Concepts and Methods to Assess the Dynamic Thermal Rating of Underground Power Cables †
Abstract
:1. Introduction
- an overview of the thermal aspects relevant to the soil modelling for the assessment of cable heating;
- the illustration of power cable modelling for DCR assessment;
- the categorisation of the solution methods for assessing the thermal characteristics of power cables;
- considerations on the DCR impact on distribution system reliability;
- indications on the techniques used for power cable monitoring to support DCR calculations;
- the impact of DCR on real-time, short-term, and long-term operation of the distribution systems.
2. Thermal Phenomena in Soil for Buried Power Cables
2.1. Soil Thermal Conductivity
- the heat sources insulation around the power cable;
- mounting a forced cooling system in the hot-spot zone;
- corrective backfill incorporation having high thermal conductivity;
- the utilisation of the insulating fluid that flows inside the power cable, useful for the power cable cooling;
2.2. Arrangement of the Soil Layers
3. Power Cable Modelling and Computational Methods
3.1. Power Cable Modelling
3.2. Computational Methods
4. DCR Impact on Power and Distribution System Operation and Planning
4.1. Calculation of the Current Rating
4.2. Reliability Aspects
4.3. Cable Monitoring
4.4. Real Time DCR
4.5. Short-Term DCR
4.6. Long-Term DCR
5. Final Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
DLR | Dynamic Line Rating |
DTR | Dynamic Thermal Rating |
DTS | Distributed Temperature Sensing |
EPR | Ethylene Propylene Rubber |
FDM | Finite Difference Method |
FEM | Finite Element Method |
EHV | Extremely High Voltage |
EV | Electric Vehicles |
HEPR | Hard Ethylene Propylene Rubber |
IEC | International Electrotechnical Commission |
MV | Medium Voltage |
PHM | Proportional Hazard Model |
PMU | Phasor Measurement Unit |
PVC | Polyvinyl Chloride |
RMS | Root Mean Square |
SCADA | Supervisory Control And Data Acquisition |
SCR | Static Cable Rating |
XLPE | Crosslinked Polyethylene |
References
- IRENA. Innovation Landscape Brief: Dynamic Line Rating; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2020. [Google Scholar]
- Coletta, G.; Vaccaro, A.; Villacci, D. A review of the enabling methodologies for PMUs-based dynamic thermal rating of power transmission lines. Electr. Power Syst. Res. 2017, 152, 257–270. [Google Scholar] [CrossRef]
- Morozovska, K.; Naim, W.; Viafora, N.; Shayesteh, E.; Hilber, P. A framework for application of dynamic line rating to aluminium conductor steel reinforced cables based on mechanical strength and durability. Int. J. Electr. Power Energy Syst. 2020, 116, 1–11. [Google Scholar] [CrossRef]
- Dabbaghjamanesh, M.; Kavousi-Fard, A.; Mehraeen, S. Effective scheduling of reconfigurable microgrids with dynamic thermal line rating. IEEE Trans. Ind. Electron. 2019, 66, 1552–1564. [Google Scholar] [CrossRef]
- Coletta, G.; Laso, A.; Jónsdóttir, G.M.; Manana, M.; Villacci, D.; Vaccaro, A.; Milano, F. On-Line Control of DERs to Enhance the Dynamic Thermal Rating of Transmission Lines. IEEE Trans. Sustain. Energy 2020, 11, 2836–2844. [Google Scholar] [CrossRef]
- Safdarian, A.; Degefa, M.Z.; Fotuhi-Firuzabad, M.; Lehtonen, M. Benefits of Real-Time Monitoring to Distribution Systems: Dynamic Thermal Rating. IEEE Trans. Smart Grid 2015, 6, 2023–2031. [Google Scholar] [CrossRef]
- Karimi, S.; Musilek, P.; Knight, A.M. Dynamic thermal rating of transmission lines: A review. Renew. Sust. Energy Rev. 2018, 91, 600–612. [Google Scholar] [CrossRef]
- Rocha, O.D.A.; Morozovska, K.; Laneryd, T.; Ivarsson, O.; Ahlrot, C.; Hilber, P. Dynamic rating assists cost-effective expansion of wind farms by utilising the hidden capacity of transformers. Int. J. Electr. Power Energy Syst. 2020, 123, 106188. [Google Scholar] [CrossRef]
- Daminov, I.; Prokhorov, A.; Caire, R.; Alvarez-Herault, M.C. Assessment of dynamic transformer rating, considering current and temperature limitations. Int. J. Electr. Power Energy Syst. 2021, 129, 106886. [Google Scholar] [CrossRef]
- Bracale, A.; Carpinelli, G.; de Falco, P. Probabilistic risk-based management of distribution transformers by dynamic transformer rating. Int. J. Electr. Power Energy Syst. 2019, 113, 229–243. [Google Scholar] [CrossRef]
- Liu, S.; Kopsidas, K. Risk-Based Underground Cable Circuit Ratings for Flexible Wind Power Integration. IEEE Trans. Power Deliv. 2021, 36, 145–155. [Google Scholar] [CrossRef]
- Ocłoń, P.; Cisek, P.; Matysiak, M. Analysis of an application possibility of geopolymer materials as thermal backfill for underground power cable system. Clean Technol. Environ. Policy 2020, 23, 869–878. [Google Scholar] [CrossRef]
- Chatzipanagiotou, P.; Chatziathanasiou, V.; de Mey, G.; Więcek, B. Influence of soil humidity on the thermal impedance, time constant and structure function of underground cables: A laboratory experiment. Appl. Therm. Eng. 2017, 113, 1444–1451. [Google Scholar] [CrossRef]
- Alwan, S.H.; Jasni, J.; Ab Kadir, M.Z.A.; Aziz, N. Factors Affecting Current Ratings for Underground and Air Cable. Int. J. Energy Power Eng. 2016, 10, 1422–1428. [Google Scholar]
- Anders, G. Rating of Electric Power Cables in Unfavorable Thermal Environment; IEEE Press: Piscataway, NJ, USA, 2005. [Google Scholar]
- Czapp, S.; Ratkowski, F. Effect of soil moisture on current-carrying capacity of low-voltage power cables. Przegląd Elektrotechniczny 2019, 95, 154–159. [Google Scholar] [CrossRef]
- Gouda, O.E.; Abdel-Aziz, A.M.; Refale, R.A.; Matter, Z. Experimental study for drying-out of soil around underground power cables. Eng. Sci. 1992, 9, 23–40. [Google Scholar]
- Bates, C.; Malmedal, K.; Cain, D. Cable Ampacity Calculations: A Comparison of Methods. IEEE Trans. Ind. Appl. 2016, 52, 112–118. [Google Scholar] [CrossRef]
- De Lieto Vollaro, R.; Fontana, L.; Vallati, A. Experimental study of thermal field deriving from an underground electrical power cable buried in non-homogeneous soils. Appl. Therm. Eng. 2014, 62, 390–397. [Google Scholar] [CrossRef]
- Al–Saud, M.S.; El-Kady, M.A.; Findlay, R.D. A new approach to underground cable performance assessment. Electr. Power Syst. Res. 2008, 78, 907–918. [Google Scholar] [CrossRef]
- Enescu, D.; Colella, P.; Russo, A. Thermal Assessment of Power Cables and Impacts on Cable Current Rating: An Overview. Energies 2020, 13, 5319. [Google Scholar] [CrossRef]
- Enescu, D.; Russo, A.; Porumb, R.; Seritan, G. Dynamic Thermal Rating of Electric Cables: A Conceptual Overview. In Proceedings of the 55th International Universities Power Engineering Conference (UPEC), Torino, Italy, 1–4 September 2020. [Google Scholar]
- Erdinç, F.G.; Erdinç, O.; Yumurtacı, R.; Catalão, J.P.S. A Comprehensive Overview of Dynamic Line Rating Combined with Other Flexibility Options from an Operational Point of View. Energies 2020, 13, 6563. [Google Scholar] [CrossRef]
- Carslaw, H.C.; Jaeger, J.C. Conduction of Heat in Solids; Oxford University Press: Oxford, UK, 1986. [Google Scholar]
- Rees, S.W.; Adjali, M.H.; Zhou, Z.; Davies, M.; Thomas, H.R. Ground heat transfer effects on the thermal performance of earth-contact structures. Renew. Sust. Energy Rev. 2000, 4, 213–265. [Google Scholar] [CrossRef]
- Bouddour, A.; Auriault, J.L.; Mhamdi-Alaoui, M. Heat and mass transfer in wet porous media in presence of evaporation-condensation. Int. J. Heat Mass Transf. 1988, 41, 2263–2277. [Google Scholar] [CrossRef]
- International Electrotechnical Commission. IEC 60287-1-1: Calculations of the Continuous Current Rating of Cables (100% Load Factor); International Electrotechnical Commission: Geneva, Switzerland, 1982. [Google Scholar]
- Neher, J.H.; McGrath, M.H. The calculation of the temperature rise and load capability of cable systems. Trans. Am. Inst. Elect. Eng. Power Appl. Syst. Part III 1957, 76, 752–772. [Google Scholar] [CrossRef]
- Salata, F.; Nardecchia, F.; Gugliermetti, F.; Vollaro, A. How thermal conductivity of excavation materials affects the behavior of underground power cables. Appl. Therm. Eng. 2016, 100, 528–537. [Google Scholar] [CrossRef]
- Hamed, S.; Behrooz, V. A probabilistic approach for optimal power cable ampacity computation by considering uncertainty of parameters and economic constraints. Int. J. Electr. Power Energy Syst. Mar. 2019, 106, 432–443. [Google Scholar]
- Peters-Lidard, C.D.; Blackburn, E.; Liang, X.; Wood, E.F. The effect of soil thermal conductivity parameterisation on surface energy fluxes and temperatures. J. Atmos. Sci. 1998, 55, 1209–1224. [Google Scholar] [CrossRef]
- Abu-Hamdeh, N.H. Thermal properties of soils as affected by density and water content. Biosyst. Eng. 2003, 86, 97–102. [Google Scholar] [CrossRef]
- Van den Brink, G.J.; Hoogendoorn, C.J. Ground water flow heat losses for seasonal heat storage in the soil. Sol. Energy 1983, 30, 367–371. [Google Scholar] [CrossRef]
- De Vries, D. Thermal properties of soils. Phys. Plant. Environ. 1963, 1, 57–109. [Google Scholar]
- Farouki, O.T. Thermal properties of soils. Series Rock Soil Mech. 1986, 11, 1–136. [Google Scholar]
- Campbell, G.S.; Jungbauer, J., Jr.; Bidlake, W.; Hungerford, R. Predicting the effect of temperature on soil thermal conductivity. Soil. Sci. 1994, 158, 307–313. [Google Scholar] [CrossRef]
- Kroener, E.; Vallati, A.; Bittelli, M. Numerical simulation of coupled heat, liquid water and water vapor in soils for heat dissipation of underground electrical power cables. Appl. Therm. Eng. 2014, 70, 510–523. [Google Scholar] [CrossRef]
- Ghanbarian, B.; Daigle, H. Thermal conductivity in porous media: Percolation-based effective-medium approximation. Water Resour. Res. 2016, 52, 295–314. [Google Scholar] [CrossRef] [Green Version]
- Ocłoń, P.; Cisek, P.; Pilarczyk, M.; Taler, D. Numerical simulation of heat dissipation processes in underground power cable system situated in thermal backfill and buried in a multilayered soil. Energy Convers. Manag. 2015, 951, 352–370. [Google Scholar] [CrossRef]
- Gouda, O.E.; El Dein, A.Z.; Amer, M.G. Effect of the formation of the dry zone around underground power cables on their rating. IEEE Trans. Power Deliv. 2011, 26, 972–978. [Google Scholar] [CrossRef]
- Anders, G.J.; Radhakrishna, H.S. Power cable thermal analysis with consideration of heat and moisture transfer in the soil. IEEE Trans. Power Deliv. 1988, 3, 1280–1288. [Google Scholar] [CrossRef]
- Lu, H.; de León, F.; Soni, D.N.; Wang, W. Two-Zone Geological Soil Moisture Migration Model for Cable Thermal Rating. IEEE Trans. Power Deliv. 2018, 33, 3196–3204. [Google Scholar] [CrossRef]
- Garrido, C.; Otero, A.F.; Cidrás, J. Theoretical model to calculate steady-state and transient ampacity and temperature in buried cables. IEEE Trans. Power Deliv. 2003, 18, 667–678. [Google Scholar] [CrossRef]
- De León, F.; Anders, G.J. Effects of backfilling on cable ampacity analysed with the finite element method. IEEE Trans. Power Del. 2008, 23, 537–543. [Google Scholar] [CrossRef]
- Ocłoń, P.; Bittelli, M.; Cisek, P.; Kroener, E.; Pilarczyk, M.; Taler, D.; Rao, R.V.; Vallati, A. The performance analysis of a new thermal backfill material for underground power cable system. Appl. Therm. Eng. 2016, 108, 233–250. [Google Scholar] [CrossRef]
- Kim, Y.S.; Kim, J.; Cho, D.S. Implementation of optimised backfill materials for underground electric power cables. J. Porous Media 2014, 17, 831–840. [Google Scholar] [CrossRef]
- Brakelmann, H.; Anders, G.J.; Cherukupalli, S. Underground cable hot spot. IEEE Trans. Power Deliv. 2020, 35, 592–599. [Google Scholar] [CrossRef]
- Tobin, B.; Zadehgol, H.; Ho, K.; Welsh, G.; Prestrud, J. A water cooling system to improve ampacity in underground urban distribution cables. In Proceedings of the IEEE/PES Transmission and Distribution Conference and Exhibition, Dallas, TX, USA, 21–24 May 2006; pp. 432–437. [Google Scholar]
- Klimenta, D.; Tasi, D.; Jevti, M. The use of hydronic asphalt pavements as an alternative method of eliminating hot spots of underground power cables. Appl. Therm. Eng. 2020, 168, 114818. [Google Scholar] [CrossRef]
- Klimenta, D.; Tasić, D.; Jevtić, M. An alternative method of increasing the transmission performance of a conventional 110 kV cable line. J. Energy Technol. 2019, 12, 1–10. [Google Scholar]
- International Electrotechnical Commission. IEC 60287-1-1: Electric Cables—Calculation of the Current Rating—Part 1-1: Current Rating Equations (100% Load Factor) and Calculation of Losses—General; International Electrotechnical Commission: Geneva, Switzerland, 2006. [Google Scholar]
- Hruška, M.; Clauser, C.; De Doncker, R.W. Influence of dry ambient conditions on performance of underground medium-voltage DC cables. Appl. Therm. Eng. 2019, 149, 1419–1426. [Google Scholar] [CrossRef]
- Philip, J.R.; de Vries, D.A. Moisture movements in porous materials under temperature gradients. Trans. Am. Geophys. Union 1957, 38, 222–232. [Google Scholar] [CrossRef]
- Groeneveld, G.J.; Snijders, A.L.; Koopmans, G.; Vermeer, J. Improved method to calculate the critical conditions for drying out sandy soils around power cables. IEEE Proc. 1984, 131, 42–53. [Google Scholar] [CrossRef]
- Bustamante, S.; Mínguez, R.; Arroyo, A.; Manana, M.; Laso, A.; Castro, P.; Martinez, R. Thermal behaviour of medium-voltage underground cables under high-load operating conditions. Appl. Therm. Eng. 2019, 156, 444–452. [Google Scholar] [CrossRef]
- Ocłoń, P.; Pobędza, J.; Walczak, P.; Cisek, P.; Vallati, A. Experimental Validation of a Heat Transfer Model in Underground Power Cable Systems. Energies 2020, 13, 1747. [Google Scholar] [CrossRef] [Green Version]
- International Electrotechnical Commission. IEC 60287-3-1/2 Electric Cables e Calculation of the Current Rating e Sections on Operating Conditions; International Electrotechnical Commission: Geneva, Switzerland, 1999. [Google Scholar]
- Diaz–Aguiló, M.; de León, F.; Jazebi, S.; Terracciano, M. Ladder–Type Soil Model for Dynamic Thermal Rating of Underground Power Cable. IEEE Power Energy Technol. Syst. J. 2014, 1, 21–30. [Google Scholar] [CrossRef]
- Kovač, N.; Sarajčev, I.; Poljak, D. Nonlinear-coupled electric-thermal modeling of underground cable systems. IEEE Trans. Power Deliv. 2006, 21, 4–14. [Google Scholar] [CrossRef]
- Kocar, I.; Ertas, A. Thermal Analysis for Determination of Current Carrying Capacity of PE and XLPE Insulated Power Cables Using Finite Element Method. In Proceedings of the 12th IEEE Mediterranean Electrotechnical Conference (Melecon 2004), Dubrovnik, Croatia, 12–15 May 2004. [Google Scholar]
- Olsen, R.S.; Anders, G.J.; Holboell, J.; Gudmundsdottir, U.S. Modelling of dynamic transmission cable temperature considering soil-specific heat thermal resistivity, and precipitation. IEEE Trans. Power Deliv. 2013, 28, 1909–1917. [Google Scholar] [CrossRef] [Green Version]
- Bascom, E.C., III; Clairmont, B. Considerations for advanced temperature monitoring of underground power cables. In Proceedings of the IEEE PES T&D Conference and Exposition, Chicago, IL, USA, 14–17 April 2014. [Google Scholar]
- Sugihara, H.; Funaki, T. Analysis on Temperature Dependency of Effective AC Conductor Resistance of Underground Cables for Dynamic Line Ratings. In Proceedings of the Smart Grids, IEEE 21st International Conference on High Performance Computing and Communications—IEEE 17th International Conference on Smart City—IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), Zhangjiajie, China, 10–12 August 2019. [Google Scholar]
- Singh, R.S.; Cobben, S.; Gibescu, M.; van den Brom, H.; Colangelo, D.; Rietveld, G. Medium Voltage Line Parameter Estimation Using Synchrophasor Data: A Step Towards Dynamic Line Rating. In Proceedings of the IEEE Power & Energy Society General Meeting (PESGM), Portland, OR, USA, 5–10 August 2018. [Google Scholar]
- Bontempi, G.; Vaccaro, A.; Villacci, D. Power cables’ thermal protection by interval simulation of imprecise dynamical systems. IEEE Proc. Gener. Transm. Distrib. 2004, 151, 673–680. [Google Scholar] [CrossRef]
- Wang, P.; Ma, H.; Liu, G.; Han, Z.Z.; Guo, D.M.; Xu, T.; Kang, L.Y. Dynamic Thermal Analysis of High-Voltage Power Cable Insulation for Cable Dynamic Thermal Rating. IEEE Access 2019, 7, 56095–56106. [Google Scholar] [CrossRef]
- Benato, R.; Colla, L.; Dambone Sessa, S.; Marelli, M. Review of high current rating insulated cable solutions. Electr. Power Syst. Res. 2016, 133, 36–41. [Google Scholar] [CrossRef]
- Arias Velásquez, R.M.; Mejía Lara, J.V. New methodology for design and failure analysis of underground transmission lines. Eng. Fail. Anal. 2020, 115, 104604. [Google Scholar] [CrossRef]
- Anders, G.J. Rating of Electric Power Cables; McGraw–Hill: New York, NY, USA, 1997. [Google Scholar]
- Anders, G.J.; Brakelmann, H. Rating of Underground Power Cables with Boundary Temperature Restrictions. IEEE Trans. Power Deliv. 2018, 33, 1895–1902. [Google Scholar] [CrossRef]
- Lux, J.; Czerniuk, T.; Olschewski, M.; Hill, W. Non-Concentric Ladder Soil Model for Dynamic Rating of Buried Power Cables. IEEE Trans. Power Deliv. 2021, 36, 235–243. [Google Scholar] [CrossRef]
- Maximov, S.; Venegas, V.; Guardado, J.L.; Moreno, E.L.; López, R. Analysis of underground cable ampacity considering non–uniform soil temperature distributions. Electr. Power Syst. Res. 2016, 132, 22–29. [Google Scholar] [CrossRef]
- Haskew, T.A.; Carwile, R.F.; Grigsby, L.L. An algorithm for steady-state thermal analysis of electrical cables with radiation by reduced Newton-Raphson techniques. IEEE Trans. Power Deliv. 1994, 9, 526–533. [Google Scholar] [CrossRef]
- Nahman, J.; Tanaskovic, M. Determination of the current carrying capacity of cables using the finite element method. Electr. Power Syst. Res. 2002, 61, 109–117. [Google Scholar] [CrossRef]
- Desmet, J.; Putman, D.; Vanalme, G.; Belmans, R.; Vandommelent, D. Thermal analysis of parallel underground energy cables. In Proceedings of the CIRED 2005—18th International Conference and Exhibition on Electricity Distribution, Turin, Italy, 6–9 June 2005; pp. 1–4. [Google Scholar]
- Nahman, J.; Tanaskovic, M.; Tanaskovic, M. Calculation of the loading capacity of high voltage cables laid in close proximity to heat pipelines using iterative finite-element method. Int. J. Electr. Power Energy Syst. 2018, 103, 310–316. [Google Scholar] [CrossRef]
- Benato, R.; Dambone Sessa, S.; Forzan, M.; Marelli, M.; Pietribiasi, D. Core laying pitch–long 3D finite element model of an AC three–core armoured submarine cable with a length of 3 meter. Electr. Power Syst. Res. 2017, 150, 137–143. [Google Scholar] [CrossRef]
- Hwang, C.C.; Chang, J.J.; Chen, H.Y. Calculation of ampacities for cables in trays using finite elements. Electr. Power Syst. Res. 2000, 54, 75–81. [Google Scholar] [CrossRef]
- Vaucheret, P.; Hartlein, R.A.; Black, W.Z. Ampacity Derating Factors for Cables Buried in Short Segments of Conduit. IEEE Trans. Power Deliv. 2005, 20, 560–565. [Google Scholar] [CrossRef]
- Demoulias, C.; Labridis, D.P.; Dokopoulos, P.S.; Gouramanis, K. Influence of metallic trays on the ac resistance and ampacity of low-voltage cables under non-sinusoidal currents. Electr. Power Syst. Res. 2008, 78, 883–896. [Google Scholar] [CrossRef]
- Al–Saud, M.S. Assessment of thermal performance of underground current carrying conductors. IET Gener. Transm. Distrib. 2011, 5, 630–639. [Google Scholar] [CrossRef]
- Jenkins, L.; Fahmi, N.; Yang, J. Application of dynamic asset rating on the UK LV and 11 kV underground power distribution network. In Proceedings of the 52nd International Universities Power Engineering Conference (UPEC), Heraklion, Greece, 28–31 August 2017; pp. 1–6. [Google Scholar]
- Snajdr, J.; Lucak, J.; Vostracky, Z.; Kozeny, J. Dynamic rating of supply cables of a stabilising furnace. In Proceedings of the 2014 15th International Scientific Conference on Electric Power Engineering (EPE), Brno-Bystrc, Czech Republic, 12–14 May 2014; pp. 507–510. [Google Scholar]
- Salata, F.; Nardecchia, F.; de Lieto Vollaro, A.; Gugliermetti, F. Underground electric cables a correct evaluation of the soil thermal resistance. Appl. Therm. Eng. 2015, 785, 268–277. [Google Scholar] [CrossRef]
- COMSOL Multiphysics. Comsol Multi-Physics User Guide (Version 4.3 a); COMSOL: Burlington, MA, USA, 2012. [Google Scholar]
- Ansys. Guide, ANSYS FLUENT User. Release 14.0; ANSYS. Inc.: Canonsburg, PA, USA, 2011. [Google Scholar]
- Korovkin, N.; Greshnyakov, G.; Dubitsky, S. Multiphysics approach to the boundary problems of power engineering and their application to the analysis of load-carrying capacity of power cable line. In Proceedings of the Electric Power Quality and Supply Reliability Conference (PQ), Rakvere, Estonia, 11–13 June 2014; pp. 341–346. [Google Scholar]
- Dubitsky, S.; Greshnyakov, G.; Korovkin, N. Refinement of underground power cable ampacity by multiphysics FEA simulation. Int. J. Energy 2015, 9, 12–19. [Google Scholar]
- Dubitsky, S.; Greshnyakov, G.; Korovkin, N. Comparison of finite element analysis to IEC-60287 for predicting underground cable ampacity. In Proceedings of the IEEE International Energy Conference (ENERGYCON), Leuven, Belgium, 4–8 April 2016; pp. 1–6. [Google Scholar]
- Delgado, F.; Renedo, C.J.; Ortiz, A.; Fernández, I.; Santisteban, A. 3D thermal model and experimental validation of a low voltage three-phase busduct. Appl. Therm. Eng. 2017, 110, 1643–1652. [Google Scholar] [CrossRef] [Green Version]
- Benato, R.; Dambone Sessa, S. A New Multiconductor Cell Three–Dimension Matrix–Based Analysis Applied to a Three–Core Armoured Cable. IEEE Trans. Power Deliv. 2018, 33, 1636–1646. [Google Scholar] [CrossRef]
- Bragatto, T.; Cresta, M.; Gatta, F.M.; Geri, A.; Maccioni, M.; Paulucci, M. A 3-D nonlinear thermal circuit model of underground MV power cables and their joints. Electr. Power Syst. Res. 2019, 73, 112–121. [Google Scholar] [CrossRef]
- Bates, C.; Malmedal, K.; Cain, D. How to Include Soil Thermal Instability in Underground Cable Ampacity Calculations. In Proceedings of the IEEE Industry Applications Society Annual Meeting, Portland, OR, USA, 2–6 October 2016. [Google Scholar]
- International Electrotechnical Commission. IEC 60853-2: Calculation of the Cyclic and Emergency Current Rating of Cables. Part 2: Cyclic Rating of Cables Greater Than 18/30 (36) kV and Emergency Ratings for Cables of All Voltages; International Electrotechnical Commission: Geneva, Switzerland, 1989. [Google Scholar]
- Foty, M.S.; Anders, G.J.; Croall, S.C. Cable environment analysis and the probabilistic approach to cable rating. IEEE Trans. Power Deliv. 1990, 5, 1628–1633. [Google Scholar] [CrossRef]
- Villacci, D.; Vaccaro, A. Transient tolerance analysis of power cables thermal dynamic by interval mathematic. Electr. Power Syst. Res. 2007, 77, 308–314. [Google Scholar] [CrossRef]
- Huang, S.H.; Lee, W.J.; Kuo, M.T. An Online Dynamic Cable Rating System for an Industrial Power Plant in the Restructured Electric Market. IEEE Trans. Ind. Appl. 2007, 43, 1449–1458. [Google Scholar] [CrossRef]
- Carpaneto, E.; Chicco, G.; Porumb, R.; Roggero, E. Probabilistic representation of the distribution system restoration times. In Proceedings of the CIRED 2005–18th International Conference and Exhibition on Electricity Distribution, Turin, Italy, 6–9 June 2005. [Google Scholar]
- Calcara, L.; D’Orazio, L.; Della Corte, M.; Di Filippo., G.; Pastore, A.; Ricci, D.; Pompili, M. Faults Evaluation of MV Underground Cable Joints. In Proceedings of the International Annual Conference (AEIT), Florence, Italy, 18–20 September 2019; pp. 1–6. [Google Scholar]
- Calcara, L.; Sangiovanni, S.; Pompili, M. MV underground cables: Effects of soil thermal resistivity on anomalous working temperatures. In Proceedings of the International Annual Conference (AEIT), Cagliari, Italy, 20–22 September 2017; pp. 1–5. [Google Scholar]
- Laughton, M.A.; Warne, D.F. Electrical Engineer’s Reference Book, 16th ed.; Elsevier: Amsterdam, The Netherlands, 2002; pp. 31/35–31/40. [Google Scholar]
- Nemati, H.M.; Sant’Anna, A.; Nowaczyk, S.; Jürgensen, J.H.; Hilber, P. Reliability evaluation of power cables considering the restoration characteristic. Int. J. Electr. Power Energy Syst. 2019, 105, 622–631. [Google Scholar] [CrossRef]
- Gill, Y. Development of an electrical cable replacement simulation model to aid with the management of aging underground electric cables. IEEE Electr. Insul. Mag. 2011, 27, 31–37. [Google Scholar] [CrossRef]
- Garros, B. Ageing and reliability testing and monitoring of power cables: Diagnosis for insulation systems: The ARTEMIS program. IEEE Electr. Insul. Mag. 1999, 15, 10–12. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Y.; Tian, F. Prognosis of Underground Cable via Online Data-Driven Method with Field Data. IEEE Trans. Ind. Electron. 2015, 62, 786–7794. [Google Scholar] [CrossRef]
- Buhari, M. Reliability Assessment of Ageing Distribution Cable for Replacement in Smart Distribution Systems. Ph.D. Thesis, Faculty of Science and Engineering, The University of Manchester, Manchester, UK, June 2016. [Google Scholar]
- Kopsidas, K.; Liu, S. Power Network Reliability Framework for Integrating Cable Design and Ageing. IEEE Trans. Power Syst. 2018, 33, 1521–1532. [Google Scholar] [CrossRef]
- Clements, D.; Mancarella, P.; Ash, R. Application of time-limited ratings to underground cables to enable life extension of network assets. In Proceedings of the International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), Beijing, China, 16–20 October 2016. [Google Scholar]
- Allan, R.N.; Billinton, R. Reliability Evaluation of Power Systems; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Billinton, R.; Allan, R.N. Reliability Evaluation of Engineering Systems: Concepts and Techniques; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar]
- Singh, K. Cable monitoring solution—Predict with certainty. In Proceedings of the 12th IET International Conference on Developments in Power System Protection (DPSP), Copenhagen, Denmark, 31 March–3 April 2014. [Google Scholar]
- Cherukupalli, S.; Anders, G.J. Distributed Fiber Sensing and Dynamic Rating of Power Cables; Wiley: Hoboken, NJ, USA, 2020. [Google Scholar]
- Marazzato, H.; Barber, K.; Jansen, M.; Barnewall, G. Cable Condition Monitoring of Improve Reliability. In Proceedings of the TechCon Asia-Pacific, OLEX, Sydney, Australia; 2004. Available online: https://www.nexans.co.nz/NewZealand/2012/22_1.04.2004%20-%20Cable%20Condition%20Monitoring.pdf (accessed on 29 April 2021).
- Cherukupalli, S.; Adapa, R.; Bascom, E.C., III. Implementation of Quasi-Real-Time Rating Software to Monitor 525 kV Cable Systems. IEEE Trans. Power Deliv. 2019, 34, 1309–1316. [Google Scholar] [CrossRef]
- Cherukupalli, S.; Anders, G.J. How Can Temperature Data Be Used to Forecast Circuit Ratings? In Distributed Fiber Optic Sensing and Dynamic Rating of Power Cables; Cherukupalli, S., Anders, G.J., Eds.; Wiley: Hoboken, NJ, USA, 2020; Chapter 9; pp. 129–165. [Google Scholar]
- Muanenda, Y.; Oton, C.J.; di Pasquale, F. Application of Raman and Brillouin Scattering Phenomena in Distributed Optical Fiber Sensing. Front. Phys. 2019, 7, 155. [Google Scholar] [CrossRef]
- Chen, D.; Liu, Q.; Fan, X.; He, Z. Distributed fiber-optic acoustic sensor with enhanced response bandwidth and high signal-to-noise ratio. J. Lightw. Technol. 2017, 35, 2037–2043. [Google Scholar] [CrossRef]
- Wang, D.; Cheng, B.; Jin, B.; Wang, Y.; Zhang, M.; Liu, X.; Bai, Q. Remote simultaneous measurement of liquid temperature and refractive index using fiber-optic spontaneous Raman scattering. IEEE Sens. J. 2019, 19, 10513–10518. [Google Scholar] [CrossRef]
- Zhou, D.; Dong, Y.; Wang, B.; Jiang, T.; Ba, D.; Xu, P.; Zhang, H.; Lu, Z.; Li, H. Slope-assisted BOTDA based on vector SBS and frequency-agile technique for wide-strain-range dynamic measurements. Opt. Express 2017, 25, 1889–1902. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Li, Z.; Zaslawski, S.; Thévenaz, L.; Soto, M.A. Design rules for optimizing unipolar coded Brillouin optical time-domain analyzers. Opt. Express 2018, 26, 16505–16523. [Google Scholar] [CrossRef]
- Manusov, V.Z.; Khasanzoda, N.; Atabaeva, L.S. Two-Way Energy Flow Optimization Based on Smart Grid Concept. In Proceedings of the 2018 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), Moscow, Russia, 15–18 May 2018. [Google Scholar]
- Shekhar, A.; Kontos, E.; Ramírez-Elizondo, L.; Rodrigo-Mor, A.; Bauer, P. Grid capacity and efficiency enhancement by operating medium voltage AC cables as DC links with modular multilevel converters. Int. J. Electr. Power Energy Syst. 2017, 93, 479–493. [Google Scholar] [CrossRef]
- Jianming, Q.; Jizhen, L.; Yuebin, H.; Jianhua, Z. Use of real-time/historical database in Smart Grid. In Proceedings of the 2011 International Conference on Electric Information and Control Engineering, Wuhan, China, 15–17 April 2011. [Google Scholar]
- Cartes, D.; Chow, J.H.; McCaugherty, D.; Widergren, S. (Eds.) Smart Grid Research: Computing—IEEE Smart Grid Vision for Computing: 2030 and Beyond; IEEE Publishing: New York, NY, USA, 2003. [Google Scholar]
- Huo, Y.; Prasad, G.; Lampe, L.; Leung, C.M.V. Smart-Grid Monitoring: Enhanced Machine Learning for Cable Diagnostics. In Proceedings of the 2019 IEEE International Symposium on Power Line Communications and its Applications (ISPLC), Prague, Czech Republic, 3–5 April 2019. [Google Scholar]
- Borbuev, A.; Wang, W.; Lu, H.; Jazebi, S.; de Leon, F. Investment Deferral of Feeder Upgrades Revealed by System-Wide Unbalanced Dynamic Rating: Harvesting the Hidden Capacity of Distribution Systems Discovered by Thermal Map Technology. IEEE Trans. Power Deliv. 2020, in press. [Google Scholar] [CrossRef]
- Anders, G.J.; Napieralski, A.; Zubert, M.; Orlikowski, M. Advanced modeling techniques for dynamic feeder rating systems. IEEE Trans. Ind. Appl. 2003, 39, 619–626. [Google Scholar] [CrossRef]
- Li, H.; Tan, K.; Su, Q. Assessment of Underground Cable Ratings Based on Distributed Temperature Sensing. IEEE Trans. Power Deliv. 2006, 21, 1763–1769. [Google Scholar] [CrossRef]
- Diaz–Aguiló, M.; de León, F. Introducing Mutual Heating Effects in the Ladder-Type Soil Model for the Dynamic Thermal Rating of Underground Cables. IEEE Trans. Power Deliv. 2015, 30, 1958–1964. [Google Scholar] [CrossRef]
- Bracale, A.; Caramia, P.; de Falco, P.; Michiorri, A.; Russo, A. Day-Ahead and Intraday Forecasts of the Dynamic Line Rating for Buried Cables. IEEE Access 2019, 7, 4709–4725. [Google Scholar] [CrossRef]
- Hernandez Colin, M.A.; Pilgrim, J.A. Offshore Cable Optimisation by Probabilistic Thermal Risk Estimation. In Proceedings of the IEEE International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), Boise, ID, USA, 23–28 June 2018; pp. 1–6. [Google Scholar]
- Hernandez Colin, M.A.; Pilgrim, J.A. Cable Thermal Risk Estimation for Overplanted Wind Farms. IEEE Trans. Power Deliv. 2020, 35, 609–617. [Google Scholar] [CrossRef]
- Pérez-Rúa, J.A.; Cutululis, N.A. Electrical Cable Optimization in Offshore Wind Farms—A Review. IEEE Access 2019, 7, 85796–85811. [Google Scholar] [CrossRef]
- Colla, L.; Marelli, M. Dynamic Rating of Submarine Cables. Application to Offshore Windfarms. In Proceedings of the European Wind Energy Association (EWEA) Offshore Conference, Frankfurt, Germany, 19–21 November 2013. [Google Scholar]
- International Electrotechnical Commission. IEC 60853-1: Calculation of the Cyclic and Emergency Current Rating of Cables—Part 1: Cyclic Rating Factor for Cables Up to and Including 18/30 (36) kV; International Electrotechnical Commission: Geneva, Switzerland, 1985. [Google Scholar]
- Catmull, S.; Chippendale, R.D.; Pilgrim, J.A.; Hutton, G.; Cangy, P. Cyclic Load Profiles for Offshore Wind Farm Cable Rating. IEEE Trans. Power Deliv. 2016, 31, 1242–1250. [Google Scholar] [CrossRef]
- CIGRE Working Group B1.40. Offshore Generation Cable Connections; Technical Brochure n. 610; e-Cigre: Paris, France, 2015. [Google Scholar]
- Nielsen, T.V.M.; Jakobsen, S.; Savaghebi, M. Dynamic Rating of Three–Core XLPE Submarine Cables for Offshore Wind Farms. Appl. Sci. 2019, 9, 800. [Google Scholar] [CrossRef] [Green Version]
Thermal Quantity | Units | Electrical Quantity | Units |
---|---|---|---|
Temperature T | K | Electric potential V | V |
Absolute zero | 0 K | Ground potential | 0 V |
Heat flow rate | W | Electric current I | A |
Thermal conductivity k | W/(m·K) | Electric conductivity γ | 1/(Ω·m) |
Thermal capacity Ct | J/K | Capacitance Ce | F |
Thermal resistance Rt | K/W | Electrical resistance Re | Ω |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Enescu, D.; Colella, P.; Russo, A.; Porumb, R.F.; Seritan, G.C. Concepts and Methods to Assess the Dynamic Thermal Rating of Underground Power Cables. Energies 2021, 14, 2591. https://doi.org/10.3390/en14092591
Enescu D, Colella P, Russo A, Porumb RF, Seritan GC. Concepts and Methods to Assess the Dynamic Thermal Rating of Underground Power Cables. Energies. 2021; 14(9):2591. https://doi.org/10.3390/en14092591
Chicago/Turabian StyleEnescu, Diana, Pietro Colella, Angela Russo, Radu Florin Porumb, and George Calin Seritan. 2021. "Concepts and Methods to Assess the Dynamic Thermal Rating of Underground Power Cables" Energies 14, no. 9: 2591. https://doi.org/10.3390/en14092591
APA StyleEnescu, D., Colella, P., Russo, A., Porumb, R. F., & Seritan, G. C. (2021). Concepts and Methods to Assess the Dynamic Thermal Rating of Underground Power Cables. Energies, 14(9), 2591. https://doi.org/10.3390/en14092591