Thermal Behavior of a BIPV Combined with Water Storage: An Experimental Analysis
Abstract
:1. Introduction
2. Case Study and Experimental Design Description
2.1. Solar XXI Building
2.2. BIPV-WS Prototype Description
2.3. Experimental Setup
3. Experimental Analysis and Results
3.1. Weather Analysis and Experimental Campaign
3.2. BIPV-WS Winter Thermal Behaviour Results
3.3. BIPV-WS Summer Thermal Behaviour Results
3.4. BIPV-WS Performance Results
3.4.1. BIPV-WS Winter Performance
3.4.2. BIPV-WS Summer Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Month | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0–24 h | ||||||||||||
Text,ave | 11.6 | 14.0 | 14.1 | 15.0 | 18.7 | 19.8 | 24.4 | 22.0 | 22.4 | 17.2 | 15.1 | 12.1 |
Text,min | 2.7 | 7.0 | 6.0 | 5.2 | 11.1 | 12.1 | 15.2 | 15.2 | 14.4 | 9.1 | 7.8 | 0.7 |
Text,max | 20.1 | 25.4 | 27.7 | 25.1 | 35.6 | 33.8 | 41.5 | 36.0 | 37.2 | 29.0 | 25.1 | 21.0 |
9–20 h | ||||||||||||
Text,ave | 13.3 | 16.7 | 16.6 | 17.5 | 21.8 | 22.7 | 28.7 | 25.0 | 25.8 | 19.8 | 17.0 | 13.7 |
Text,min | 3.8 | 10.5 | 7.0 | 8.9 | 12.5 | 13.9 | 18.0 | 18.2 | 16.3 | 12.4 | 8.9 | 5.2 |
Text,max | 20.1 | 25.7 | 27.7 | 25.1 | 35.6 | 33.8 | 41.5 | 36.0 | 37.2 | 29.0 | 25.1 | 21.0 |
Radiationave | 184 | 277 | 391 | 394 | 543 | 627 | 668 | 572 | 456 | 320 | 187 | 167 |
Radiationmax | 744 | 847 | 1170 | 1275 | 1244 | 1414 | 1024 | 1166 | 1065 | 986 | 728 | 723 |
References
- European Parlament. Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the Energy Performance of buildIngs. 2010. Available online: https://eur-lex.europa.eu/eli/dir/2010/31/oj (accessed on 26 February 2021).
- European Commission. Commission Recommendation (EU) 2016/1318. 2016. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32016H1318 (accessed on 26 February 2021).
- Athienitis, A.; Zhang, J.; Feldman, D. A study of double facades with phase-change storage and photovoltaics. In Proceedings of the 1st International Conference on Passive and Low Energy Cooling for the Built Environment, Santorini, Greece, 19–21 May 2005. [Google Scholar]
- Aelenei, L.; Frattari, A.; Riscala, L.; Altan, H.; Hashemi, A.; Aoul, K.A.T.; Noguchi, M. Zero Energy Homes. In ZEMCH: Toward the Delivery of Zero Energy Mass Custom Homes; Springer: Berlin/Heidelberg, Germany, 2016; pp. 275–309. [Google Scholar]
- Garde, F.; Ayoub, J.; Aelenei, L.; Aelenei, D.; Scognamiglio, A. Solution Sets for Net Zero Energy Buildings: Feedback from 30 Buildings Worldwide; John Wiley & Sons: Hoboken, NJ, USA, 2017; ISBN 343360469X. [Google Scholar]
- Bouzoukas, A. New approaches for Cooling Photovoltaic/Thermal (PV/T) Systems. Ph.D. Thesis, University of Nottingham, Nottingham, UK, 2008. [Google Scholar]
- Agrawal, B.; Tiwari, G.N. Optimizing the energy and exergy of building integrated photovoltaic thermal (BIPVT) systems under cold climatic conditions. Appl. Energy 2010, 87, 417–426. [Google Scholar] [CrossRef]
- Lloret, A.; Andreu, J.; Merten, J. The Mataro Library: A 53kWp grid connected building with integrated PV-thermal multifunctional modules. In Proceedings of the 13th European PV Solar Energy Conference, Nice, France, 23–27 October 1995; pp. 490–493. [Google Scholar]
- Chen, Y.; Athienitis, A.K.; Galal, K.E.; Poissant, Y. Design and simulation for a solar house with building integrated photovoltaic-thermal system and thermal storage. In Proceedings of the ISES Solar World Congress, Beijing, China, 18–21 September 2007; Springer: Heidelberg, Germany, 2007; Volume 1, p. 327. [Google Scholar] [CrossRef]
- Liao, L.; Athienitis, A.K.; Candanedo, L.; Park, K.W.; Poissant, Y.; Collins, M. Numerical and experimental study of heat transfer in a BIPV-thermal system. J. Sol. Energy Eng. 2007, 129, 423–430. [Google Scholar] [CrossRef]
- Bot, K.; Aelenei, L.; Gomes, M.D.G.; Santos Silva, C. Performance assessment of a building integrated photovoltaic thermal system in mediterranean climate—A numerical simulation approach. Energies 2020, 13, 2887. [Google Scholar] [CrossRef]
- Lourenço, J.M.; Aelenei, L.; Facão, J.; Aelenei, D.; Pina, J.M. Aplicação das tecnologias facilitadoras essenciais (TFE) na gestão, controlo e monitorização inteligente de edifícios. In CIES2020: As Energias Renováveis na Transição Energética: Livro de Comunicações do XVII Congresso Ibérico e XIII Congresso Ibero-Americano de Energia Solar; Gonçalves, H., Romero, M., Eds.; LNEG: Lisboa, Portugal, 2020; pp. 1069–1077. [Google Scholar] [CrossRef]
- Aelenei, L.; Pereira, R.; Ferreira, A.; Gonçalves, H.; Joyce, A. Building integrated photovoltaic system with integral thermal storage: A case study. Energy Procedia 2014, 58, 172–178. [Google Scholar] [CrossRef] [Green Version]
- Aelenei, D.; Lopes, R.A.; Aelenei, L.; Gonçalves, H. Investigating the potential for energy flexibility in an office building with a vertical BIPV and a PV roof system. Renew. Energy 2019, 137, 189–197. [Google Scholar] [CrossRef] [Green Version]
- Sousa, M.A.C.; Aelenei, L.; Gonçalves, H. Comportamento térmico de um protótipo BIPV combinado com armazenamento de água: Análise experimental. In CIES2020: As Energias Renováveis na Transição Energética: Livro de Comunicações do XVII Congresso Ibérico e XIII Congresso Ibero-Americano de Energia Solar; Gonçalves, H., Romero, M., Eds.; LNEG: Lisboa, Portugal, 2020; pp. 1167–1174. [Google Scholar] [CrossRef]
- Aelenei, L.; Pereira, R.; Gonçalves, H.; Athienitis, A. Thermal Performance of a Hybrid BIPV-PCM: Modeling, Design and Experimental Investigation. Energy Procedia 2014, 48, 474–483. [Google Scholar] [CrossRef] [Green Version]
- Koyunbaba, B.K.; Yilmaz, Z.; Ulgen, K. An approach for energy modeling of a building integrated photovoltaic (BIPV) Trombe wall system. Energy Build. 2013, 67, 680–688. [Google Scholar] [CrossRef]
- Charron, R.; Athienitis, A. Optimization of the performance of double-façades with integrated photovoltaic panels and motorized blinds. Solar Energy 2006, 80, 482–491. [Google Scholar] [CrossRef]
- Pereira, R.; Aelenei, L. Optimization assessment of the energy performance of a BIPV/T-PCM system using Genetic Algorithms. Renew. Energy 2019, 137, 157–166. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Lei, C. A review of research and development on water wall for building applications. Energy Build. 2016, 112, 198–208. [Google Scholar] [CrossRef]
- Aelenei, L.; Pereira, R.; Gonçalves, H. BIPV/T versus BIPV/T-PCM: A numerical investigation of advanced system integrated into Solar XXI building façade. In Proceedings of the 2nd International Conference on Sustainable Energy Storage Book of Proceedings, Dublin, Ireland, 19–21 June 2013. [Google Scholar]
- Objectives—NZEB_LAB. Available online: https://nzeblab.lneg.pt/?page_id=71 (accessed on 27 February 2021).
- Aelenei, L.; Gonçalves, H. From solar building design to net zero energy buildings: Performance insights of an office building. Energy Procedia 2014, 48, 1236–1243. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, H.; Cabrito, P.; Diniz, I. Solar XXI: Em Direcção à Energia Zero: Towards Zero Energy; LNEG: Lisboa, Portugal, 2010; 61p, ISBN 978-989-675-007-7. [Google Scholar]
- Gonçalves, H.; Aelenei, L.; Rodrigues, C. Solar XXI: A Portuguese office building towards net zero-energy building. REHVA Eur. HVAC J. 2012, 49, 34–40. [Google Scholar]
- Datasheet_ESPMC150. Available online: https://www.atersa.es/Common/pdf/atersa/manuales-usuario/modulos-fotovoltaicos/Datasheet_ESPMC150.pdf (accessed on 26 April 2021).
- Policarbonato Compacto–VF1’_2016. Available online: https://www.dagol.com/wp-content/uploads/2016/10/folheto-poli-compacto.pdf (accessed on 11 April 2021).
- Bergman, T.-L.; Lavine, A.S. Chapter 9—Free Convection. In Fundamentals of Heat and Mass Transfer, 7th ed.; Ratts, L., Marchione, R., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 593–652. [Google Scholar]
- ASHRAE. Chapter 16—Ventilation and infiltration. In ASHRAE Handbook: Fundamentals, SI ed.; ASHAE, Ed.; ASHRAE: Atlanta, GA, USA, 2017; pp. 415–453. [Google Scholar]
- Natural Ventilation—WBDG—Whole Building Design Guide. Available online: https://www.wbdg.org/resources/natural-ventilation (accessed on 11 January 2021).
- Kalogirou, S.A. Chapter 9—Photovoltaic Systems. In Solar Energy Engineering—Processes and Systems, 2nd ed.; Kalogirou, S.A., Ed.; Academic Press: Oxford, UK, 2014; pp. 481–540. [Google Scholar]
System Layer | Properties |
---|---|
PV | The PV polycrystalline module has a peak power, Pmax, of about 150 (Wp), a Short Circuit Current (ISC) of 8.69 (A), and an Open Circuit Voltage (VOC) of 22.7 (V). |
Air cavity | The air cavity cross section has a rectangular shape with 1.75 m width and 0.1 m depth, and the cavity has a height of 0.66 m. |
Water tank | Water tank of 1.50 m of width and height of 0.54 m (60 L) with compact polycarbonate walls of 0.01 m thickness (k = 0.2 W/mK [27]). |
Sensor | Application | Temperature Range (°C) |
---|---|---|
Omega PR-10-2-M45-100-ST | Surface | [−50, 200] |
Omega SA2F-RTD-3-100-A-10M | Emersion and Air | [−200, 600] |
RS Pro 376-1477 | Environment | [−10, 40] |
Sensor | Position | Temperature |
---|---|---|
T1 | Exterior environment | Text |
T2 | PV external surface | TPV,ext |
T3 | PV internal surface | TPV,int |
T4 | Air cavity | Tair |
T5 | Water tank internal surface | Twt,int |
T6 | Water tank | Twater |
T7 | Water tank external surface | Twt,ext |
T8 | Interior environment | Tint |
T9 | Air cavity top | Tair,top |
T10 | Air cavity bottom | Tair,bot |
Month | February | August |
---|---|---|
0–24 h | ||
Text,ave | 14.0 | 22.0 |
Text.min | 7.0 | 15.2 |
Text,max | 25.4 | 36.0 |
9–20 h | ||
Text,ave | 16.7 | 25.0 |
Text.min | 10.5 | 18.2 |
Text.max | 25.7 | 36.0 |
Radiationave | 277 | 572 |
Radiationmax | 847 | 1166 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lourenço, J.M.; Aelenei, L.; Sousa, M.; Facão, J.; Gonçalves, H. Thermal Behavior of a BIPV Combined with Water Storage: An Experimental Analysis. Energies 2021, 14, 2545. https://doi.org/10.3390/en14092545
Lourenço JM, Aelenei L, Sousa M, Facão J, Gonçalves H. Thermal Behavior of a BIPV Combined with Water Storage: An Experimental Analysis. Energies. 2021; 14(9):2545. https://doi.org/10.3390/en14092545
Chicago/Turabian StyleLourenço, José Marco, Laura Aelenei, Miguel Sousa, Jorge Facão, and Helder Gonçalves. 2021. "Thermal Behavior of a BIPV Combined with Water Storage: An Experimental Analysis" Energies 14, no. 9: 2545. https://doi.org/10.3390/en14092545
APA StyleLourenço, J. M., Aelenei, L., Sousa, M., Facão, J., & Gonçalves, H. (2021). Thermal Behavior of a BIPV Combined with Water Storage: An Experimental Analysis. Energies, 14(9), 2545. https://doi.org/10.3390/en14092545