K.; Panda, S. Sine Cosine Optimization Based Proportional Derivative-Proportional Integral Derivative Controller for Frequency Control of Hybrid Power System. In Computational Intelligence in Data Mining; Springer: Singapore, 2020; pp. 789–797. [Google Scholar]
- Alattar, A.H.; Selem, S.I.; Metwally, H.; Ibrahim, A.; Aboelsaud, R.; Tolba, M.A.; El-Rifaie, A.M. Performance enhancement of micro grid system with SMES storage system based on mine blast optimization algorithm. Energies 2019, 12, 3110. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Zeng, G.; Dai, Y.; Bi, D.; Sun, J.; Xie, X. Design of a fractional order frequency PID controller for an islanded microgrid: A multi-objective extremal optimization method. Energies 2017, 10, 1052. [Google Scholar] [CrossRef] [Green Version]
- Pan, I.; Das, S. Kriging based surrogate modeling for fractional order control of microgrids. IEEE Trans. Smart Grid 2015, 6, 36–44. [Google Scholar] [CrossRef] [Green Version]
- Guha, D.; Roy, P.K.; Banerjee, S. Equilibrium optimizer-tuned cascade fractional-order 3DOF-PID controller in load frequency control of power system having renewable energy resource integrated. Int. Trans. Electr. Energy Syst. 2021, 31, e12702. [Google Scholar] [CrossRef]
- Lal, D.K.; Barisal, A.K.; Tripathy, M. Load frequency control of multi area interconnected microgrid power system using grasshopper optimization algorithm optimized fuzzy PID controller. In Proceedings of the 2018 Recent Advances on Engineering, Technology and Computational Sciences (RAETCS), Allahabad, India, 6–8 February 2018; pp. 1–6. [Google Scholar]
- Rajesh, K.S.; Dash, S.S. Load frequency control of autonomous power system using adaptive fuzzy based PID controller optimized on improved sine cosine algorithm. J. Ambient Intell. Humaniz Comput. 2019, 10, 2361–2373. [Google Scholar] [CrossRef]
- Gheisarnejad, M.; Mohammadi-Moghadam, H.; Boudjadar, J.; Khooban, M.H. Active power sharing and frequency recovery control in an islanded microgrid with nonlinear load and non dispatchable DG. IEEE Syst. J. 2019, 14, 1058–1068. [Google Scholar] [CrossRef]
- Nithilasaravanan, K.; Thakwani, N.; Mishra, P.; Kumar, V.; Rana, K.P.S. Efficient control of integrated power system using self-tuned fractional-order fuzzy PID controller. Neural Comput. Appl. 2019, 31, 4137–4155. [Google Scholar] [CrossRef]
- Karimipouya, A.; Abdi, H. Microgrid frequency control using the virtual inertia and ANFIS-based Controller. Int. J. Ind. Electron. Control Optim. 2019, 2, 145–154. [Google Scholar]
- Sadollah, A.; Bahreininejad, A.; Eskandar, H.; Hamdi, M. Mine blast algorithm-a new population based algorithm for solving constrained engineering optimization problems. Appl. Soft Comput. 2013, 13, 2592–2612. [Google Scholar] [CrossRef]
- Sadollah, A.; Bahreininejad, A.; Eskandar, H.; Hamdi, M. Mine blast algorithm for optimization of truss structures with discrete variables. Comput. Struct. 2012, 102–103, 49–63. [Google Scholar] [CrossRef]
- Shang-Guan, X.; He, Y.; Zhang, C.; Jiang, L.; Spencer, J.W.; Wu, M. Sampled-data based discrete and fast load frequency control for power systems with wind power. Appl. Energy 2020, 259, 114202. [Google Scholar] [CrossRef]
- Wind Speed Data. Available online: http://niwe.res.in:8080/NIWE_WRA_DATA/DataTable_D4.jsf (accessed on 21 April 2021).
- Khooban, M.H.; Dragicevic, T.; Blaabjerg, F.; Delimar, M. Shipboard microgrids: A novel approach to load frequency control. IEEE Trans. Sustain. Energy 2018, 9, 843–852. [Google Scholar] [CrossRef]
- Kumar, A.; Sankar, G. Quasi-oppositional harmony search algorithm based optimal dynamic load frequency control of a hybrid tidal-diesel power generation system. IET Gener. Transm. Distrib. 2018, 12, 1099–1108. [Google Scholar] [CrossRef]
- Debbarma, S.; Dutta, A. Utilizing electric vehicles for LFC in restructured power systems using fractional order controller. IEEE Trans. Smart Grid 2017, 8, 2554–2564. [Google Scholar] [CrossRef]
- Arya, Y. Effect of electric vehicles on load frequency control in interconnected thermal and hydrothermal power systems utilising cf-foidf controller. IET Gener. Transm. Distrib. 2020, 14, 2666–2675. [Google Scholar] [CrossRef]
- Kundur, P. Power System Stability and Control; Reprint; Balu, N., Lauby, M.G., Eds.; McGraw-Hill: New York, NY, USA, 2009; pp. 309–366. [Google Scholar]
- Ustun, T.S.; Aoto, Y. Analysis of Smart Inverter’s Impact on the Distribution Network Operation. IEEE Access 2019, 7, 9790–9804. [Google Scholar] [CrossRef]
Symbol | Nomenclature | Value |
---|---|---|
ΔPDL | Net demanded load of DHμG | - |
∆F | frequency deviation (Hz) of DHμG | - |
ΔPG | Net generated power of DHμG | - |
Dlg | Microgrid damping coefficient | 0.1 |
Mlg | Microgrid inertia constant | 0.12 |
KCEx | Gain of engine delay of BDPG | 1 |
TCEx | Constant time engine delay of BDPG | 0.5 s |
KIVRx | Gain of inlet valve regulator delay of BDPG | 1 |
TIVRx | Constant time of inlet valve regulator delay of BDPG | 0.05 s |
KWPSx | Gain of wind | 1 |
TWPSx | Time constant wind | 5s |
KTPGSx | Gain of collector governor and turbine of TPGS | 1 |
TTPGSx | Constant time of collector governor and turbine of TPGS | 0.08 s |
THPEVx | Time constant of HPEV | 0.2 s |
KCEWHx | Gain of EWH | 1 |
TEWHx | Time constant of EWH | 0.1 s |
tsim | Simulated run time of DHμG | 100 s |
Controllers | PI | CPID | PI − (1 + DD) | |
---|---|---|---|---|
Maximum Frequency Overshoot (+MFO) | ||||
ΔF (in Hz) | 0.0975 | 0.0189 | 0.0054 | |
Maximum Frequency Undershoot (-MFU) | ||||
ΔF (in Hz) | 0.1525 | 0.0515 | 0.0223 | |
Stabilization time (TST) | ||||
ΔF (in s) | 6.019 | 5.423 | 4.371 | |
Minimum value of J (Jmin) | ||||
5.56 × 10−4 | 3.28 × 10−5 | 1.40 × 10−7 | ||
Figure of demerits (JFOD) | ||||
36.261 | 29.411 | 19.106 | ||
Optimized controllers’ values | ||||
Controller-1 | KP1 | 3.012 | 0.512 | 0.306 |
KI1 | 2.008 | 12.53 | 10.04 | |
KD11 | - | 0.107 | 0.509 | |
KD12 | - | - | 0.107 | |
Controller-2 | KP2 | 11.11 | 5.061 | 1.517 |
KI2 | 20.01 | 5.005 | 4.115 | |
KD21 | - | 1.627 | 1.113 | |
KD22 | - | - | 2.229 |
Techniques | PSO | FF | MBA | |
---|---|---|---|---|
Optimized Controllers’ Values | ||||
Controller-1 | KP1 | 5.031 | 10.01 | 0.308 |
KI1 | 30.42 | 25.18 | 2.072 | |
KD11 | 0.501 | 0.497 | 0.505 | |
KD12 | 0.108 | 0.117 | 0.104 | |
Controller-2 | KP2 | 4.518 | 4.621 | 4.502 |
KI2 | 4.119 | 4.115 | 4.124 | |
KD21 | 1.114 | 1.108 | 1.163 | |
KD22 | 2.217 | 2.229 | 2.231 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Latif, A.; Hussain, S.M.S.; Das, D.C.; Ustun, T.S. Design and Implementation of Maiden Dual-Level Controller for Ameliorating Frequency Control in a Hybrid Microgrid. Energies 2021, 14, 2418. https://doi.org/10.3390/en14092418
Latif A, Hussain SMS, Das DC, Ustun TS. Design and Implementation of Maiden Dual-Level Controller for Ameliorating Frequency Control in a Hybrid Microgrid. Energies. 2021; 14(9):2418. https://doi.org/10.3390/en14092418
Chicago/Turabian StyleLatif, Abdul, S. M. Suhail Hussain, Dulal Chandra Das, and Taha Selim Ustun. 2021. "Design and Implementation of Maiden Dual-Level Controller for Ameliorating Frequency Control in a Hybrid Microgrid" Energies 14, no. 9: 2418. https://doi.org/10.3390/en14092418
APA StyleLatif, A., Hussain, S. M. S., Das, D. C., & Ustun, T. S. (2021). Design and Implementation of Maiden Dual-Level Controller for Ameliorating Frequency Control in a Hybrid Microgrid. Energies, 14(9), 2418. https://doi.org/10.3390/en14092418