The Use of Geothermal Energy to Heating Crops under Cover: A Case Study of Poland
Abstract
:1. Introduction
1.1. Use of Geothermal Energy
1.2. The Current State of Geothermal Resources in Poland
1.3. Economic Analysis of Investment Profitability
- (1)
- Can the heating needs of a greenhouse be completely covered by geothermal energy from a single borehole?
- (2)
- What is the cost ratio between heating a greenhouse with geothermal sources and heating from the grid (entirely or partly from fossil fuels)?
- (3)
- Can geothermal energy be an alternative solution for greenhouses? Under which conditions?
2. Materials and Methods
2.1. Heat Cnsumption of a Greenhouse Facility
2.2. Geothermal Heat Supply
2.3. Economic Analysis for Covering the Cooperative Demand for Geothermal Energy and the Traditional Heat Carriers
- (a)
- The heat consumption by the greenhouse facility;
- (b)
- The supply of heat from the geothermal intake;
- (c)
- The economic analysis of the coverage of the heating needs of greenhouse facilities by the geothermal intake.
- -
- An average annual heat price increase of 1.5% (based on the average inflation rate in the last 5 years in Poland 1.31%);
- -
- A discount rate of 4%;
- -
- Possible co-financing of the investment at the level of 52.67% (according with the principles of project implementation in the Operational Program Infrastructure and Environment 2014–2020 in Poland);
- -
- A long-term perspective of the analysis—maximum 25 years; according to the EC Regulation for the energy sector: A reference period of 15–25 years should be adopted;
- -
- In the operating costs, renovations occurring once every 15 years were considered with a value of 10% of the investment costs.
2.4. Research Objects
- -
- Gucin—4 or 6 m high greenhouse—6.66 or 5.91 ha;
- -
- Mroczki Małe—greenhouse with a height of 4 or 6 m—4.81 or 4.27 ha;
- -
- Rychnów—greenhouse with a height of 4 or 6m—1.50 or 1.33 ha.
3. Results
3.1. Heat Consumption of the Greenhouse Facility
3.2. Geothermal Heat Supply
- -
- The calculated costs of drilling work are representative of the actual costs;
- -
- The costs of installation and construction work should be increased by 10% for unplanned expenses;
- -
- Annual operating costs are around 4% of the investment costs.
3.3. Economic Investment Indicators
- (a)
- The use of geothermal sources to heat greenhouse facilities for production purposes;
- (b)
- The replacement of the primary energy consumption, which was estimated to be about 11.05 TJ·year−1 for a 4 m high greenhouse (or 12.46 TJ·year−1 for a 6 m high greenhouse);
- (c)
- Avoidance of greenhouse gas emissions,
- (d)
- An increase in the share of Renewable Energy Sources in the energy balance.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Adib, R.; Murdock, H.; Appavou, F.; Brown, A.; Epp, B.; Leidreiter, A.; Lins, C.; Murdock, H.; Musolino, E.; Petrichenko, K. Renewables 2015 Global Status Report; REN21 Secretariat: Paris, France, 2015. [Google Scholar]
- Gupta, H.K.; Roy, S. Geothermal Energy: An Alternative Resource for the 21st Century; Elsevier Science: Hyderabad, India, 2006; p. 292. [Google Scholar]
- Huttrer, G.W. Geothermal Power Generation in the World 2015-2020 Update Report; World Geothermal Congress; International Geothermal Association: Reykjavik, Iceland, 2020; p. 17. [Google Scholar]
- Nelson, A. 2017 Outlook: Geothermal is Trending Upwards. Renew. Energy World 2017, 3. Available online: www.renewableenergyworld.com/baseload/2017-outlook-geothermal-is-trending-upwards/#gref (accessed on 20 February 2021).
- Hou, J.; Cao, M.; Liu, P. Development and utilization of geothermal energy in China: Current practices and future strategies. Renew. Energy 2018, 125, 401–412. [Google Scholar] [CrossRef]
- Bertani, R. Long-term projections of geothermal-electric development in the world. In Proceedings of the 2009 Geothermal Exposition & Congress, Offenburg, Germany, 25–29 April 2009; pp. 5–6. [Google Scholar]
- Edenhofer, O.; Pichs-Madruga, R.; Sokona, Y.; Seyboth, K.; Kadner, S.; Zwickel, T.; Eickemeier, P.; Hansen, G.; Schlömer, S.; von Stechow, C. Renewable Energy Sources and Climate Change Mitigation: Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2011; p. 1075. [Google Scholar]
- Directive 2009/28/EC of the European Parliament and of the Council, of 23 April 2009, on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Available online: eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32009L0028 (accessed on 20 February 2021).
- Benli, H. A performance comparison between a horizontal source and a vertical source heat pump systems for a greenhouse heating in the mild climate Elazig, Turkey. Appl. Therm. Eng. 2013, 50, 197–206. [Google Scholar] [CrossRef]
- Florides, G.A.; Pouloupatis, P.D.; Kalogirou, S.; Messaritis, V.; Panayides, I.; Zomeni, Z.; Partasides, G.; Lizides, A.; Sophocleous, E.; Koutsoumpas, K. The geothermal characteristics of the ground and the potential of using ground coupled heat pumps in Cyprus. Energy 2011, 36, 5027–5036. [Google Scholar] [CrossRef]
- Bayer, P.; Rybach, L.; Blum, P.; Brauchler, R. Review on life cycle environmental effects of geothermal power generation. Renew. Sustain. Energy Rev. 2013, 26, 446–463. [Google Scholar] [CrossRef]
- Casasso, A.; Sethi, R.; Pot, G. A quantitative method for the assessment and mapping of the shallow geothermal potential. Energy 2016, 106, 765–773. [Google Scholar] [CrossRef]
- Liu, X.; Falcone, G.; Alimonti, C. A systematic study of harnessing low-temperature geothermal energy from oil and gas reservoirs. Energy 2018, 142, 346–355. [Google Scholar] [CrossRef] [Green Version]
- Nalla, G.; Shook, G.M.; Mines, G.L.; Bloomfield, K.K. Parametric sensitivity study of operating and design variables in wellbore heat exchangers. Geothermics 2005, 34, 330–346. [Google Scholar] [CrossRef] [Green Version]
- Alimonti, C.; Soldo, E.; Bocchetti, D.; Berardi, D. The wellbore heat exchangers: A technical review. Renew. Energy 2018, 123, 353–381. [Google Scholar] [CrossRef]
- Immanuel, L.G.; Almas, G.S.F.U.; Dimas, T.M. Experimental design of wellbore heat exchanger in binary optimization for Low-Medium enthalpy to utilize non-self-discharge wells in Indonesia. In Proceedings of the 43rd Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 12–14 February 2018. SGP-TR-213. [Google Scholar]
- Alimonti, C.; Soldo, E. Study of geothermal power generation from a very deep oil well with a wellbore heat exchanger. Renew. Energy 2016, 86, 292–301. [Google Scholar] [CrossRef]
- Gharibi, S.; Mortezazadeh, E.; Bodi, S.J.H.A.; Vatani, A. Feasibility study of geothermal heat extraction from abandoned oil wells using a U-tube heat exchanger. Energy 2018, 153, 554–567. [Google Scholar] [CrossRef]
- Kujawa, T.; Nowak, W.; Stachel, A. Utilization of existing deep geological wells for acquisitions of geothermal energy. Energy 2006, 31, 644–650. [Google Scholar] [CrossRef]
- Cheng, W.L.; Li, T.T.; Nian, Y.L.; Wang, C.L. Studies on geothermal power generation using abandoned wells. Energy 2013, 59, 248–254. [Google Scholar] [CrossRef]
- Cheng, W.L.; Li, T.T.; Nian, Y.L.; Xie, K. Evaluation of working fluids for geothermal power generation from abandoned oil wells. Appl. Energy 2014, 118, 238–245. [Google Scholar] [CrossRef]
- Adinolfi, M.; Maiorano, R.M.S.; Mauro, A.; Massarotti, N.; Aversa, S. On the influence of thermal cycles on the yearly performance of an energy pile. Geomech. Energy Environ. 2018, 16, 32–44. [Google Scholar] [CrossRef]
- Mauro, A.; Grossman, J.C. Street-heat: Controlling road temperature via low enthalpy geothermal energy. Appl. Therm. Eng. 2017, 110, 1653–1658. [Google Scholar] [CrossRef]
- Li, Q.; Yin, Y.; Kong, L.; Qiao, L. Enhancing heat transfer in the heat exchange medium of energy piles. J. Build. Eng. 2021, 40, 102375. [Google Scholar] [CrossRef]
- Wight, N.M.; Bennett, N.S. Geothermal energy from abandoned oil and gas wells using water in combination with a closed wellbore. Appl. Therm. Eng. 2015, 89, 908–915. [Google Scholar] [CrossRef]
- Sanner, B.; Karytsas, C.; Mendrinos, D.; Rybach, L. Current status of ground source heat pumps and underground thermal energy storage in Europe. Geothermics 2003, 32, 579–588. [Google Scholar] [CrossRef]
- Bayer, P.; Saner, D.; Bolay, S.; Rybach, L.; Blum, P. Greenhouse gas emission savings of ground source heat pump systems in Europe: A review. Renew. Sustain. Energy Rev. 2011, 16, 1256–1267. [Google Scholar] [CrossRef]
- Chiavetta, C.; Tinti, F.; Bonoli, A. Comparative life cycle assessment of renewable energy systems for heating and cooling. Procedia Eng. 2011, 21, 591–597. [Google Scholar] [CrossRef] [Green Version]
- Bayer, P.; de Paly, M.; Beck, M. Strategic optimization of borehole heat exchanger field for seasonal geothermal heating and cooling. Appl. Energy 2014, 136, 445–453. [Google Scholar] [CrossRef]
- Sethi, V.P.; Sharma, S.K. Greenhouse heating and cooling using aquifer water. Energy 2007, 32, 1414–1421. [Google Scholar] [CrossRef]
- Anifantis, A.S.; Pascuzzi, S.; Scarascia-Mugnozza, G. Geothermal source heat pump performance for a greenhouse heating system: An experimental study. J. Agric. Eng. 2016, 47, 164–170. [Google Scholar] [CrossRef] [Green Version]
- Tinti, F.; Barbaresi, A.; Torreggiani, D.; Brunelli, D.; Ferrari, M.; Verdecchia, A.; Bedeschi, E.; Tassinari, P.; Bruno, R. Evaluation of efficiency of hybrid geothermal basket/air heat pump on a case study winery based on experimental data. Energy Build. 2017, 151, 365–380. [Google Scholar] [CrossRef]
- Capozza, A.; de Carli, M.; Zarrella, A. Design of borehole heat exchangers for ground-source heat pumps: A literature review, methodology comparison and analysis on the penalty temperature. Energy Build. 2012, 55, 369–379. [Google Scholar] [CrossRef]
- Choab, N.; Allouhi, A.; El Maakoul, A.; Kousksou, T.; Saadeddine, S.; Jamil, A. Review on greenhouse microclimate and application: Design parameters, thermal modelling and simulation, climate controlling technologies. Sol. Energy 2019, 191, 109–137. [Google Scholar] [CrossRef]
- Fabrizio, E. Energy reduction measures in agricultural greenhouses heating: Envelope, systems and solar energy collection. Energy Build. 2012, 53, 57–63. [Google Scholar] [CrossRef]
- Djevic, M.; Dimitrijevic, A. Energy consumption for different greenhouse constructions. Energy 2009, 34, 1325–1331. [Google Scholar] [CrossRef]
- Ansari, S.A.; Kazim, M.; Khaliq, M.A.; Ratlamwala, T.A.H. Thermal analysis of multigeneration system using geothermal energy as its main power source. Int. J. Hydrog. Energy 2020, 46, 4724–4738. [Google Scholar] [CrossRef]
- Parikhani, T.; Gholizadeh, T.; Ghaebi, H.; Sattari Sadat, S.M.; Sarabi, M. Exergoeconomic optimization of a novel multigeneration system driven by geothermal heat source and liquefied natural gas cold energy recovery. J. Clean. Prod. 2019, 209, 550–571. [Google Scholar] [CrossRef]
- Ebadollahi, M.; Rostamzadeh, H.; Pedram, M.Z.; Ghaebi, H.; Amidpour, M. Proposal and assessment of a new geothermal-based multigeneration system for cooling, heating, power, and hydrogen production, using LNG cold energy recovery. Renew. Energy 2019, 135, 66–87. [Google Scholar] [CrossRef]
- Wang, W.; Wang, J.; Lu, Z.; Wang, S. Exergoeconomic and exergoenvironmental analysis of a combined heating and power system driven by geothermal source. Energy Convers. Manag. 2020, 211, 112765. [Google Scholar] [CrossRef]
- Janowski, M.; Hajto, M.; Kurpaska, S.; Latała, H.; Gliniak, M.; Herbuś, H. Geothermal energy potential for Polish greenhouse sector. Geol. Explor. Technol. Geotherm. Energy Sustain. Dev. 2018, 1, 207–209. [Google Scholar]
- Żelaźniewicz, A.; Aleksandrowski, P.; Buła, Z.; Karnkowski, P.; Konon, A.; Oszczypko, N.; Ślączka, A.; Żaba, J.; Żytko, K. Tectonic Subdivision of Poland; Komitet Nauk Geologicznych PAN: Wrocław, Poland, 2011; pp. 20–24. [Google Scholar]
- Hajto, M.; Janowski, M. Geothermal Potential for the Greenhouse Sector in Poland: Phase 3—Final Report. Stage 5, Checking Geothermal Potential of 3 Locations (More in-Depth Analysis); Wageningen University & Research; AGH University of Science and Technology; Agricultural University in Krakow; Blue Fifty B.V.; Certhon Build B.V.: Krakow, Poland, 2018; p. 14. [Google Scholar]
- Górecki, W.; Hajto, M. Atlas of Geothermal Resources of Mesozoic Formations in the Polish Lowlands; AGH University of Science and Technology: Kraków, Poland, 2006. [Google Scholar]
- Górecki, W.; Hajto, M.; Strzetelski, W.; Szczepański, A. Dolnokredowy oraz dolnojurajski zbiornik wód geotermalnych na Niżu Polskim. Przegląd Geol. 2010, 58, 589–593. [Google Scholar]
- Górecki, W.; Sowiżdżał, A. (Eds.) Geothermal Atlas of the Carpathian Foredeep; AGH University of Science and Technology: Kraków, Poland, 2012. [Google Scholar]
- Dowgiałło, J. The Sudetic geothermal region of Poland-new findings and further prospects. In Proceedings of the World Geothermal Congress, Kyushu-Tohoku, Japan, 10 June 2000; pp. 1–6. [Google Scholar]
- Hajto, M. Geothermal resources and possibilities of its utilization in Poland. In Złoża Kopalin—Aktualne Problemy Prac Poszukiwawczych, Badawczych i Dokumentacyjnych. IV Ogólnopolska Konferencja Naukowa, Warsaw, Poland, 15–17 March 2013; Pańczyk, M., Ed.; MNiSW: Warsaw, Poland; pp. 29–30.
- Kepińska, B. Przegląd stanu wykorzystania energii geotermalnej w Polsce w latach 2013–2015. Geol. Explor. Technol. Geotherm. Energy Sustain. Dev. 2016, 1, 19–36. [Google Scholar]
- Longa, F.D.; Nogueira, L.P.; Limberger, J.; van Wees, J.D.; van der Zwaan, B. Scenarios for geothermal energy deployment in Europe. Energy 2020, 206, 118060. [Google Scholar] [CrossRef]
- Grabowski, Ł.; Gliniak, M.; Polek, D.; Gruca, M. Cost-assessment Analysis of Local Vehicle Scrapping Facility. IOP Conf. Ser. Earth Environ. Sci. 2017, 95, 022007. [Google Scholar] [CrossRef]
- Waląg, P.; Gliniak, M. The Dualism of Deindustrialisation and Innovation. In Proceedings of the 36th International Business Information Management Association (IBIMA), Granada, Spain, 4–5 November 2020; IBIMA: King of Prussia, PA, USA, 2020. ISBN 978-0-9998551-5-7. [Google Scholar]
- Gliniak, M. Building Life Cycle Analysis as A Tool Supporting Environmental Decision-Making Processes. In Proceedings of the 36th International Business Information Management Association (IBIMA), Granada, Spain, 4–5 November 2020; IBIMA: King of Prussia, PA, USA, 2020. ISBN 978-0-9998551-5-7. [Google Scholar]
- Ghoreishi-Madiseh, S.A.; Kuyuk, A.F. A techno-economic model for application of geothermal heat pump systems. Energy Procedia 2017, 142, 2611–2616. [Google Scholar] [CrossRef]
- Marchioni, A.; Magni, C.A. Investment decisions and sensitivity analysis: NPV-consistency of rates of return. Eur. J. Oper. Res. 2018, 268, 361–372. [Google Scholar] [CrossRef] [Green Version]
- Seginer, I. Alternative design formulae for the ventilation rate of greenhouses. J. Agric. Eng. Res. 1997, 68, 355–365. [Google Scholar] [CrossRef]
- Roy, J.C.; Boulard, T.; Kittas, C.; Wang, S. Convective and ventilation transfers in greenhouse, Part I. Biosyst. Eng. 2002, 83, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Pakari, A.; Ghani, S. Airflow assessment in a naturally ventilated greenhouse equipped with wind towers: Numerical simulation and wind tunnel experiments. Energy Build. 2019, 199, 1–11. [Google Scholar] [CrossRef]
- Data for energy calculations of buildings. Polish Minister of Investments and Development. 2018. Available online: https://archiwum.miir.gov.pl (accessed on 7 January 2021). (In Polish)
- Bejan, A. Convection Heat Transfer; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013. [Google Scholar]
- Wiśniewki, S.; Wiśniewski, T.S. Heat Exchange; Wydawnictwo Naukowo-Techniczne: Warsaw, Poland, 2010. [Google Scholar]
- Kurpaska, S. Energy effects during using the glass with different properties in a heated greenhouse. Tech. Sci. 2014, 17, 351–360. [Google Scholar]
- Nemś, A.; Nemś, M.; Świder, K. Analysis of the Possibilities of Using a Heat Pump for Greenhouse Heating in Polish Climatic Conditions—A Case Study. Sustainability 2018, 10, 3483. [Google Scholar] [CrossRef]
- Janowski, M.; Hajto, M. Geothermal Potential for the Greenhouse Sector in Poland: Phase 3—Prepare Final Report. Stage 6, Determine Geothermal Heat Concept; Wageningen University & Research; AGH University of Science and Technology; Agricultural University in Krakow; Blue Fifty B.V.; Certhon Build B.V.: Krakow, Poland, 2018; p. 17. [Google Scholar]
- Guidelines on issues related to the preparation of investment projects, including income-generating and hybrid projects for 2014–2020 MIiR/2014-2020/7(3). Polish Minister of Investments and Development. 2019. Available online: https://www.funduszeeuropejskie.gov.pl (accessed on 18 February 2021). (In Polish)
- Alyamani, R.; Long, S.; Nurunnabi, M. Exploring the Relationship between Sustainable Projects and Institutional Isomorphisms: A Project Typology. Sustainability 2020, 12, 3668. [Google Scholar] [CrossRef]
- Moynihan, G.P.; Triantafillu, D. Energy savings for a manufacturing facility using building simulation modeling: A case study. Eng. Manag. J. 2012, 24, 73–84. [Google Scholar] [CrossRef]
- Abdelhady, S. Performance and cost evaluation of solar dish power plant: Sensitivity analysis of levelized cost of electricity (LCOE) and net present value (NPV). Renew. Energy 2021, 168, 332–342. [Google Scholar] [CrossRef]
- Gliniak, M.; Kurpaska, S.; Tabor, J.; Karbowniczak, A. Geothermal Potential for the Greenhouse Sector in Poland: Phase 3—Map Main Greenhouses. Stage 2; Wageningen University & Research; AGH University of Science and Technology; Agricultural University in Krakow; Blue Fifty B.V.; Certhon Build B.V: Krakow, Poland, 2018; p. 49. [Google Scholar]
- Jarzyna, J.A.; Baudzis, S.; Janowski, M.; Puskarczyk, E. Geothermal Resources Recognition and Characterization on the Basis of Well Logging and Petrophysical Laboratory Data, Polish Case Studies. Energies 2021, 14, 850. [Google Scholar] [CrossRef]
- Janowski, M.; Hajto, M. Geothermal Potential for the Greenhouse Sector in Poland: Phase 1—Mapping & Screening. Stage 1, Map General Geothermal Potential (Comprehensive Analysis); Wageningen University & Research; AGH University of Science and Technology; Agricultural University in Krakow; Blue Fifty B.V.; Certhon Build B.V.: Krakow, Poland, 2018; p. 17. [Google Scholar]
- Subić, J.; Nastić, L.; Bekić, B. Economic Effects of Using Geothermal Waters in the Production of Flowers and Vegetables in Glasshouses. Procedia Econ. Financ. 2015, 22, 131–140. [Google Scholar] [CrossRef] [Green Version]
- Popovski, K.; PopovskaVasilevska, S. Prospects and problems for geothermal use in agriculture in Europe. Geothermics 2003, 32, 545–555. [Google Scholar] [CrossRef]
Location | Since | Outflow Water Temperature (°C) | Cumulative Water Flow Rate (m3∙h−1) | Mineralization (g·L−1) | Geoth. Capacity Installed (MWth) | Total Capacity Installed (MWth) | 2015 Geo-Heat Sales (TJ) |
---|---|---|---|---|---|---|---|
Podhale | 1993 | 82-86 | 960 | 2.25 | 40.7 | 82.6 | 393.0 |
Mszczonów | 2000 | 42 | 60 | 0.5 | 3.7 | 8.3 | 15.8 |
Poddębice | 2013 | 68 | 252 | 0.4 | 10.0 | 10.0 | 15.0 |
Uniejów | 2006 | 68 | 120 | 6.6 | 3.2 | 7.4 | 19.2 |
Pyrzyce | 1994 | 61 | 360 | 112 | 6.0 | 22.0 | 54.6 |
Stargard | 2012 | 83 | 180 | 115 | 12.6 | 12.6 | 168.0 |
Total | 76.2 | 142.9 | - |
Parameter | Abbreviation, Unit | Value |
---|---|---|
Dimensions of the objects | b, m | 104 |
c, m | 96 | |
Roof | l, m | 4.32 |
Ad, m2 | 10,800 | |
g, W∙m−1∙K−1 | 0.65 | |
Walls | a, m | 4 (6) |
d, m | 5.64 (7.64) | |
Ar, m2 | 914 (1313) | |
Plinth | a1, m | 0.4 |
Total length; tl, m | 394 | |
Concrete Styrofoam Plaster | Thickness; c, m | 0.2 |
Thickness; s, m | 0.15 | |
Thickness; p, m | 0.02 | |
Thermal conductivity | c, W∙m−1∙K−1 | 0.9 |
s, W∙m−1∙K−1 | 0.035 | |
p, W∙m−1∙K−1 | 0.9 |
Greenhouse Height | Month | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Jan. | Feb. | March | April | May | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | ||
a = 4 m | Rew,g | 1.7 | 1.4 | 1.6 | 1.3 | 1.2 | 1.1 | 1.2 | 1.0 | 1.1 | 1.3 | 1.4 | 1.6 |
Rew,r | 1.4 | 1.2 | 1.4 | 1.41 | 1.0 | 0.9 | 1.0 | 0.8 | 0.9 | 1.1 | 1.2 | 1.3 | |
Rew,s | 1.4 | 1.2 | 1.4 | 1.1 | 1.1 | 0.9 | 1.0 | 0.9 | 1.0 | 1.1 | 1.2 | 1.3 | |
a = 6 m | Rew,g | 2.4 | 2.0 | 2.3 | 1.9 | 1.7 | 1.5 | 1.7 | 1.4 | 1.6 | 1.8 | 1.9 | 2.2 |
Rew,r | 1.4 | 1.2 | 1.4 | 1.41 | 1.0 | 0.9 | 1.0 | 0.8 | 0.9 | 1.1 | 1.2 | 1.3 | |
Rew,s | 2.1 | 1.8 | 2.0 | 1.7 | 1.5 | 1.4 | 1.5 | 1.3 | 1.4 | 1.6 | 1.7 | 1.9 |
Name | Voivodship | Poviat | Base Depth (m b.g.l.) | Well DisCharge (m3∙h−1) | J1-TDS (g∙L−1) | J1-Temp (°C) | Thermal Capacity | ||
---|---|---|---|---|---|---|---|---|---|
(MW) | (TJ∙a−1) | (MWh∙a−1) | |||||||
Mr-1 | lodzkie | sieradzki | 1644 | 233 | 18 | 51 | 5.06 | 159.5 | 44,308 |
Mr-2 | lodzkie | sieradzki | 1631 | 232 | 19 | 51 | 5.04 | 158.8 | 44,118 |
Se-1 | lodzkie | sieradzki | 1731 | 245 | 23 | 55 | 6.44 | 203.0 | 56,398 |
Gu-1 | lodzkie | laski | 2559 | 120 | 76 | 78 | 6.31 | 198.9 | 55,247 |
Ry-1 | wielkopolskie | kaliski | 1235 | 187 | 19 | 37 | 1.07 | 33.7 | 9358 |
Ry-2 | wielkopolskie | kaliski | 1188 | 180 | 16 | 35 | 0.62 | 19.5 | 5405 |
Ry-3 | wielkopolskie | kaliski | 1210 | 183 | 17 | 36 | 0.84 | 26.4 | 7326 |
Ry-4 | wielkopolskie | kaliski | 1282 | 194 | 20 | 39 | 1.55 | 48.9 | 13,592 |
Ry-5 | wielkopolskie | kaliski | 1322 | 200 | 22 | 41 | 2.06 | 64.9 | 18,015 |
Short Name | Total Area [ha] | Number of Objects | Name |
---|---|---|---|
Mr-1 | 8.58 | 4 | Mroczki Małe 1 |
Mr-2 | Mroczki Małe 2 | ||
Se-1 | 12.21 | 1 | Sędzimirowice 1 |
Gu-1 | 1 | Gucin 1 | |
Ry-1 | 29.8 | 16 | Rychnów 1 |
Ry-2 | Rychnów 2 | ||
Ry-3 | Rychnów 3 | ||
Ry-4 | Rychnów 4 | ||
Ry-5 | Rychnów 5 |
Location | Temp. at Duct Inlet (°C) | Outlet Water Temperature as a Function of Distance (°C) | ||
---|---|---|---|---|
L = 100 m | L = 500 m | L = 1000 m | ||
Gucin | 78 | 77.1 | 73.5 | 69.1 |
Mroczki | 51 | 50.4 | 48.7 | 46.4 |
Rychnów | 41 | 40.4 | 38.3 | 35.5 |
Parameter | Unit | Location 1 Gucin | Location 2 MroczkiMałe/Sędzimirowice | Location 3 Rychnów |
---|---|---|---|---|
Depth of drilling wells | m | 2560 | 1644 | 1323 |
Flow of geothermal water | m3∙h−1 | 120 | 233 | 194 |
Temperature of geothermal water mineralisation | °C | 78 | 51 | 41 |
Mineralisation of geothermal water | g∙dm−3 | 76 | 19 | 22 |
No. | Type of Work | Unit | Unit Costs-Net (Max EUR) | |
---|---|---|---|---|
1 | Execution of a well | 500 | m | 629 |
1000 | m | 966 | ||
2000 | m | 1011 | ||
3000 | m | 1011 | ||
4000 | m | 1124 | ||
5000 | m | 1214 | ||
>5000 | m | 1326 | ||
2 | Preparatory works (including, among others: assembly of the device, technological roads, access roads, squares, discharge pipelines) | lump sum | 471,910 | |
3 | Hydrogeological study | cpl. | 80,899 | |
4 | Geophysical study | cpl. | 112,360 | |
5 | Laboratory tests | cpl. | 35,955 | |
6 | Geological supervision | lump sum | 62,921 | |
7 | Disassembly of drilling equipment, land reclamation, mobilisation, demobilisation, waste utilisation | lump sum | 128,090 | |
8 | Preparation of hydrogeological documentation | pcs | 40,449 |
No. | Type of Work | Unit | Unit Costs-Netto (Max EUR) | Costs-Netto (Max EUR) | |
---|---|---|---|---|---|
1. | Drilling of a well | 500 | m | 629 | 314,607 |
1000 | m | 966 | 483,146 | ||
2000 | m | 1011 | 1,011,236 | ||
2560 | m | 1011 | 566,292 | ||
m | 2,375,281 | ||||
2. | Preparatory works (including, among others: assembly of the device, technological roads, access roads, squares, discharge pipelines) | lump sum | 471,910 | ||
3. | Hydrogeological study | cpl. | 80,899 | ||
4. | Geophysical study | cpl. | 112,360 | ||
5. | Laboratory tests | cpl. | 35,955 | ||
6. | Geological supervision | lump sum | 62,921 | ||
7. | Disassembly of drilling equipment, land reclamation, mobilisation, demobilisation, waste utilisation | lump sum | 128,090 | ||
8. | Preparation of hydrogeological documentation | pcs | 40,449 | ||
SUM | 3,307,865 |
No. | Type of Work | Unit | Unit Costs-Netto (Max EUR) | Costs-Netto (Max EUR) | |
---|---|---|---|---|---|
1 | Drilling of a well | 500 | m | 629 | 314,607 |
1000 | m | 966 | 483,146 | ||
1644 | m | 1011 | 651,236 | ||
m | 1,448,989 | ||||
2 | Preparatory works (including, among others: assembly of the device, technological roads, access roads, squares, discharge pipelines) | lump sum | 471,910 | ||
3 | Hydrogeological study | cpl. | 80,899 | ||
4 | Geophysical study | cpl. | 112,360 | ||
5 | Laboratory tests | cpl. | 35,955 | ||
6 | Geological supervision | lump sum | 62,921 | ||
7 | Disassembly of drilling equipment, land reclamation, mobilisation, demobilisation, waste utilisation | lump sum | 128,090 | ||
8 | Preparation of hydrogeological documentation | pcs | 40,449 | ||
SUM | 2,381,573 |
No. | Type of Work | Unit | Unit Costs-netto (Max EUR) | Costs-netto (Max EUR) | |
---|---|---|---|---|---|
1 | 500 | m | 629 | 314,607 | |
Drilling of a well | 1000 | m | 966 | 483,146 | |
1323 | m | 1011 | 326,629 | ||
m | 1,124,382 | ||||
2 | Preparatory works (including, among others: assembly of the device, technological roads, access roads, squares, discharge pipelines) | lump sum | 471,910 | ||
3 | Hydrogeological study | cpl. | 80,899 | ||
4 | Geophysical study | cpl. | 112,360 | ||
5 | Laboratory tests | cpl. | 35,955 | ||
6 | Geological supervision | lump sum | 62,921 | ||
7 | Disassembly of drilling equipment, land reclamation, mobilisation, demobilisation, waste utilisation | lump sum | 128,090 | ||
8 | Preparation of hydrogeological documentation | pcs | 40,449 | ||
SUM | 2,056,966 |
Specification | Titanium Heat Exchanger | Stainless Steel Heat Exchanger | ||||
---|---|---|---|---|---|---|
Gucin | MroczkiMałe | Rychnów | Gucin | MroczkiMałe | Rychnów | |
Cost of drilling work | 6615.7 | 4763.1 | 4113.9 | 6615.7 | 4763.1 | 4113.9 |
Cost of installation and construction work | 1093.5 | 1143.5 | 1117.8 | 923.9 | 987.2 | 961.5 |
Investment costs | 7709.2 | 5906.7 | 5231.8 | 7539.6 | 5750.4 | 5075.4 |
Operation costs | 308.3 | 236.2 | 209.2 | 301.5 | 230 | 203 |
Parameters | Gucin | Gucin * | Mroczki Małe | Mroczki Małe * | Rychnów | Rychnów * |
---|---|---|---|---|---|---|
NPV25 | 2784.42 | 6844.89 | 390.61 | 3559.18 | −4714.61 | 3426.07 |
IRR25 | 0.07 | 0.17 | 0.05 | 0.41 | - | 0.14 |
NPV20 | 1108.18 | 5168.65 | −626.07 | 2868.49 | −4831.42 | 2477.23 |
IRR20 | 0.06 | 0.17 | 0.03 | 0.41 | - | 0.13 |
NPV15 | −784.92 | 3275.55 | −1774.29 | 2088.45 | −4963.34 | 1405.63 |
IRR15 | 0.02 | 0.15 | -0.01 | 0.41 | - | 0.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurpaska, S.; Janowski, M.; Gliniak, M.; Krakowiak-Bal, A.; Ziemiańczyk, U. The Use of Geothermal Energy to Heating Crops under Cover: A Case Study of Poland. Energies 2021, 14, 2618. https://doi.org/10.3390/en14092618
Kurpaska S, Janowski M, Gliniak M, Krakowiak-Bal A, Ziemiańczyk U. The Use of Geothermal Energy to Heating Crops under Cover: A Case Study of Poland. Energies. 2021; 14(9):2618. https://doi.org/10.3390/en14092618
Chicago/Turabian StyleKurpaska, Sławomir, Mirosław Janowski, Maciej Gliniak, Anna Krakowiak-Bal, and Urszula Ziemiańczyk. 2021. "The Use of Geothermal Energy to Heating Crops under Cover: A Case Study of Poland" Energies 14, no. 9: 2618. https://doi.org/10.3390/en14092618
APA StyleKurpaska, S., Janowski, M., Gliniak, M., Krakowiak-Bal, A., & Ziemiańczyk, U. (2021). The Use of Geothermal Energy to Heating Crops under Cover: A Case Study of Poland. Energies, 14(9), 2618. https://doi.org/10.3390/en14092618