Design and Energy Analysis of a Solar Desiccant Evaporative Cooling System with Built-In Daily Energy Storage
Abstract
:1. Introduction
1.1. System Design and Description
1.2. Final Design of Solar DEC System
2. Modelling
2.1. Solar Collector
2.2. The Reactor
2.3. The Building
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Eicker, U. Low Energy Cooling for Sustainable Buildings; John Wiley and Sons: Chichester, UK, 2009. [Google Scholar]
- Mao, N.; Pan, D.; Li, Z.; Xu, Y.; Song, M.; Deng, S. A numerical study on influences of building envelope heat gain on operating performances of a bed-based task/ambient air conditioning (TAC) system in energy saving and thermal comfort. Appl. Energy 2017, 192, 213–221. [Google Scholar] [CrossRef]
- Awan, M.R.; Riaz, F.; Nabi, Z. Analysis of conditions favourable for small vertical axis wind turbines between building passages in urban areas of Sweden. Int. J. Sustain. Energy 2017, 36, 450–461. [Google Scholar] [CrossRef]
- Global Demand for Air-Conditioning to Triple by 2050: Report the Straits Times. 2018. Available online: https://www.straitstimes.com/business/global-demand-for-air-conditioning-to-triple-by-2050-report (accessed on 8 March 2021).
- Hamzaoui, M.; Nesreddine, H.; Aidoun, Z.; Balistrou, M. Experimental study of a low grade heat driven ejector cooling system using the working fluid R245fa. Int. J. Refrig. 2018, 86, 388–400. [Google Scholar] [CrossRef]
- Zare, V.; Palideh, V. Employing thermoelectric generator for power generation enhancement in a Kalina cycle driven by low-grade geothermal energy. Appl. Therm. Eng. 2018, 130, 418–428. [Google Scholar] [CrossRef]
- Lawal, D.U.; Qasem, N.A.A. Humidification-dehumidification desalination systems driven by thermal-based renewable and low-grade energy sources: A critical review. Renew. Sustain. Energ. Rev. 2020, 125, 109817. [Google Scholar] [CrossRef]
- Muhammad Ashraf, W.; Moeen Uddin, G.; Muhammad Arafat, S.; Afghan, S.; Hassan Kamal, A.; Asim, M.; Haider Khan, M.; Waqas Rafique, M.; Naumann, U.; Niazi, S.G.; et al. Optimisation of a 660 MWe supercritical power plant performance—a case of industry 4.0 in the data-driven operational management part 1. Thermal efficiency. Energies 2020, 13, 5592. [Google Scholar] [CrossRef]
- Riaz, F.; Lee, P.S.; Chou, S.K.; Ranjan, R.; Tay, C.S.; Soe, T. Analysis of low-grade waste heat driven systems for cooling and power for tropical climate. Energy Procedia 2017, 143, 389–395. [Google Scholar] [CrossRef]
- Riaz, F.; Tan, K.H.; Farooq, M.; Imran, M.; Lee, P.S. Energy analysis of a novel ejector-compressor cooling cycle driven by electricity and heat (waste heat or solar energy). Sustainability 2020, 12, 8178. [Google Scholar] [CrossRef]
- Chen, Q.; Alrowais, R.; Burhan, M.; Ybyraiymkul, D.; Shahzad, M.W.; Li, Y.; Ng, K.C. A self-sustainable solar desalination system using direct spray technology. Energy 2020, 205, 118037. [Google Scholar] [CrossRef]
- Kanoğlu, M.; Özdinç Çarpınlıoğlu, M.; Yıldırım, M. Energy and exergy analyses of an experimental open-cycle desiccant cooling system. Appl. Therm. Eng. 2004, 24, 919–932. [Google Scholar] [CrossRef]
- Riaz, F.; Lee, P.S.; Chou, S.K. Thermal modelling and optimisation of low-grade waste heat driven ejector refrigeration system incorporating a direct ejector model. Appl. Therm. Eng. 2020, 167, 114710. [Google Scholar] [CrossRef]
- Rady, M.A.; Huzayyin, A.S.; Arquis, E.; Monneyron, P.; Lebot, C.; Palomo, E. Study of heat and mass transfer in a dehumid-ifying desiccant bed with macro-encapsulated phase change materials. Renew. Energy 2009, 34, 718–726. [Google Scholar] [CrossRef]
- Paksoy, H.O.; Andersson, O.; Abaci, S.; Evliya, H.; Turgut, B. Heating and cooling of a hospital using solar energy coupled with seasonal thermal energy storage in an aquifer. Renew. Energy 2000, 19, 117–122. [Google Scholar] [CrossRef]
- Narayanan, R.; Halawa, E.; Jain, S. Performance characteristics of solid-desiccant evaporative cooling systems. Energies 2018, 11, 2574. [Google Scholar] [CrossRef] [Green Version]
- Henning, H.-M. Solar assisted air conditioning of buildings—An overview. Appl. Therm. Eng. 2007, 27, 1734–1749. [Google Scholar] [CrossRef]
- Mazzei, P.; Minichiello, F.; Palma, D. HVAC dehumidification systems for thermal comfort: A critical review. Appl. Therm. Eng. 2005, 25, 677–707. [Google Scholar] [CrossRef]
- Fatouh, M.; Abou-Ziyan, H.; Mahmoud, O.; Abd El-Raheim, D. Experimental analysis of hybrid and conventional air condi-tioning systems working in hot-humid climate. Appl. Therm. Eng. 2017, 118, 570–584. [Google Scholar] [CrossRef]
- Finocchiaro, P.; Beccali, M.; Cellura, M.; Guarino, F.; Longo, S. Life cycle assessment of a compact desiccant evaporative cooling system: The case study of the “Freescoo”. Sol. Energy Mater. Sol. Cells 2016, 156, 83–91. [Google Scholar] [CrossRef]
- Ham, S.-W.; Lee, S.-J.; Jeong, J.-W. Operating energy savings in a liquid desiccant and dew point evaporative cooling-assisted 100% outdoor air system. Energy Build. 2016, 116, 535–552. [Google Scholar] [CrossRef]
- Ge, T.S.; Dai, Y.J.; Wang, R.Z.; Li, Y. Feasible study of a self-cooled solid desiccant cooling system based on desiccant coated heat exchanger. Appl. Therm. Eng. 2013, 58, 281–290. [Google Scholar] [CrossRef]
- La, D.; Dai, Y.J.; Li, Y.; Tang, Z.Y.; Ge, T.S.; Wang, R.Z. An experimental investigation on the integration of two-stage dehu-midification and regenerative evaporative cooling. Appl. Energy 2013, 102, 1218–1228. [Google Scholar] [CrossRef]
- El Hourani, M.; Ghali, K.; Ghaddar, N. Effective desiccant dehumidification system with two-stage evaporative cooling for hot and humid climates. Energy Build. 2014, 68, 329–338. [Google Scholar] [CrossRef]
- Beccali, M.; Finocchiaro, P.; Nocke, B. Energy performance evaluation of a demo solar desiccant cooling system with heat recovery for the regeneration of the adsorption material. Renew. Energy 2012, 44, 40–52. [Google Scholar] [CrossRef] [Green Version]
- Rafique, M.M.; Gandhidasan, P.; Rehman, S.; Alhems, L.M. Performance analysis of a desiccant evaporative cooling system under hot and humid conditions. Environ. Prog. Sustain. Energy 2016, 35, 1476–1484. [Google Scholar] [CrossRef]
- Urieli, I. (2010, June), Engineering Thermodynamics A Graphical Approach Paper presented at 2010 Annual Conference & Exposition, Louisville, Kentucky. 10.18260/1-2—15662. Available online: https://peer.asee.org/engineering-thermodynamics-a-graphical-approach (accessed on 26 February 2021).
- C603 Solar Collector Factsheet Thermomax Solamax 20-TDS 300. Available online: http://www.spf.ch/fileadmin/daten/reportInterface/kollektoren/factsheets/scf600en.pdf (accessed on 26 February 2021).
- Zondag, H.; Kikkert, B.; Smeding, S.; Boer, R.D.; Bakker, M. Prototype thermochemical heat storage with open reactor system. Appl. Energy 2013, 109, 360–365. [Google Scholar] [CrossRef]
- Schumann, T.E.W. Heat transfer: A liquid flowing through a porous prism. J. Franklin Inst. 1929, 208, 405–416. [Google Scholar] [CrossRef]
- Klemeš, J.J. (Ed.) Assessing and Measuring Environmental Impact and Sustainability; Butterworth-Heinemann/Elsevier: Oxford, UK, 2015; 559p, ISBN 978-0-12-799968-5. [Google Scholar] [CrossRef]
- Klemeš, J.J.; Van Fan, Y.; Jiang, P. The energy and environmental footprints of COVID-19 fighting measures–PPE, disinfection, supply chains. Energy 2020, 211, 118701. [Google Scholar] [CrossRef] [PubMed]
State | Explanation | Temp. (°C) | RH (%) |
---|---|---|---|
Night operation | |||
1 | Atmospheric air | 33 | 70 |
3 | Reactor outlet | 50 | 10 |
4 | Supply after HE1 | 38.1 | 19 |
5 | Hot air after HE.1 | 44.9 | 23 |
6 | Supply after HE 2 | 26.83 | 35 |
7 | Supply air | 17 | 90 |
8 | Return air | 26 | 60 |
9 | Return air after evaporator 2 | 22 | 90 |
10 | Return after HE 2 | 33.2 | 50 |
Day operation | |||
1 | Atmospheric air | 38 | 55 |
2 | Collector outlet | 90 | 7 |
3 | Reactor outlet | 70 | 20 |
S. No. | Symbol | Explanation | Value | Unit |
---|---|---|---|---|
1 | ma | Air mass flow rate | 0.037 | kg/s |
2 | Ac | Area of collector | 7 | m2 |
3 | Cp,a | Air specific heat | 1000 | J/kgK |
4 | ηopt | Collector optical efficiency | 0.566 | - |
5 | k1 | Heat transfer coefficients | 0.94 | W/m2K |
6 | k2 | Heat transfer coefficients | 0.0071 | W/m2K2 |
Reaction | ΔH (kJ/mol of Salt) | Reaction Temperature (°C) |
---|---|---|
MgCl2·6H2O (s) → MgCl2·4H2O (s) + 2 H2O (g) | 116.4 | 50 |
MgCl2·4H2O (s) → MgCl2·2H2O (s) + 2 H2O (g) | 135.6 | 80 |
MgCl2·2H2O (s) → MgCl2·H2O (s) + H2O (g) | 71.3 | 115 |
MgCl2·H2O (s) → MgOHCl + HCl (g) | 83.5 | 140 |
Symbol | Value | Unit | Symbol | Value | Unit | |
---|---|---|---|---|---|---|
Vroom | 36 | m3 | Troom | 26 | °C | |
Afloor | 12 | m2 | N | 2 | - | |
Infiltration | 1 | ACH | Q pp | 100 | W | |
minf | 0.0123 | kg/s | Cp,a | 1000 | J/kg K | |
Ρa | 1.23 | kg/m3 | Q el. Appl. | 150 | W | |
Ventilation | 3 | ACH | Uroom | 0.35 | W/m2K | |
ma | 0.0369 | kg/s | Aroom | 54 | m2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riaz, F.; Qyyum, M.A.; Bokhari, A.; Klemeš, J.J.; Usman, M.; Asim, M.; Awan, M.R.; Imran, M.; Lee, M. Design and Energy Analysis of a Solar Desiccant Evaporative Cooling System with Built-In Daily Energy Storage. Energies 2021, 14, 2429. https://doi.org/10.3390/en14092429
Riaz F, Qyyum MA, Bokhari A, Klemeš JJ, Usman M, Asim M, Awan MR, Imran M, Lee M. Design and Energy Analysis of a Solar Desiccant Evaporative Cooling System with Built-In Daily Energy Storage. Energies. 2021; 14(9):2429. https://doi.org/10.3390/en14092429
Chicago/Turabian StyleRiaz, Fahid, Muhammad Abdul Qyyum, Awais Bokhari, Jiří Jaromír Klemeš, Muhammad Usman, Muhammad Asim, Muhammad Rizwan Awan, Muhammad Imran, and Moonyong Lee. 2021. "Design and Energy Analysis of a Solar Desiccant Evaporative Cooling System with Built-In Daily Energy Storage" Energies 14, no. 9: 2429. https://doi.org/10.3390/en14092429
APA StyleRiaz, F., Qyyum, M. A., Bokhari, A., Klemeš, J. J., Usman, M., Asim, M., Awan, M. R., Imran, M., & Lee, M. (2021). Design and Energy Analysis of a Solar Desiccant Evaporative Cooling System with Built-In Daily Energy Storage. Energies, 14(9), 2429. https://doi.org/10.3390/en14092429