Multi-Objective Energy Management Strategy Based on PSO Optimization for Power-Split Hybrid Electric Vehicles
Abstract
:1. Introduction
2. Model
2.1. Compound Power-Split System Model
2.2. Vehicle Physical Model
2.2.1. Engine Model
2.2.2. Motor Model
2.2.3. Battery Model
2.3. Co-Simulation and Verification of AMESim and MATLAB Platform
3. ECMS Real-Time Energy Management Control Strategy
3.1. Equivalent Factors
3.2. Improved ECMS Objective Function
3.3. Feasible Intervals of Control Variables
3.4. Algorithm Process and Result Analysis
4. Improved ECMS Algorithm for Multi-Objective Optimization
4.1. Particle Swarm Optimization Algorithm
4.2. Optimization Objective Function and Decision Variables
4.3. Optimization Results and Analysis
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martinez, C.M.; Hu, X.; Cao, D.; Velenis, E.; Gao, B.; Wellers, M. Energy management in plug-in hybrid electric vehicles: Recent progress and a connected vehicles perspective. IEEE Trans. Veh. Technol. 2017, 66, 4534–4549. [Google Scholar] [CrossRef] [Green Version]
- De Santiago, J.; Bernhoff, H.; Ekergård, B.; Eriksson, S.; Ferhatovic, S.; Waters, R.; Leijon, M. Electrical motor drivelines in commercial all-electric vehicles: A review. IEEE Trans. Veh. Technol. 2012, 61, 475–484. [Google Scholar] [CrossRef] [Green Version]
- Kermani, S.; Delprat, S.; Guerra, T.M.; Trigui, R. Predictive control for HEV energy management: Experimental results. In Proceedings of the IEEE Vehicle Power and Propulsion Conference, Institute of Electrical and Electronics Engineers (IEEE), Dearbron, MI, USA, 7–11 September 2009; pp. 364–369. [Google Scholar]
- Wang, X.; He, H.; Sun, F.; Sun, X.; Tang, H. Comparative study on different energy management strategies for plug-in hybrid electric vehicles. Energies 2013, 6, 5656–5675. [Google Scholar] [CrossRef]
- Pisu, P.; Rizzoni, G. A comparative study of supervisory control strategies for hybrid electric vehicles. IEEE Trans. Contr. Syst. Technol. 2007, 15, 506–518. [Google Scholar] [CrossRef]
- Gao, Y.; Ehsani, M. Design and control methodology of plug-in hybrid electric vehicles. In Proceedings of the IEEE Vehicle Power and Propulsion Conference, Institute of Electrical and Electronics Engineers (IEEE), Harbin, China, 3–5 September 2008; pp. 1–6. [Google Scholar]
- Peng, J.; He, H.; Xiong, R. Rule based energy management strategy for a series-parallel plug-in hybrid electric bus optimized by dynamic programming. Appl. Energy 2016, 185, 1633–1643. [Google Scholar] [CrossRef]
- Jalil, N.; Kheir, N.; Salman, M. A rule-based energy management strategy for a series hybrid vehicle. In Proceedings of the American Control Conference, Albuquerque, NM, USA, 6 June 1997. [Google Scholar]
- Poursamad, A.; Montazeri, M. Design of genetic-fuzzy control strategy for parallel hybrid electric vehicles. Control. Eng. Pract. 2008, 16, 861–873. [Google Scholar] [CrossRef]
- Banvait, H.; Anwar, S.; Chen, Y. A rule-based energy management strategy for plug-in hybrid electric vehicle (PHEV). In Proceedings of the American Control Conference, St. Louis, MO, USA, 10–12 June 2009; pp. 3938–3943. [Google Scholar]
- Barelli, L.; Bidini, G.; Ciupăgeanu, D.; Pianese, C.; Polverino, P.; Sorrentino, M. Stochastic power management approach for a hybrid solid oxide fuel cell/battery auxiliary power unit for heavy duty vehicle applications. Energy Convers. Manag. 2020, 221, 113197. [Google Scholar] [CrossRef]
- Zhou, D.; Al-Durra, A.; Gao, F.; Ravey, A.; Matraji, I.; Simões, M.G. Online energy management strategy of fuel cell hybrid electric vehicles based on data fusion approach. J. Power Sources 2017, 366, 278–291. [Google Scholar] [CrossRef]
- Liang, C.; Weihua, W.; Qingnian, W. Energy Management Strategy and Parametric Design for Hybrid Electric Military Vehicle; Technical Report No. 2003-01-0086; SAE International: Warrendale, PA, USA, 2003. [Google Scholar]
- Lin, C.-C.; Peng, H.; Grizzle, J.; Kang, J.-M. Power management strategy for a parallel hybrid electric truck. IEEE Trans. Control. Syst. Technol. 2003, 11, 839–849. [Google Scholar]
- Rui, W.; Lukic, S.M. Dynamic programming technique in hybrid electric vehicle optimization. In Proceedings of the IEEE International Electric Vehicle Conference, Greenville, SC, USA, 4–8 March 2012. [Google Scholar]
- Domenico, B.; Rolando, L.; Serrao, L.; Onori, S.; Rizzoni, G.; Al-Khayat, N.; Hsieh, T.-M.; Kang, P. A rule-based strategy for a series/parallel hybrid electric vehicle: An approach based on dynamic programming. In Proceedings of the ASME Dynamic Systems and Control Conference, Cambridge, MA, USA, 12–15 September 2010; pp. 507–514. [Google Scholar]
- Lee, H.; Park, Y.-I.; Cha, S.W. Power management strategy of hybrid electric vehicle using power split ratio line control strategy based on dynamic programming. In Proceedings of the 15th International Conference on Control, Automation and Systems (ICCAS), Busan, Korea, 13–16 October 2015; pp. 1739–1742. [Google Scholar]
- Bader, B.; Torres, O.; Ortega, J.A.; Lux, G.; Romeral, J.L. Predictive real-time energy management strategy for PHEV using lookup-table-based dynamic programming. In Proceedings of the World Electric Vehicle Symposium and Exhibition World Electric Vehicle Symposium and Exhibition, Barcelona, Spain, 17–20 November 2014. [Google Scholar]
- Lee, H.; Cha, S.W.; Kim, H.; Kim, S.-J. Energy Management Strategy of Hybrid Electric Vehicle using Stochastic Dynamic Programming; SAE Technical Papers; SAE International: Warrendale, PA, USA, 2015; Volume 2015. [Google Scholar]
- Musardo, C.; Rizzoni, G.; Guezennec, Y.; Staccia, B. A-ECMS: An adaptive algorithm for hybrid electric vehicle energy management. Eur. J. Control 2005, 11, 509–524. [Google Scholar] [CrossRef]
- Pisu, P.; Koprubasi, K.; Rizzoni, G. Energy management and drivability control problems for hybrid electric vehicles. In Proceedings of the 44th IEEE Conference on Decision and Control, Seville, Spain, 15 December 2005. [Google Scholar]
- Kessels, J.T.B.A.; Koot, M.W.T.; van den Bosch, P.P.J.; Kok, D.B. Online energy management for hybrid electric vehicles. IEEE Trans. Veh. Technol. 2008, 57, 3428–3440. [Google Scholar] [CrossRef]
- Kazemi, H.; Khaki, B.; Nix, A.; Wayne, S.; Fallah, Y.P. Utilizing situational awareness for efficient control of powertrain in parallel hybrid electric vehicles. In Proceedings of the IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), Montreal, QC, Canada, 4–7 October 2015. [Google Scholar]
- Wang, Y.; Jiao, X.; Sun, Z.; Li, P. Energy management strategy in consideration of battery health for PHEV via stochastic control and particle swarm optimization algorithm. Energies 2017, 10, 1894. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Wang, C.; Zhao, X.; Guo, C. An adaptive-equivalent consumption minimum strategy for an extended-range electric bus based on target driving cycle generation. Energies 2018, 11, 1805. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Qin, D.; Wang, S. Minimum energy management strategy of equivalent fuel consumption of hybrid electric vehicle based on improved global optimization equivalent factor. Energies 2019, 12, 2076. [Google Scholar] [CrossRef] [Green Version]
- Abdollahi, A.; Han, X.; Raghunathan, N.; Pattipati, B.; Balasingam, B.; Pattipati, K.; Bar-Shalom, Y.; Card, B. Optimal charging for general equivalent electrical battery model, and battery life management. J. Energy Storage 2017, 9, 47–58. [Google Scholar] [CrossRef] [Green Version]
- Serrao, L.; Onori, S.; Rizzoni, G. ECMS as a realization of Pontryagin’s minimum principle for HEV control. In Proceedings of the American Control Conference, St. Louis, MO, USA, 10–12 June 2009; pp. 3964–3969. [Google Scholar]
- Kennedy, J.; Eberhart, R.C. A discrete binary version of the particle swarm algorithm. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, Computational Cybernetics and Simulation, Orlando, FL, USA, 12–15 October 1997; pp. 4104–4108. [Google Scholar]
- Delice, Y.; Aydoğan, E.K.; Özcan, U.; İlkay, M.S. A modified particle swarm optimization algorithm to mixed-model two-sided assembly line balancing. J. Intell. Manuf. 2017, 28, 23–36. [Google Scholar] [CrossRef]
Gear Number | Clutch C0 | Clutch C1 | BrakeB1 | Brake B2 | Transmission Ratio | Mode Type |
---|---|---|---|---|---|---|
G1 | ○ | ○ | ● | ○ | fixed | pure electric |
G2 | ○ | ○ | ○ | ● | fixed | pure electric |
G3 | ○ | ○ | ○ | ○ | not fixed | pure electric |
G4 | ○ | ● | ● | ○ | fixed | series hybrid |
G5 | ● | ○ | ● | ○ | fixed | parallel hybrid |
G6 | ○ | ● | ○ | ● | fixed | series hybrid |
G7 | ● | ○ | ○ | ○ | not fixed | compound split hybrid |
G8 | ○ | ● | ○ | ○ | not fixed | output split hybrid |
G9 | ● | ● | ○ | ○ | fixed | series hybrid |
Parts | Parameter Name | Unit | Value |
---|---|---|---|
vehicle | curb weight | kg | 2200 |
windward area | m2 | 2.7 | |
drag coefficient | - | 0.37 | |
wheel rolling radius | m | 0.353 | |
main reduction ratio | - | 3.8 | |
tire moment of inertia | - | 1.195 | |
transmission case | front planetary gear ratio | - | −2.96 |
rear planetary gear ratio | - | −2 | |
engine | maximum power | kW | 106 |
maximum speed | r/min | 5500 | |
maximum torque | N·m | 255 | |
engine moment of inertia | kg·m2 | 0.15 | |
motorE1 | rated power | kW | 40 |
maximum speed | r/min | 9000 | |
maximum torque | N·m | 100 | |
motorE2 | rated power | kW | 70 |
maximum speed | r/min | 10,500 | |
maximum torque | N·m | 70 | |
power battery | battery capacity | Ah | 37 |
cell voltage | V | 3.6 | |
number of cells | - | 96 | |
maximum discharge power | kW | 90 |
Driving Circle | Hybrid Mode | Oil Consumption (L/km) | Power Consumption (kW·h) |
---|---|---|---|
WLTC | Actual test | 6.82 | 0.1654 |
Simulation | 6.76 | 0.1661 | |
error | 0.91% | 0.42% | |
NEDC | Actual test | 5.25 | 0.6319 |
Simulation | 5.2 | 0.6342 | |
error | 0.88% | 0.37% |
Driving Circle | Discharge Equivalent Factor
(g/(kW·h)) | Charging Equivalent Factor (g/(kW·h)) |
---|---|---|
WLTC | 16.18 | 211.72 |
NEDC | 30.42 | 213.35 |
Gear Number | Control Variables | Feasible Ranges | Units |
---|---|---|---|
G1 | TE1 | [−100:4:100];0 | |
G2 | nE1 | [−9000:100:9000] | |
G3 | TE1 | [−100:4:100];0 | |
G4 | nEng TE1 | [800:50:5500] [−100:4:100];0 | |
G5 | Teng nE1 | [5:5:255] [−9000:100:9000] | |
G6 | Teng nE1 | [5:5:255] [−9000:100:9000] | |
G7 | Teng TE2 | [5:5:255] [−255:5:255];0 | |
G8 | Teng TE1 | [5:5:255] [−100:4:100];0 | |
G9 | Teng TE1 | [5:5:255] [−100:4:100];0 |
Variable | Lower Limit | Upper Limit |
---|---|---|
(g/kW·h) | 0 | 400 |
(g/kW·h) | 0 | 400 |
a | 0 | 1 |
b | 0 | 1 |
Driving Circle | (g/kW·h) | (g/kW·h) | a | b | Fuel Consumption (L/100 km) | ΔSOC |
---|---|---|---|---|---|---|
WLTC | 197.39 | 215.53 | 0.34 | 0.27 | 6.87 | −0.2% |
NEDC | 224.05 | 218.8 | 1 | 0.1 | 5.73 | −1.09% |
Control Strategy | Engine Fuel Consumption (L/100 km) | Δ
(%) | Comprehensive Fuel Consumption (L/100 km) |
---|---|---|---|
Not optimized under WLTC | 7.31 | −2.4% | 7.45 |
After optimized under WLTC | 6.87 | −0.2% | 6.88 |
Not optimized under NEDC | 6.26 | −2.46% | 6.52 |
After optimized under NEDC | 5.73 | −1.09% | 6.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, A.; Chen, Y.; Zhang, D.; Han, Y. Multi-Objective Energy Management Strategy Based on PSO Optimization for Power-Split Hybrid Electric Vehicles. Energies 2021, 14, 2438. https://doi.org/10.3390/en14092438
Du A, Chen Y, Zhang D, Han Y. Multi-Objective Energy Management Strategy Based on PSO Optimization for Power-Split Hybrid Electric Vehicles. Energies. 2021; 14(9):2438. https://doi.org/10.3390/en14092438
Chicago/Turabian StyleDu, Aimin, Yaoyi Chen, Dongxu Zhang, and Yeyang Han. 2021. "Multi-Objective Energy Management Strategy Based on PSO Optimization for Power-Split Hybrid Electric Vehicles" Energies 14, no. 9: 2438. https://doi.org/10.3390/en14092438
APA StyleDu, A., Chen, Y., Zhang, D., & Han, Y. (2021). Multi-Objective Energy Management Strategy Based on PSO Optimization for Power-Split Hybrid Electric Vehicles. Energies, 14(9), 2438. https://doi.org/10.3390/en14092438