Algorithm for Selecting Best Available Techniques in Polish Coking Plants Supporting Multi-Criteria Investment Decisions in European Environmental Conditions
Abstract
:1. Introduction
2. Literature Studies
Sources of Environmental Burden in Coke Production
3. Materials and Methods
3.1. Environmental Legal Regulations in the Field of Coke Production in the European Union
3.2. Review of Guidance on Techniques to Abate Coke Plant Emissions
3.3. Practical Methods and Tools for Abating Emissions in Coke Production
- usually a large number of existing solutions leading to meeting emission standards;
- the necessity to meet air quality standards in the entire field of concentrations generated by the sources under consideration, often with a highly variable spatial nature;
- the impact of emission decrease in individual sources on the concentration values at various points in the concentration field, which is difficult to intuitively determine;
- a unit decrease in concentrations, obtained depending on the type of source, with a different cost.
3.4. Adaptation of the Scenario Method and Multi-Criteria Analysis for the Needs of a Detailed Research Methodology
3.5. Algorithm for Selecting Techniques to Abate Emissions (BAT) in Coke Production
- process, relating to individual links in the coke production process (1.1);
- emission, relating to the type and scale of potential emissions in the coke production process (1.2);
- technical and technological, characterizing the condition of the coking facility located in a given coking plant (1.3).
- requirements of BAT conclusions in the scope of emission limit values and legal regulations concerning air quality standards,
- provisions from integrated permits (PZ),
- regulations on fees for the use of the environment.
- the frequency of occurrence of emission restrictions in documents relating to emission levels from industrial plants,
- emission limit values,
- permissible concentrations in the air,
- the need to report as part of the periodic environmental reporting.
- BREF (Best Available Technique (BAT) Reference Document) reference documents and BAT conclusions,
- offers from suppliers of techniques and equipment,
- available industry literature,
- the current state of equipment and wear of the analyzed plant in accordance with the assessment carried out under the baseline scenario.
- scenario assessment =
- weight of the environmental criterion x environmental criterion +
- weight of the economic criterion x economic criterion +
- weight of the technological criterion x technological criterion
4. Results
4.1. Development of Emission Abatement Scenarios for the Tested Coke Oven Plant
4.2. Assessment and Selection of Emission Abatement Scenarios in Coking Plants
- management of the coking plant,
- environmental protection specialists in the coking plant,
- production workers,
- experts from scientific entities,
- and people from the business environment related to the production of coke.
- environmental criterion: 45%.
- economic criterion: 30%.
- technological criterion: 25%.
5. Conclusions
- taking into account many emission sources related to coke production in the selection of techniques;
- reducing the difficulties associated with the presence of many emitters simultaneously;
- providing the decision-maker with a universal tool enabling the identification, selection, and final selection of BAT, taking into account all stages of coke production and the development strategy of the coking enterprise;
- reduction of the risk associated with the selection of an incorrect emission abatement technique, thanks to a holistic environmental analysis of coke production and simultaneous consideration of technological and economic criteria;
- improving the production processes of coking plants in terms of increasing environmental requirements in the European Union, which is of particular importance for the Polish economy, where coking is an industry of strategic importance;
- reducing the harmful impact of the coking plant on its environmental and social surroundings.
- a tool supporting environmental cost-benefit analyses necessary to carry out in the application process for the so-called temporary derogation from the requirement to comply with BAT conclusions in the coking industry;
- a set of guidelines for the preparation of a computer program to automate the process of selecting techniques to abate emissions from industrial plants in the coking industry;
- an instrument supporting the process of obtaining funds for the implementation of investments in the coking industry (thanks to a synthetic and understandable assessment of the effects of the implementation of a given investment and alternative investments);
- a universal approach to the BAT selection process in other industries (taking into account industry specific emission and technological criteria).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Air Quality in Europe—2020 Report; EEA Report No 09/2020; Available online: https://www.eea.europa.eu/publications/air-quality-in-europe-2019 (accessed on 1 February 2021).
- Caruso, J.A.; Zhang, K.; Schroeck, N.J.; McCoy, B.; McElmurry, S.P. Petroleum Coke in the Urban Environment: A Review of Potential Health Effects. Int. J. Environ. Res. Public Health 2015, 12, 6218–6231. [Google Scholar] [CrossRef] [PubMed]
- Vimercati, L.; Bisceglia, L.; Cavone, D.; Caputi, A.; De Maria, L.; Delfino, M.C.; Corrado, V.; Ferri, G.M. Environmental Monitoring of PAHs Exposure, Biomarkers and Vital Status in Coke Oven Workers. Int. J. Environ. Res. Public Health 2020, 17, 2199. [Google Scholar] [CrossRef] [Green Version]
- Amodio, M.; Andriani, E.; Dambruoso, P.R.; de Gennaro, G.; Di Gilio, A.; Intini, M.; Palmisani, J.; Tutiono, M. A monitoring strategy to assess the fugitive emission from a steel plant. Atmos. Environ. 2013, 79, 455–461. [Google Scholar] [CrossRef]
- Ptaszyński, P.; Mniszek, W. Potencjalne zagrożenie cyjanowodorem na terenie koksowni. Zeszyty Naukowe Wyższej Szkoły Zarządzania Ochroną Pracy w Katowicach 2013, 19, 106–115. [Google Scholar]
- Graham, J.D.; Holtgrave, D.R. Coke Oven Emissions: A Case Study of Technology Based Regulation. RISK Issues Health Saf. 1990, 1, 243. [Google Scholar]
- Sobolewski, A.; Ściążko, M. Najlepsze Dostępne Techniki (BAT) Wytyczne dla Branży Koksowniczej; Wydawnictwo IChPW: Zabrze, Poland, 2006. [Google Scholar]
- Farris, F. Coke oven emissions. In Encyclopedia of Toxicology; Elsevier: Amsterdam, The Netherlands, 2014; pp. 1003–1006. [Google Scholar]
- Sobolewski, A. (Ed.) Uwalnianie i Transfer Zanieczyszczeń do Środowiska Będących Efektem Eksploatacji Instalacji Koksowniczych w Polsce; Wydawnictwo Instytutu Chemicznej Przeróbki Węgla: Zabrze, Poland, 2010. [Google Scholar]
- Konieczyński, J. (Ed.) Właściwości Pyłu Respirabilnego Emitowanego z Wybranych Instalacji; Instytut Podstaw Inżynierii Środowiska Polskiej Akademii Nauk: Zabrze, Poland, 2010. [Google Scholar]
- Telenga-Kopyczyńska, J.; Lajnert, R.; Bigda, R.; Sobolewski, A. E-PRTR jako system monitorowania poziomu emisji do powietrza na przykładzie instalacji koksowniczych. In Ochrona Powietrza w Teorii i Praktyce; Konieczyński, J., Ed.; Wydawnictwo Instytut Podstaw Inżynierii Środowiska Polskiej Akademii Nauk: Zabrzu, Poland, 2010; pp. 355–366. [Google Scholar]
- Liberti, L.; Notarnicola, M.; Primerano, R.P. Air Pollution from a Large Steel Factory: Polycyclic Aromatic Hydrocarbon Emissions from Coke-Oven Batteries. J. Air Waste Manag. Assoc. 2006, 56, 255–260. [Google Scholar] [CrossRef] [Green Version]
- Mu, L.; Peng, L.; Liu, X.; He, Q.; Bai, H.; Yan, Y.; Li, Y. Emission characteristics and size distribution of polycyclic aromatic hydrocarbons from coke production in China. Atmos. Res. 2017, 197, 113–120. [Google Scholar] [CrossRef]
- Telenga-Kopyczyńska, J.; Lajnert, R. Uwalnianie zanieczyszczeń do powietrza będących efektem eksploatacji instalacji koksowniczych. Środowisko i Rozwój 2009, 202, 67–74. [Google Scholar]
- Tuomi, T.; Veijalainen, H.; Santonen, T. Managing Exposure to Benzene and Total Petroleum Hydrocarbons at Two Oil Refineries 1977–2014. Int. J. Environ. Res. Public Health 2018, 15, 197. [Google Scholar] [CrossRef] [Green Version]
- Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32008L0050 (accessed on 1 February 2021).
- Ciuffi, B.; Chiaramonti, D.; Rizzo, A.M.; Frediani, M.; Rosi, L. A Critical Review of SCWG in the Context of Available Gasification Technologies for Plastic Waste. Appl. Sci. 2020, 10, 6307. [Google Scholar] [CrossRef]
- Kapała, J. Emisja Zanieczyszczeń Powietrza z Procesu Koksowania Węgla; Wydawnictwo ATH w: Bielsku-Białej, Poland, 2003. [Google Scholar]
- Półka, M. An Analysis of Flammability and Explosion Parameters of Coke Dust and Use of Preliminary Hazard Analysis for Qualitative Risk Assessment. Sustainability 2020, 12, 4130. [Google Scholar] [CrossRef]
- Commission Implementing Decision of 28 February 2012 Establishing the Best Available Techniques (BAT) Conclusions under Directive 2010/75/EU of the European Parliament and of the Council on Industrial Emissions for Iron and Steel Production (Notified Under Document C(2012) 903) (Text with EEA Relevance) (2012/135/EU). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv%3AOJ.L_.2012.070.01.0063.01.ENG (accessed on 1 February 2021).
- Sciążko, M.; Mertas, B.; Kosyrczyk, L.; Sobolewski, A. A Predictive Model for Coal Coking Based on Product Yield and Energy Balance. Energies 2020, 13, 4953. [Google Scholar] [CrossRef]
- Dyrektywa Parlamentu Europejskiego i Rady 2008/50/WE z dnia 21 maja 2008 r. w Sprawie Jakości Powietrza i Czystszego Powietrza dla Europy. Available online: https://eur-lex.europa.eu/legal-content/PL/TXT/PDF/?uri=CELEX:32008L0050&from=DA (accessed on 1 February 2021).
- Giljam, R.A. Extended application of ‘best available techniques’ as a means to facilitate ecological governance. J. Energy Nat. Resour. Law 2018, 362, 181–208. [Google Scholar] [CrossRef] [Green Version]
- Decyzja Wykonawcza Komisji. z Dnia 28 Lutego 2012 r. Ustanawiająca Konkluzje Dotyczące Najlepszych Dostępnych Technik BAT Zgodnie z Dyrektywą Parlamentu Europejskiego i Rady 2010/75/UE w Sprawie Emisji Przemysłowych, w Odniesieniu do Produkcji Żelaza i Stali. Available online: https://op.europa.eu/pl/publication-detail/-/publication/1b83d8f8-af75-4839-8672-9994ac23cb05/language-pl (accessed on 1 February 2021).
- Kwarciak-Kozłowska, A.; Worwąg, M. The Impact of an Ultrasonic Field on the Efficiency of Coke Wastewater Treatment in a Sequencing Batch Reactor. Energies 2021, 14, 963. [Google Scholar] [CrossRef]
- Hamadeh, H.; Toor, S.Y.; Douglas, P.L.; Sarathy, S.M.; Dibble, R.W.; Croiset, E. Techno-Economic Analysis of Pressurized Oxy-Fuel Combustion of Petroleum Coke. Energies 2020, 13, 3463. [Google Scholar] [CrossRef]
- Kaiser, M. Emission reduction on coke oven and by-product plant. In Proceedings of the Eurocoke Summit, Vienna, Italy, 5–7 April 2011. [Google Scholar]
- Telenga-Kopyczyńska, J.; Lajnert, R.; Sobolewski, A. Wytyczne dotyczące praktycznego zastosowania Konkluzji BAT w zakresie produkcji żelaza i stali. Sprawozdanie IChPW: Zabrze, Poland, 2016. [Google Scholar]
- Honkasalo, A. The EMAS scheme: A management tool and instrument of environmental policy. J. Clean. Prod. 1998, 62, 119–128. [Google Scholar] [CrossRef]
- Martins, F.; Fonseca, L. Comparison between eco-management and audit scheme and ISO 14001:2015. Energy Procedia 2018, 153, 450–454. [Google Scholar] [CrossRef]
- Iraldo, F.; Testa, F.; Frey, M. Is an environmental management system able to influence environmental and competitive performance? The case of the eco-management and audit scheme EMAS in the European Union. J. Clean. Prod. 2009, 1716, 1444–1452. [Google Scholar] [CrossRef]
- Burtraw, D.; Palmer, K.; Bharvirkar, R.; Paul, A. Cost-effective reduction of NOx emissions from electricity generation. J. Air Waste Manag. Assoc. 2001, 10, 1476–1489. [Google Scholar] [CrossRef] [Green Version]
- Żeliński, J.; Telenga-Kopyczyńska, J. Social consequences associated with the use of various optimization methods in the protection of air quality. J. Environ. Plan. Manag. 2018, 626, 960–978. [Google Scholar] [CrossRef]
- Xu, T.; Chen, Z.; Jiang, Z.; Huang, J.; Gui, W. A Real-Time 3D Measurement System for the Blast Furnace Burden Surface Using High-Temperature Industrial Endoscope. Sensors 2020, 20, 869. [Google Scholar] [CrossRef] [Green Version]
- Abdulkareem-Alsultan, G.; Asikin-Mijan, N.; Lee, H.V.; Rashid, U.; Islam, A.; Taufiq-Yap, Y.H. A Review on Thermal Conversion of Plant Oil (Edible and Inedible) into Green Fuel Using Carbon-Based Nanocatalyst. Catalysts 2019, 9, 350. [Google Scholar] [CrossRef] [Green Version]
- Zarzycki, R.; Kacprzak, A.; Bis, Z. The Use of Direct Carbon Fuel Cells in Compact Energy Systems for the Generation of Electricity, Heat and Cold. Energies 2018, 11, 3061. [Google Scholar] [CrossRef] [Green Version]
- Yin, Y.; Han, X.; Wu, S. Spatial and Temporal Variations in the Ecological Footprints in Northwest China from 2005 to 2014. Sustainability 2017, 9, 597. [Google Scholar] [CrossRef] [Green Version]
- Janik, A. Analiza możliwości zastosowania wybranych metod i wskaźników ekonomicznych, środowiskowych i społecznych w zrównoważonej ocenie technologii. Zeszyty Naukowe Politechniki Śląskiej, Organizacja i Zarządzanie 2018, 115, 91–114. [Google Scholar]
- Burchart-Korol, D.; Proksa, J. Metoda oceny środowiskowej projektów inwestycyjnych w gospodarce o obiegu zamkniętym. Zeszyty Naukowe Politechniki Śląskiej Organizacja i Zarządzanie 2017, 68, 29–41. [Google Scholar]
- Chornomaz, V.; Gawron, M.; Górska, D.; Iurkova, M.; Jędrzejczak, M.; Lewandowska, U.; Tarnas, A. Eco-efficiency as a problem in managing contemporary enterprises. Systemy Wspomagania w Inżynierii Produkcji 2016, 3, 52–58. [Google Scholar]
- Kulczycka, J.; Smol, M. Application LCA for eco-efficiency assessment of investments projects. Acta Innov. 2015, 16, 29–38. [Google Scholar]
- Yang, C.; Wu, H.; Deng, K.; He, H.; Sun, L. Study on Powder Coke Combustion and Pollution Emission Characteristics of Fluidized Bed Boilers. Energies 2019, 12, 1424. [Google Scholar] [CrossRef] [Green Version]
- Janigacz, D.; Nitarska-Fink, A.; Wartak, B. Zmiany pozwoleń zintegrowanych—Wybrane problemy i wątpliwości. Energetyka 2019, 5, 346–349. [Google Scholar]
- Górska, D.; Musiałowska, P.; Świstak, P. Nowoczesne instrumenty zrównoważonego rozwoju przedsiębiorstwa. Systemy Wspomagania w Inżynierii Produkcji 2018, 72, 76–82. [Google Scholar]
- Gwizdała, J.P.; Kędzierska-Szczepaniak, A. Investment risks in financing pro-ecological projects—The dilemmas. Zeszyty Naukowe Akademii Morskiej w Szczecinie 2019, 60, 75–83. [Google Scholar]
- Rosak-Szyrocka, J. Czystsza produkcja determinantą sukcesu środowiskowego przedsiębiorstw. Probl. Jakości 2018, 503, 9–17. [Google Scholar] [CrossRef]
- Juda, J. Ewolucja Podejścia Do Zagadnień Ekonomicznych w Ochronie Powietrza; Wydawnictwo Politechniki Warszawskiej: Warszawa, Poland, 1997. [Google Scholar]
- Warchałowski, A. Koszty Redukcji Emisji SO2. Politechnika; Wydawnictwo Politechniki Warszawskiej: Warszawa, Poland, 1997. [Google Scholar]
- Cao, G.; Orru, R. Current Environmental Issues and Challenges; Springer Science & Business: Berlin, Germany, 2014. [Google Scholar]
- Slorach, P.C.; Jeswani, H.K.; Cuéllar-Franca, R.; Azapagic, A. Assessing the economic and environmental sustainability of household food waste management in the UK: Current situation and future scenarios. Sci. Total Environ. 2020, 710, 135580. [Google Scholar] [CrossRef]
- Kanoniuk, A.; Magruk, A. Przegląd metod i technik badawczych stosowanych w programach foresight. Nauka Szkolnictwo Wyższe 2008, 232, 28–40. [Google Scholar]
- Çankay, S.; Pekey, B. Application of scenario analysis for assessing the environmental impacts of thermal energy substitution and electrical energy efficiency in clinker production by life cycle approach. J. Clean. Prod. 2020, 270, 122388. [Google Scholar] [CrossRef]
- González-García, S.; Bonnesoeur, V.; Pizzi, A.; Feijoo, G.; Moreira, M.T. Comparing environmental impacts of different forest management scenarios for maritime pine biomass production in France. J. Clean. Prod. 2014, 64, 356–367. [Google Scholar] [CrossRef]
- Daszyńska-Żygadło, K. Podejście scenariuszowe w zarządzaniu ryzykiem. Uniwersytet Ekonomiczny we Wrocławiu Instytut Zarządzania Finansami 2012, XLVI4, 76. [Google Scholar]
- D’Souza, S.A.; Banik, S.; Vuthaluru, H.B.; Pisupati, S.V. Comparison of Natural and Synthetic Petroleum Coke Slag Viscosities under Reducing Conditions: Applicability of Predictive Models Using Factsage and Modified Urbain Model. Fuels 2021, 2, 3. [Google Scholar] [CrossRef]
- Rounsevell, M.D.A.; Metzge, M.J. Developing qualitative scenario storylines for environmental change assessment. Wiley Interdiscip. Rev. Clim. Chang. 2010, 14, 606–619, 391–401. [Google Scholar] [CrossRef]
- Drury, C. Management and Cost Accounting, 7th ed.; Cheriton House: Hampshire, UK, 2007. [Google Scholar]
- Nermend, K. Metody Analizy Wielokryterialnej i Wielowymiarowej we Wspomaganiu Decyzji; PWN: Warszawa, Poland, 2017. [Google Scholar]
- Song, S.; Hou, D.; Zhang, J.; O’Connor, D.; Li, G.; Gu, Q.; Li, S.; Liu, P. Environmental and socio-economic sustainability appraisal of contaminated land remediation strategies: A case study at a mega-site in China. Sci. Total Environ. 2018, 610–611. [Google Scholar] [CrossRef]
- Li, X.; Li, J.; Sui, H.; He, L. Evaluation and determination of soil remediation schemes using a modified AHP model and its application in a contaminated coking plant. J. Hazard. Mater. 2018, 353, 300–311. [Google Scholar] [CrossRef]
- Giner-Santonja, G.; Calvo, V.; Rodríguez, L.G. Application of AHP and corrective factors for the determination of best available techniques and emission limit values at installation level: A case study in four cement installations. Sci. Total Environ. 2019, 660, 834–840. [Google Scholar] [CrossRef]
- Torres, E.R.; Doval, L.R.; Martínez, L.M.G.; Bugallo, P.M.G. Integrated environmental permit through Best Available Techniques: Evaluation of the dairy industry. J. Clean. Prod. 2017, 162, 512–528. [Google Scholar] [CrossRef]
- Zapelloni, G.; Rellán, A.G.; Bello Bugallo, P.M. Sustainable production of marine equipment in a circular economy: Deepening in material and energy flows, best available techniques and toxicological impacts. Sci. Total Environ. 2019, 687, 991–1010. [Google Scholar] [CrossRef]
- Wierzbińska, M. Modelowanie rozprzestrzeniania się zanieczyszczeń emitowanych z emitorów punktowych. Inżynieria Ekologiczna 2017, 182, 199–209. [Google Scholar] [CrossRef]
- Żeliński, J.; Kaleta, D.; Telenga-Kopyczyńska, J.; Sobolewski, A. Zastosowanie programu COPDIMO do obliczeń rozprzestrzeniania się zanieczyszczeń z instalacji koksowniczych. KARBO 2014, 3, 112–119. [Google Scholar]
- Telenga-Kopyczyńska, J.; Konieczyński, J. Perspektywy ograniczenia emisji pyłu, ditlenku siarki i tlenków azotu w wyniku zastosowania BAT w elektroenergetyce i ciepłownictwie w Polsce. In Aktualne Problemy Ochronie Powietrza Atmosferycznego; Musialik-Piotrowska, A., Rutkowski, J.D., Eds.; Polskie Zrzeszenie Inżynierów i Techników Sanitarnych: Warszawa, Poland, 2008; pp. 45–54. [Google Scholar]
- Xu, Q.; Peng, W.; Ling, C. An Experimental Analysis of Soybean Straw Combustion on Both CO and NOX Emission Characteristics in a Tubular Furnace. Energies 2020, 13, 1587. [Google Scholar] [CrossRef] [Green Version]
- Karwot, J.; Ober, J. Safety management of water economy. Case study of the water and sewerage company. Manag. Syst. Prod. Eng. 2019, 27, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Sakiewicz, P.; Piotrowski, K.; Ober, J.; Karwot, J. Innovative artificial neural network approach for integrated biogas—Wastewater treatment system modelling: Effect of plant operating parameters on process intensification. Renew. Sustain. Energy Rev. 2020, 124, 109784. [Google Scholar]
- Ober, J. Innovation Adoption: Empirical Analysis on the Example of Selected Factors of Organizational Culture in the IT Industry in Poland. Sustainability 2020, 12, 8630. [Google Scholar] [CrossRef]
Fugitive Emission | Captured Emission | |
---|---|---|
Plant | Source of Emission | |
Coal plant | Preparation of the coal charge. | Dedusting of coal pulverizers and buildings and transfer stations. Thawing wagons. |
Coke oven | Filling, coking, pushing. | Firing of the coke oven battery. Coke side dedusting. Coke quenching. |
Coal by-product | Emission from leaks in process lines, pumps, and apparatus, and from loading operations of carbon-based products. | Emissions from venting of storage and handling tanks and from a flare stack. |
Sorting plant | Emission from the sorting plant by gravity ventilation systems, grinding and screening operations, loading into wagons. | Dedusting of sorting plants. |
Process | Pollution /Emission | Permissible Level | Unit | Comments |
---|---|---|---|---|
Filling | dust | <5 or <50 | g/Mg of coke or mg/Nm3 | - |
visible emission | <30 | s | visible emission during filling | |
Firing of batteries | SOx | <200 to 500 | mg/Nm3 | depending on the type of firing gas |
NOx | <350 to 500 | mg/Nm3 | for new plants or subject to significant modernization (< 10 years) | |
NOx | <500 to 650 | mg/Nm3 | for older plants with properly operated batteries and implemented NOX emission abatement techniques | |
dust | <1 to 20 | mg/Nm3 | - | |
Pushing | dust | <10 to 20 | mg/Nm3 | depending on the type of filters used |
Quenching | dust | <25 | g/t of coke | in the case of conventional low emission wet quenching |
dust | <20 | mg/Nm3 | in the case of dry quenching of coke | |
dust | <10 | g/t of coke | in the case of quenching due to flooding | |
Coking | Visible emission | <5 to 10 | % | visible emission from door |
Visible emission | <1 | % | visible emission from ascension pipes and charging holes | |
Limiting the sulfur content in the coke oven gas | H2S | <300 to 1000 | mg/Nm3 | for desulfurization with absorption systems |
H2S | <10 | mg/Nm3 | for wet oxidative desulfurization determined as the daily averages | |
Preparation of the charge mixture-coal plant | dust | <10 to 20 | mg/Nm3 | - |
Storage and transport of the coal blend | dust | <10 to 20 | mg/Nm3 | - |
Sorting and transportation of coke | dust | <10 | mg/Nm3 | - |
Pollution | Value | Unit |
---|---|---|
Benzene | 5 | µg/m3 |
PM10 | 40 | µg/m3 |
PM2.5 | 25 | µg/m3 |
BaP | 1 | ng/m3 |
NO2 | 40 | µg/m3 |
SO2 | 20 | µg/m3 |
No. | Conclusions Related to the Level of Emissions | |
---|---|---|
Conclusion No. | Proposed Emission Abatement Techniques | |
1. | 42. BAT for coal plants (coal preparation including crushing, pulverizing, grinding, and screening) | The techniques are designed to prevent or reduce dust emissions by using one or a combination of the following techniques:
|
2. | 43. BAT with regard to the storage and transport of a coal mix | The techniques are designed to prevent or reduce fugitive dust emissions by using one or a combination of the following techniques:
|
3. | 44. BAT with the aim of filling coke oven chambers using low emission filling systems | Generally speaking, the preferred types of filling are ‘smokeless’ charging or sequential charging with double ascension pipes or jumper pipes as all gases and dust are then removed in the coke oven gas treatment process.However, where gases are removed and treated outside the battery and independent of the raw gas purification process, the preferred method is to treat by efficiently trapping the gases and then incinerating them to reduce organic compounds, and using a bag filter to reduce particulate matter. |
4. | 46. BAT with regard to coke oven plants | They aim to abate emissions by achieving continuous and uninterrupted coke production using the following techniques:
|
5. | 48. BAT regarding sulfur content in coke oven gas (COG) | The techniques aim to reduce the sulfur content of the coke oven gas (COG) by using one of the following techniques:
|
6. | 49. BAT with regard to the firing of the coke oven | They aim to abate emissions by using the following techniques:
|
7. | 50. BAT with regards to coke pushing | They aim to abate dust emissions by using the following techniques:
|
8. | 51. BAT with regards to coke quenching | They aim to abate dust emissions by using one of the following techniques:
|
9. | 52. BAT with regard to the sorting and transporting of coke | They aim to prevent or abate dust emissions by using a combination of the following techniques:
|
10. | 56. BAT with regard to pretreated wastewater from the coking process and coke oven gas (COG) treatment | They aim to use biological wastewater treatment with integrated nitrification / denitrification steps. |
Conclusions related to technology | ||
1. | 45. BAT with regard to coking is to degas the coal blend as much as possible. | |
2. | 47. BAT with regard to the coal by-product plant | They aim to minimize fugitive gas emissions by using the following techniques:
|
3. | 53. BAT is to minimize the amount of quenching water and reuse it as much as possible. | |
4. | 54. BAT is to avoid reusing process water with a significant organic content (e.g., raw coke oven wastewater, wastewater with a high hydrocarbon content, etc.) as quenching water. | |
5. | 55. BAT is to pretreat wastewater from the coking process and coke oven gas (COG) treatment before discharge to the wastewater treatment plant [25] | by using one or a combination of the following techniques:
|
6. | 57. BAT is to recycle production residues, such as tar and residues from coal by-product plants, as well as excess sludge from the wastewater treatment plant to the coal feed of the coking plant. | |
7. | 58. BAT is to use coke oven gas (COG) as a fuel or reducing agent or for the production of chemicals. |
No. | Scope of the Scenario | Description |
---|---|---|
1. | Construction of 5 new batteries and dedusting plants, new charging cars and new quenching towers, desulfurization plant, dedusting of sorting and coal plants | A scenario without financial constraints, aimed at achieving the maximum environmental effect. Construction of all new facilities meeting the requirements of BAT conclusions. |
2. | Partial renovation of coke oven heads and the adjustment, replacement of all doors using the original solution, sealing of charging and technological holes, inertial separator. | A scenario involving activities often used with limited financial resources. Renovation works that do not meet the requirements of BAT conclusions. Reducing the environmental burden to a minimum extent. |
3. | Construction of 2 new batteries 1,5, partial renovation of battery heads 2,3,4 with adjustment, replacement of the door using the original solution of batteries 2,3,4, sealing of charging and technological holes, inertial separator | A scenario covering both renovation and investment activities in new facilities. The solution is often used in multi-battery facilities. Combining investments with ongoing renovation works in order to gradually meet the requirements of BAT conclusions and abate the impact. |
4. | Construction of 3 new batteries 1,5,2 | The scenario involves the construction of 3 new batteries without any action on other facilities. It is a quick check of the degree of limitation of plants when investing in the construction of new facilities. This type of solutions is rarely used in practice due to the high investment costs in the absence of meeting the BAT conclusions and the minimum ecological effect. |
5. | Construction of 3 new batteries 1,5,2, partial renovation of heads 3,4, replacement of the door using the original solution of batteries 3,4 | A scenario aimed at checking the degree of emission abatement by combining investment works in new batteries and renovation works on the other two using original solutions. Activities focused on the abatement of emissions from the coking process and assessment of the degree of reduction of the plant burden. |
6. | Construction of 3 new batteries 1,5,2, partial renovation of battery heads 3,4, door of new construction batteries 3,4 | The scenario in relation to scenario 5 is enriched with new solutions during renovation works. Activities focused on the abatement of emissions from the coking process. This solution is rarely used in plants.The scenario is aimed at a quick assessment of the degree of emission decrease through actions at selected facilities. |
7. | Partial renovation of battery heads 1,2,3,4,5, door of new construction batteries 1,2,3,4,5 | The scenario aimed at the maximum abatement of fugitive emissions from the coking process using only renovation works. This type of renovation work is often used on facilities with limited financial resources. |
8. | Construction of 3 new batteries 1,5,2, partial renovation of heads 3,4, door of new construction batteries 3,4, new charging car at batteries 1,5,2, dedusting system at batteries 1,5,2 | The scenario comprehensively combines renovation activities and the construction of new facilities. Including activities in the pushing and filling processes in this scenario has a significant impact on increasing the ecological effect and reducing the impact of the plant on air quality. |
9. | Partial renovation of battery heads 1,2,3,4,5, door of new construction of batteries 1,2,3,4,5, new charging car at batteries 1,2,3,4,5, dedusting system at batteries 1,2,3,4,5 | The scenario aims to determine the degree of reduction of the environmental impact of the plant by carrying out renovation works on the batteries with investment in new equipment during the pushing and filling process. The scenario aims to maximize the ecological effect of the coking, filling, and pushing processes with relatively low financial expenditures |
10. | Partial renovation of battery heads 1,2,3,4,5, door of new construction batteries 1,2,3,4,5, new charging car at batteries 1,2,3,4,5, dedusting system at batteries 1,2,3,4,5, desulfurization plant, new quenching towers | The scenario in relation to scenario 9 was enriched with investments requiring large financial expenditures, such as the construction of a coke oven gas desulfurization plant and new quenching towers. |
Criterion | Economic | Technological | Environmental | |||
---|---|---|---|---|---|---|
Scenario | Annual cost of the techniques used (PLN/year) | Meeting the BAT conclusions (%) | Number of points with exceedances outside the coking plant | |||
BaP * | SO2 | PM10 | NO2 | |||
baseline | - | 6.25 | 102 | 3 | 0 | 0 |
1. | 73,577,500.00 | 100 | 0 | 0 | 0 | 0 |
2. | 7,894,500.00 | 25 | 60 | 1 | 0 | 0 |
3. | 21,203,366.67 | 31.2 | 36 | 1 | 0 | 0 |
4. | 24,000,000.00 | 25 | 51 | 2 | 0 | 0 |
5. | 26,693,333.33 | 26.2 | 25 | 1 | 0 | 0 |
6. | 28,240,000.00 | 28.7 | 12 | 1 | 0 | 0 |
7. | 10,600,000.00 | 27.5 | 24 | 1 | 0 | 0 |
8. | 32,758,700.00 | 47.5 | 8 | 1 | 0 | 0 |
9. | 18,131,166.67 | 46.2 | 18 | 1 | 0 | 0 |
10. | 40,777,833.33 | 71.2 | 18 | 0 | 0 | 0 |
Selection Criterion | Scenarios | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
Environmental | 0.450 | 0.000 | 0.180 | 0.068 | 0.270 | 0.360 | 0.270 | 0.387 | 0.315 | 0.315 |
Economic | 0.000 | 0.300 | 0.237 | 0.225 | 0.213 | 0.207 | 0.287 | 0.186 | 0.252 | 0.147 |
Technical | 0.250 | 0.000 | 0.020 | 0.000 | 0.004 | 0.012 | 0.008 | 0.075 | 0.070 | 0.153 |
Total assessment | 0.700 | 0.300 | 0.437 | 0.292 | 0.487 | 0.579 | 0.565 | 0.648 | 0.637 | 0.614 |
Ranking | 1 | 9 | 8 | 10 | 7 | 5 | 6 | 2 | 3 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Telenga-Kopyczyńska, J.; Jonek-Kowalska, I. Algorithm for Selecting Best Available Techniques in Polish Coking Plants Supporting Multi-Criteria Investment Decisions in European Environmental Conditions. Energies 2021, 14, 2631. https://doi.org/10.3390/en14092631
Telenga-Kopyczyńska J, Jonek-Kowalska I. Algorithm for Selecting Best Available Techniques in Polish Coking Plants Supporting Multi-Criteria Investment Decisions in European Environmental Conditions. Energies. 2021; 14(9):2631. https://doi.org/10.3390/en14092631
Chicago/Turabian StyleTelenga-Kopyczyńska, Jolanta, and Izabela Jonek-Kowalska. 2021. "Algorithm for Selecting Best Available Techniques in Polish Coking Plants Supporting Multi-Criteria Investment Decisions in European Environmental Conditions" Energies 14, no. 9: 2631. https://doi.org/10.3390/en14092631
APA StyleTelenga-Kopyczyńska, J., & Jonek-Kowalska, I. (2021). Algorithm for Selecting Best Available Techniques in Polish Coking Plants Supporting Multi-Criteria Investment Decisions in European Environmental Conditions. Energies, 14(9), 2631. https://doi.org/10.3390/en14092631