Designing of Drive Systems in the Aspect of the Desired Spectrum of Operation
Abstract
:1. Introduction
2. Synthesis of Multi-Stage Drive Systems
- -
- the mass moments of inertia:
- -
- the elastic components:
3. Numerical Analysis
- -
- the resonance:
- -
- the and anti-resonance:
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Souza, S.L.T.; Caldas, I.L.; Balthazar, J.M.; Brasil, R.M.L.R.F. Analysis of regular and irregular dynamics of a non-ideal gear rattling problem. J. Braz. Soc. Mech. Sci. 2002, 24, 1–7. [Google Scholar] [CrossRef]
- Bozca, M.; Fietkau, P. Empirical model based optimization of gearbox geometric design parameters to reduce rattle noise in an automotive transmission. Mech. Mach. Theory 2010, 45, 1599–1612. [Google Scholar] [CrossRef]
- Chen, T.; Zhu, R.-P.; Xiong, Y.-P.; Jin, G.-H. Analysis on natural characteristics of four-stage main transmission system in three-engine helicopter. Vibroeng. Proc. 2017, 12, 19–23. [Google Scholar]
- Parker, R.G.; Agashe, V.; Vijayakar, S.M. Dynamic response of a planetary gear system using a finite element/contact mechanics model. J. Mech. Des. 2000, 122, 304–310. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, R.P.; Feng, Z.C.; Jin, G.H.; Zhang, W. Influence of oil film stiffness on natural characteristics of single-rotor three-input helicopter main gearbox. Vibroeng. Proc. 2018, 17, 7–12. [Google Scholar]
- Yang, D.; Liu, Y.; Li, S.; Li, X.; Ma, L. Gear fault diagnosis based on support vector machine optimized by artificial bee colony algorithm. Mech. Mach. Theory 2015, 90, 219–229. [Google Scholar] [CrossRef]
- Bozca, M. Transmission error model-based optimisation of the geometric design parameters of an automotive transmission gearbox to reduce gear-rattle noise. Appl. Acoust. 2018, 130, 247–259. [Google Scholar] [CrossRef]
- Świtoński, E.; Mężyk, A. Selection of optimum dynamic features for mechatronic drive systems. Autom. Constr. 2008, 17, 251–256. [Google Scholar] [CrossRef]
- Walha, L.; Fakhfakh, T.; Haddar, M. Nonlinear dynamics of a two-stage gear system with mesh stiffness fluctuation, bearing flexibility and backlash. Mech. Mach. Theory 2009, 44, 1058–1069. [Google Scholar] [CrossRef]
- Dzitkowski, T.; Dymarek, A. Active reduction of identified machine drive system vibrations in the form of multi-stage gear units. Mechanics 2014, 20, 183–189. [Google Scholar] [CrossRef]
- Dzitkowski, T.; Dymarek, A. Active synthesis of machine drive systems using a comparative method. J. Vibroengineering 2012, 14, 528–533. [Google Scholar]
- Dymarek, A.; Dzitkowski, T. Method of active synthesis of discrete fixed mechanical systems. J. Vibroengineering 2012, 14, 458–463. [Google Scholar]
- Dymarek, A.; Dzitkowski, T. Inverse task of vibration active reduction of mechanical systems. Math. Probl. Eng. 2016, 2016, 3191807. [Google Scholar] [CrossRef] [Green Version]
- Dymarek, A.; Dzitkowski, T.; Herbuś, K.; Ociepka, P.; Sękala, A. Use of active synthesis in vibration reduction using an example of a four-storey building. J. Vib. Control 2020, 26, 1471–1483. [Google Scholar] [CrossRef]
- Dymarek, A.; Dzitkowski, T. The use of synthesis methods in position optimisation and selection of tuned mass damper (TMD) parameters for systems with many degrees of freedom. Arch. Control Sci. 2021, 31, 185–211. [Google Scholar]
- Redfield, R.C.; Krishnan, S. Dynamic system synthesis with a bond graph approach. Part I: Synthesis of one-port impedances. ASME J. Dyn. Syst. Meas. Control 1993, 115, 357–363. [Google Scholar] [CrossRef]
- Park, J.S.; Kim, J.S. Dynamic system synthesis in term of bond graph prototypes. KSME Int. J. 1998, 12, 429–440. [Google Scholar] [CrossRef]
- Smith, M.C. Synthesis of mechanical networks: The inerter. IEEE Trans. Autom. Control 2002, 47, 1648–1662. [Google Scholar] [CrossRef] [Green Version]
- Kubur, M.; Kahraman, A.; Zini, D.M.; Kienzle, K. Dynamic analysis of a multi-shaft helical gear transmission by finite elements: Model and experiment. J. Vib. Acoust. 2004, 126, 398–406. [Google Scholar] [CrossRef]
- Wu, J.S.; Chen, D.W. Torsional vibration analysis of gear-branched systems by finite element method. J. Sound Vib. 2001, 240, 159–182. [Google Scholar] [CrossRef]
- Rao, Z.; Zhou, C.Y.; Deng, Z.H.; Fu, M.Y. Nonlinear torsional instabilities in two-stage gear systems with flexible shafts. Int. J. Mech. Sci. 2014, 82, 60–66. [Google Scholar] [CrossRef]
- Byrtus, M.; Zeman, V. On modeling and vibration of gear drives influenced by nonlinear couplings. Mech. Mach. Theory 2011, 46, 375–397. [Google Scholar] [CrossRef]
- Milanović Smieee, J.V.; Fu, C.P.N.; Radosavljević, R.; Lazarević, Z. Sensitivity of torsional modes and torques to uncertainty in shaft mechanical parameters. Electr. Power Compon. Syst. 2001, 29, 867–881. [Google Scholar] [CrossRef]
- Kowal, L.; Sinka, T. Impact of winding drum shell ribbing of a hoisting machine on its strength and manufacture costs. Min. Mach. 2020, 4, 2–13. [Google Scholar]
- Adams, M.L. Rotating Machinery Vibration: From Analysis to Troubleshooting, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Rao, J.S. History of Rotating Machinery Dynamics; Springer Science & Business Media: Bangalore, India, 2011; Volume 20. [Google Scholar]
- Antoniadou, I.; Manson, G.; Staszewski, W.J.; Barszcz, T.; Worden, K. A time–frequency analysis approach for condition monitoring of a wind turbine gearbox under varying load conditions. Mech. Syst. Signal Process. 2015, 64, 188–216. [Google Scholar] [CrossRef]
1 | 1 | 8.5691 | 0.9575 | 0.2717 | 0.2126 | 0.0343 |
2 | 1 | 8.5691 | 0.5509 | 0.5033 | 0.2562 | 0.1657 |
3 | 1 | 8.5691 | 0.2928 | 0.7471 | 0.3886 | 0.0476 |
4 | 1 | 0.9236 | 1.3116 | 7.5631 | 0.2126 | 0.0343 |
5 | 1 | 0.9236 | 0.6809 | 8.0188 | 0.2562 | 0.1657 |
6 | 1 | 0.9236 | 0.3119 | 8.3736 | 0.3886 | 0.0476 |
7 | 1 | 0.3056 | 3.4067 | 6.0860 | 0.2126 | 0.0343 |
8 | 1 | 0.3056 | 0.6809 | 8.0188 | 0.2928 | 0.7471 |
9 | 1 | 0.3056 | 0.3119 | 8.3736 | 0.5509 | 0.5033 |
10 | 1 | 0.1306 | 3.4067 | 6.0860 | 0.2562 | 0.1657 |
11 | 1 | 0.1306 | 1.3116 | 7.5631 | 0.2928 | 0.7471 |
12 | 1 | 0.1306 | 0.3119 | 8.3736 | 0.9575 | 0.2717 |
13 | 1 | 0.1163 | 3.4067 | 6.0860 | 0.3886 | 0.0476 |
14 | 1 | 0.1163 | 1.3116 | 7.5631 | 0.5509 | 0.5033 |
15 | 1 | 0.1163 | 0.6809 | 8.0188 | 0.9575 | 0.2717 |
1 | 11,352,402 | 21,217,541 | 4,880,676 | 26,328,273 | 2,789,518 |
2 | 11,352,402 | 19,703,292 | 11,152,217 | 27,842,522 | 7,707,632 |
3 | 11,352,402 | 28,739,226 | 13,854,513 | 18,806,588 | 2,165,160 |
4 | 11,057,123 | 21,512,821 | 20,310,401 | 26,328,273 | 2,789,518 |
5 | 11,057,123 | 19,998,572 | 23,942,687 | 27,842,522 | 7,707,632 |
6 | 11,057,123 | 29,034,505 | 18,114,241 | 18,806,588 | 2,165,160 |
7 | 10,160,419 | 22,409,525 | 14,673,717 | 26,328,273 | 2,789,518 |
8 | 10,160,419 | 19,998,572 | 23,942,687 | 28,739,226 | 13,854,513 |
9 | 10,160,419 | 29,034,505 | 18,114,241 | 19,703,292 | 11,152,217 |
10 | 8,646,169 | 22,409,525 | 14,673,717 | 2,784,252 | 7,707,632 |
11 | 8,646,169 | 21,512,821 | 20,310,401 | 28,739,226 | 13,854,513 |
12 | 8,646,169 | 29,034,505 | 18,114,241 | 21,217,541 | 4,880,676 |
13 | 17,682,103 | 22,409,525 | 14,673,717 | 18,806,588 | 2,165,160 |
14 | 17,682,103 | 21,512,821 | 20,310,401 | 19,703,292 | 11,152,217 |
15 | 17,682,103 | 19,998,572 | 23,942,687 | 21,217,541 | 4,880,676 |
1 | 2 | 3 | |
---|---|---|---|
0.0648 | 0.0648 | 0.0648 | |
0.9352 | 0.9352 | 0.9352 | |
8.5691 | 8.5691 | 8.5691 | |
0.1378 | 0.1267 | 0.1970 | |
0.8197 | 0.4242 | 0.0958 | |
0.2717 | 0.5033 | 0.7471 | |
0.1773 | 0.1900 | 0.1202 | |
0.0353 | 0.0662 | 0.2684 | |
0.0343 | 0.1657 | 0.0476 |
1 | 2 | 3 | |
---|---|---|---|
0.0648 | 0.0648 | 0.0648 | |
0.5261 | 0.5261 | 0.5261 | |
8.5691 | 8.5691 | 8.5691 | |
0.0775 | 0.0713 | 0.1108 | |
0.2049 | 0.1061 | 0.0240 | |
0.0679 | 0.1258 | 0.1868 | |
0.0997 | 0.1069 | 0.0676 | |
0.1412 | 0.2648 | 1.0736 | |
0.1372 | 0.6628 | 0.1904 |
1 | 2 | 3 | |
---|---|---|---|
11,352,402 | 11,352,402 | 11,352,402 | |
11,934,867 | 11,083,102 | 16,165,814 | |
1,220,169 | 2,788,054 | 3,463,628 | |
14,809,653 | 15,661,418 | 10,578,706 | |
11,158,072 | 30,830,524 | 8,660,636 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dzitkowski, T.; Dymarek, A.; Margielewicz, J.; Gąska, D.; Orzech, L.; Lesiak, K. Designing of Drive Systems in the Aspect of the Desired Spectrum of Operation. Energies 2021, 14, 2562. https://doi.org/10.3390/en14092562
Dzitkowski T, Dymarek A, Margielewicz J, Gąska D, Orzech L, Lesiak K. Designing of Drive Systems in the Aspect of the Desired Spectrum of Operation. Energies. 2021; 14(9):2562. https://doi.org/10.3390/en14092562
Chicago/Turabian StyleDzitkowski, Tomasz, Andrzej Dymarek, Jerzy Margielewicz, Damian Gąska, Lukasz Orzech, and Krzysztof Lesiak. 2021. "Designing of Drive Systems in the Aspect of the Desired Spectrum of Operation" Energies 14, no. 9: 2562. https://doi.org/10.3390/en14092562
APA StyleDzitkowski, T., Dymarek, A., Margielewicz, J., Gąska, D., Orzech, L., & Lesiak, K. (2021). Designing of Drive Systems in the Aspect of the Desired Spectrum of Operation. Energies, 14(9), 2562. https://doi.org/10.3390/en14092562