Space Redevelopment of Old Landfill Located in the Zone between Urban and Protected Areas: Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of the Study Site and Its Location
2.2. Monitoring of Existing Vegetation Cover
2.3. Methodology of Statistical Processing
3. Results
3.1. Project of Object Development
3.2. Geotechnical Aspects of Slope Stability
3.3. Communication Premises of Territorial Development
3.4. Functional, Infrastructural and Compositional Relationships with the Surroundings
3.5. Monitoring Results of the Existing Vegetation
3.6. Local Plant Species which May Be Used for Landfill Remediation
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Esmaeilian, B.; Wang, B.; Lewis, K.; Duarte, F.; Ratti, C.; Behdad, S. The future of waste management in smart and sustainable cities: A review and concept paper. Waste Manag. 2018, 81, 177–195. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.J.; Anagnostopoulos, T.; Zaslavsky, A.; Behdad, S. A stochastic optimization framework for planning of waste collection and value recovery operations in smart and sustainable cities. Waste Manag. 2018, 78, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Grzesiak, K.; Malinowski, M. Life Cycle Assessment of Mechanical–Biological Treatment of Mixed Municipal Waste. Environ. Eng. Sci. 2017, 34, 207–220. [Google Scholar] [CrossRef]
- Liu, H.; Yang, P.; Peng, Y.; Li, L.; Liu, G.; Wang, X.; Peng, X. Pollution in the interflow from a simple landfill in a mountainous and hilly area in Southwest China. Sci. Total Environ. 2021, 793, 148656. [Google Scholar] [CrossRef]
- Vaverková, M.D. Impact Assessment of the Municipal Solid landfill on Environment: A Case Study. Acta Sci. Pol. Archit. 2019, 18, 11–20. [Google Scholar] [CrossRef]
- Addanki, C.; Venkataraman, H. Greening the economy: A review of urban sustainability measures for developing new cities. Sustain. Cities Soc. 2017, 32, 1–8. [Google Scholar] [CrossRef]
- Lynch, K. The Image of the City; MIT Press: Cambridge, MA, USA, 1960. [Google Scholar]
- Ibrahim, M.; El-Zaarta, A.; Adams, C. Smart sustainable cities roadmap: Readiness for transformation towards urban sustainability. Sustain. Cities Soc. 2018, 37, 530–540. [Google Scholar] [CrossRef] [Green Version]
- Monfaredzadeh, T.; Berardi, U. Beneath the smart city: Dichotomy between sustainability and competitiveness. Int. J. Sustain. Build. Technol. Urban Dev. 2015, 6, 140–156. [Google Scholar] [CrossRef]
- Negre, E.; Rosenthal-Sabroux, C.; Gasco, M. A knowledge-based conceptual vision of the smart city. In Proceedings of the 48th Hawaii International Conference on System Science, Kauai, HI, USA, 5–8 January 2015; pp. 2317–2325. [Google Scholar]
- Plieninger, T.; Draux, H.; Fagerholm, N.; Bieling, C.; Bürgi, M.; Kizos, T.; Kuemmerle, T.; Primdahl, J.; Verburg, P.H. The driving forces of landscape change in Europe: A systematic review of the evidence. Land Use Policy 2016, 57, 204–214. [Google Scholar] [CrossRef] [Green Version]
- Sokolov, A.; Veselitskaya, N.; Carabias, V.; Yildirim, O. Scenario-based identification of key factors for smart cities development policies. Technol. Forecast. Soc. Chang. 2019, 148, 119729. [Google Scholar] [CrossRef]
- Vijayan, D.S.; Sivaruriyan, A.; Thattil, S.J. Evaluation of ferrock: A greener substitute to cement. Mater. Today Proc. 2019, 22, 781–787. [Google Scholar] [CrossRef]
- Pardo-Bosch, F.; Aguado, A.; Pino, M. Holistic model to analyze and prioritize urban sustainable buildings for public services. Sustain. Cities Soc. 2019, 4, 227–236. [Google Scholar] [CrossRef]
- Długoński, A. Recreational development of old landfill: The case study of Górka Rogowska landfill in Łódź City, Poland. Detritus 2018, 2, 155–162. [Google Scholar] [CrossRef]
- Przydatek, G.; Kochanek, A.; Basta, M. Analysis of changes in municipal waste management at the county level. J. Ecol. Eng. 2017, 18, 72–80. [Google Scholar] [CrossRef] [Green Version]
- Przydatek, G. Waste Management in Selected National Parks—A Review. J. Ecol. Eng. 2019, 20, 14–22. [Google Scholar] [CrossRef]
- Malinowski, M.; Łukasiewicz, M.; Famielec, S.; Nowińska, K. Analysis of changes in fees for the collection and management of municipal waste as regards the efficiency of waste segregation. Econ. Environ. 2019, 69, 24–41. [Google Scholar]
- Tang, C.-S.; Paleologos, E.K.; Vitone, C.; Du, Y.-J.; Li, J.-S.; Jiang, N.-J.; Deng, Y.-F.; Chu, J.; Shen, Z.; Koda, E.; et al. Environmental Geotechnics: Challenges and Opportunities in the Post COVID-19 World. Environ. Geotech. 2021, 8, 172–192. [Google Scholar] [CrossRef]
- Grzesik, K.; Malinowski, M. Life cycle assessment of refuse-derived fuel production from mixed municipal waste. Energy Sources Part A-Recovery Util. Environ. Eff. 2016, 38, 3150–3157. [Google Scholar] [CrossRef]
- Grudziecki, J.; Buachoom, P. The Landscape Architect’s Guide to the World of Solid Waste; Swedish University of Agricultural Sciences: Alnarp, Sweden, 2016. [Google Scholar]
- Ayalon, O.; Becker, N.; Shani, E. Economic aspects of the rehabilitation of the Hiriya landfill. Waste Manag. 2005, 26, 1313–1323. [Google Scholar] [CrossRef]
- Lame, J.A. A Recycled Landscape: The Transformation of a Former Landfill; University of Manitoba: Winnipeg, MB, USA, 2004. [Google Scholar]
- Ede, B. The Stockley park project. Landsc. Des. 1990, 187, 42–47. [Google Scholar]
- Krohe, J. Reclamation initiatives. Landsc. Archit. 1989, 79, 38–44. [Google Scholar]
- Kissida, J.E., Jr. Turning a former landfill into a community park: A case study. In Proceedings of the Sardinia 91, Third International Landfill Symposium, Sardinia, Italy, 14–18 October 1991; Volume 2, pp. 1341–1346. [Google Scholar]
- Finch, H.; Bradshaw, T. A soft future for refuse disposal sites. Landsc. Des. 1990, 191, 36–39. [Google Scholar]
- Nochian, A.; Tahir, O.M.; Maulan, S.; Mikaili, A.R. A Review of Systematic Approach for Sustainable Redevelopment of a Closed Landfill Site. J. Teknol. 2016, 78, 299–307. [Google Scholar] [CrossRef] [Green Version]
- Ezyske, C.; Deng, Y. Landfill Management and Remediation Practices in New Jersey, Montclair, New Jersey, USA. In Management of Organic Waste; InTechOpen: London, UK, 2012. [Google Scholar]
- Kjeldsen, P.; Barlaz, M.A.; Rooker, A.P.; Baun, A.; Ledin, A.; Christensen, T.H. Present and Long-Term Composition of MSW Landfill Leachate: A Review. Crit. Rev. Environ. Sci. Technol. 2002, 32, 297–336. [Google Scholar] [CrossRef]
- Syms, P. Redeveloping Brownfield Land The Decision-Making Process. J. Prop. Invest. Financ. 2006, 17, 481–500. [Google Scholar] [CrossRef]
- Scharff, H.; Van Zomeren, A.; Van der Sloot, H.A. Landfill Sustainability and Aftercare Completion Criteria. Waste Manag. Res. 2011, 29, 30–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribic, I. Sustainable redevelopment of hazardous waste landfills–the hazardous waste landfill of Sovjak (Rijeka, Croatia) as case study. Nat. Croat. 2008, 17, 375–384. [Google Scholar]
- Thornton, G.; Franz, M.; Edwards, D.; Pahlen, G.; Nathanail, P. The challenge of sustainability: Incentives for brownfield regeneration in Europe. Environ. Sci. Policy 2007, 10, 116–134. [Google Scholar] [CrossRef]
- Barr, E.L. More Than an Eyesore: Redefining Urban Wastelands through an Integrated Natural Systematic Design Approach. Master’s Thesis, University of Illinois at Urbana-Champaign, Urbana, IL, USA, 2015. [Google Scholar]
- Laner, D.; Cres, M.; Scharf, H.; Morris, J.W.F.; Barlaz, M.A. A review of approaches for the long-term management of municipal solid waste landfills. Waste Manag. 2012, 32, 498–512. [Google Scholar] [CrossRef]
- Misgav, A.; Perl, N.; Avnimelech, Y. Selecting a compatible open space use for a closed landfill site. Landsc. Urban Plan. 2001, 55, 95–111. [Google Scholar] [CrossRef]
- McBean, E.A.; Rovers, F.A.; Farquhar, G.J. Solid Waste Landfill Engineering and Design; Prentice Hall: Englewood Cliffs, NJ, USA, 1995. [Google Scholar]
- Simmons, E. Means to restore. Landsc. Des. 1993, 219, 15–18. [Google Scholar]
- Griswold, M. The landfill’s progress. Landsc. Archit. 1993, 83, 78–81. [Google Scholar]
- Engler, M. Waste Landscapes: Permissible Metaphors in Landscape Architecture. Landsc. J. 1995, 14, 11–25. [Google Scholar] [CrossRef]
- Czerniak, J.; Hargreaves, G. Large Parks; Princeton Architectural Press: New York, NY, USA, 2007. [Google Scholar]
- Gabrys, J. Digital Rubbish: A Natural History of Electronics; U of M Digt Cult Books: Ann Arbor, MI, USA, 2013. [Google Scholar]
- Thaïsa, W. Landscapes of industrial excess: A thick sections approach to Gas Works Park. J. Landsc. Archit. 2013, 8, 28–39. [Google Scholar]
- Rybak-Niedziolka, K. The city as a landscape. In Monograph; Pan, K., Ed.; T.CXCI: Warsaw, Poland, 2018; p. 213. ISBN 978-83-63563-62-2. (In Polish) [Google Scholar]
- Maiti, A.; Zhangb, Q.; Sannigrahi, S.; Pramanik, S.; Chakraborti, S.; Cerda, A.; Pilla, F. Exploring spatiotemporal effects of the driving factors on COVID-19 incidences in the contiguous United States. Sustain. Cities Soc. 2021, 68, 102784. [Google Scholar] [CrossRef]
- Paital, B. Nurture to nature via COVID-19, a self-regenerating environmental strategy of environment in global context. Sci. Total Environ. 2020, 729, 139088. [Google Scholar] [CrossRef] [PubMed]
- Salama, A. Coronavirus questions that will not go away: Interrogating urban and socio-spatial implications of COVID-19 measures. Emerald Open Res. 2020, 85, 2–14. [Google Scholar] [CrossRef] [Green Version]
- D’alessandro, D.; Gola, M.; Appolloni, L.; Dettori, M.; Fara, G.M.; Rebecchi, A.; Settimo, G.; Capolongo, S. COVID-19 and living space challenge. Well-being and public health recommendations for a healthy, safe, and sustainable housing. Acta Biomed. 2020, 91, 61–75. [Google Scholar] [CrossRef] [PubMed]
- Emmanuel, U.; Osondu, E.D.; Kalu, K.C. Architectural design strategies for infection prevention and control (IPC) in health-care facilities: Towards curbing the spread of COVID-19. J. Environ. Health Sci. Eng. 2020, 18, 1699–1707. [Google Scholar] [CrossRef]
- Eykelbosh, A. COVID-19 Precautions for Multi-Unit Residential Buildings; National Collaborating Centre for Environmental Health: Winnipeg, MB, Canada, 2020. [Google Scholar]
- Megahed, N.A.; Ghoneim, E.M. Antivirus-built environment: Lessons learned from Covid-19 Pandemic. Sustain. Cities Soc. 2020, 61, 102350. [Google Scholar] [CrossRef] [PubMed]
- Adamcová, D. Comparison of technical methods of securing closed landfills in Chech Republic and Poland. Acta Sci. Pol. Archit. 2019, 18, 61–71. [Google Scholar] [CrossRef]
- Hoefer, W.; Gallagher, F.; Hyslop, T.; Wibbelt, T.J.; Ravi, B. Environmental reviews and case studies: Unique landfill restoration designs increase opportunities to create urban open space. Environ. Pract. 2016, 18, 106–115. [Google Scholar] [CrossRef]
- Koda, E.; Osiński, P.; Kołanka, T. Flow numerical modeling for efficiency assessment of vertical barriers in landfills. In Coupled Phenomena in Environmental Geotechnics; Manassero, M., Dominijanni, A., Foti, S., Musso, G., Eds.; CRC Press: London, UK, 2013; pp. 693–698. [Google Scholar]
- Gastil, R.W.; Ryan, Z. (Eds.) Open New Design for Public Space; Van Alen Institute: New York, NY, USA, 2004. [Google Scholar]
- Uzzell, D.; Pol, E.; Badenas, D. Place identification, social cohesion, and enviornmental sustainability. Environ. Behav. 2002, 26–53. [Google Scholar] [CrossRef] [Green Version]
- Wejchert, K. Elements of the Urban Composition; Arkady: Warsaw, Poland, 1976. [Google Scholar]
- Tey, J.S.; Goh, K.C.; Ang, P.S.E. Sustainable Impact of Landfill Siting towards Urban Planning in Malaysia. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2015; Volume 245, p. 052052. Available online: https://ur.booksc.eu/book/68329402/2e86bf (accessed on 20 July 2021).
- Moodley, L.; Winn, R.; Parkin, J. Buffer Zones: The Long Term Interface. Landfill Conference Proceedings, Durban, South Africa. 2011. Available online: http://www.landfillconservancies.com/moodley-et-al-lig-2011-08-01-lm.pdf (accessed on 20 July 2021).
- Koda, E.; Kiersnowska, A.; Kawalec, J.; Osiński, P. Landfill slope stability improvement incorporating reinforcements in reclamation process applying Observational Method. Appl. Sci. 2020, 10, 1572. [Google Scholar] [CrossRef] [Green Version]
- Pladias. Department of Botany and Zoology Faculty of Science Masaryk University. Database of the Czech Flora and Vegetation. 2020. Available online: https://pladias.cz/en/ (accessed on 20 July 2021).
- Winkler, J.; Malovcová, M.; Adamcová, D.; Ogrodnik, P.; Pasternak, G.; Zumr, D.; Kosmala, M.; Koda, E.; Vaverková, M.D. Significance of Urban Vegetation on Lawns Regarding the Risk of Fire. Sustainability 2021, 13, 11027. [Google Scholar] [CrossRef]
- Koda, E.; Winkler, J.; Wowkonowicz, P.; Černý, M.; Kiersnowska, A.; Pasternak, G.; Vaverková, M.D. Vegetation changes as indicators of landfill leachate seepage locations: Case study. Ecol. Eng. 2022, 174, 106448. [Google Scholar] [CrossRef]
- Ter Braak, C.J.F.; Šmilauer, P. Canoco Reference Manual and User’s Guide: Software for Ordination (Version 5.0); Microcomputer Power: Ithaca, NY, USA, 2012. [Google Scholar]
- Wu, X.; Yongmei, L.; Zhou, S.; Chen, L.; Bing, X. Impact of climate change on human infectious diseases: Empirical evidence and human adaptation. Environ. Int. 2016, 86, 14–23. [Google Scholar] [CrossRef] [Green Version]
- The World Health Organization. Infection Prevention and Control. 2020. Available online: http://www.who.int (accessed on 23 May 2020).
- Whitehand, J.W.R.; Larkham, P.J. Urban Landscapes—International Perspectives; Routledge: New York, NY, USA, 2003. [Google Scholar]
- Neufert, E. Architect’s Data, 5th ed.; John Wiley and Sons Ltd.: Hoboken, NJ, USA, 2019. [Google Scholar]
- Journal of Laws. Regulation of the Minister of Development and Technology of 21.12.2020 on the technical conditions to be met by buildings and their location (Dz.U. 2020, pos. 2351) (In Polish). 2020. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20200002351 (accessed on 20 July 2021).
- Journal of Laws. Regulation of the Minister of Infrastructure of 2.03.1999 on technical conditions to be met by public roads and their location (Dz.U. 1999, No. 43, pos. 430) (In Polish). 1999. Available online: http://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=wdu19990430430 (accessed on 20 July 2021).
- Journal of Laws. Construction Law of 7.07.1994 (Dz.U. 1994, No. 89, pos. 414, as amended) (In Polish). 1994. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU19940890414 (accessed on 20 July 2021).
- Vaverková, M.D.; Elbl, J.; Voběrková, S.; Koda, E.; Adamcová, D.; Gusiatin, M.Z.; Al Rahman, A.; Radziemska, M.; Mazur, Z. Composting versus mechanical–biological treatment: Does it really make a difference in the final product parameters and maturity. Waste Manag. 2020, 106, 173–183. [Google Scholar] [CrossRef]
- Mohammad, A.; Osinski, P.; Koda, E.; Singh, D.N. A Case Study on Establishing the State of Decomposition of Municipal Solid Waste in a Bioreactor Landfill in India. Waste Manag. Res. J. A Sustain. Circ. Econ. 2021, 39, 1375–1388. [Google Scholar] [CrossRef]
- Xiang, X.Y.; Chen, L.; Kueppers, S.; Zhang, M.H.; Tang, H.; Li, Z.Y.; Li, Y.Q. Turn brownfield into green space-eco-regeneration of closed landfill. Adv. Mater. Res. 2011, 414, 63–67. [Google Scholar] [CrossRef]
- Álvarez-López, V.; Zappelini, C.; Durand, A.; Chalo, M. Pioneer trees of Betula pendula at a red gypsum landfill harbour specific structure and composition of root-associated microbial communities. Sci. Total Environ. 2020, 726, 138530. [Google Scholar] [CrossRef] [PubMed]
- Pang, C.C.; Lo, W.F.; Yan, R.W.M.; Haum, B.C.H. Plant community composition on landfill sites after multiple years of ecological restoration. Landsc. Res. 2021, 45, 458–469. [Google Scholar] [CrossRef]
- Manfredi, P.; Cassinari, C.; Meloni, F.; Stragliati, L.; Trevisan, M.; Giupponi, L. Trees and shrubs monitoring using an ecological approach: The conclusion of the restoration project of Borgotrebbia landfill (Northern Italy). Environ. Anal. Ecol. Stud. 2019, 6. [Google Scholar] [CrossRef]
- Rebele, F.; Lehmann, C. Restoration of a landfill site in Berlin, Germany by spontaneous and directed succession. Restor. Ecol. 2002, 10, 340–347. [Google Scholar] [CrossRef]
- Wong, J.T.-F.; Chen, X.-W.; Mo, W.-Y.; Man, Y.-B.; Ng, C.W.-W.; Wong, M.-H. Restoration of Plant and Animal Communitiesin a Sanitary Landfill: A 10-year Case Study in Hong Kong. Land Degrad. Dev. 2015, 27, 490–499. [Google Scholar] [CrossRef]
- Cerdà, A.; Rodrigo-Comino, J. Regional Farmers’ Perception and Societal Issues in Vineyards Affected by High Erosion Rates. Land 2021, 10, 205. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, J.M.; Bai, Z.K.; Lv, C.J. Effects of vegetation on runoff and soil erosion on reclaimed land in an opencast coal-mine dump in a loess area. Catena 2015, 128, 44–53. [Google Scholar] [CrossRef]
- Wang, J.; Wang, H.; Cao, Y.; Bai, Z.; Qin, Q. Effects of soil and topographic factors on vegetation restoration in opencast coal mine dumps located in a loess area. Sci. Rep. 2016, 6, 22058. [Google Scholar] [CrossRef] [Green Version]
- Wong, C.T.; Leung, M.K.; Wong, M.K.; Tang, W.C. Afteruse development of former landfill sites in Hong Kong. J. Rock Mech. Geotech. Eng. 2013, 5, 443–451. [Google Scholar] [CrossRef]
- Kotovicová, J.; Toman, F.; Vaverková, M.D.; Stejskal, B. Evaluation of Waste Landfills’ Impact on the Environment Using Bioindicator’s. Pol. J. Environ. Stud. 2011, 20, 371–377. [Google Scholar]
- Artuso, A.; Cossu, E.; Stegmann, R. Afteruse of Landfills. Solid Waste Landfilling. Concepts Processes Technol. 2018, 915–936. [Google Scholar] [CrossRef]
- Chan, Y.S.G.; Chu, L.M.; Wong, M.H. Influence of landfill factors on plants and soil fauna—An ecological perspective. Environ. Pollut. 1997, 97, 39–44. [Google Scholar] [CrossRef]
- Weng, Y.C.; Fujiwara, T.; Houng, H.J.; Sun, C.-H.; Li, W.-Y.; Kuo, Y.-W. Management of landfill reclamation with regard to biodiversity preservation, global warming mitigation and landfill mining: Experiences from the Asia–Pacific region. J. Clean. Prod. 2015, 104, 364–373. [Google Scholar] [CrossRef]
- Latz, T. Rehabilitation of the Hiriya Landfill, Tel Aviv; Latz and Partner Landscape Architecture Urban Planning: Kranzberg, Germany, 2018. [Google Scholar]
- Krzykawska, K. A landfill peninsula as an experimental use space. A case study of Albany Bulb. Acta Sci. Pol. Archit. 2019, 18, 51–60. [Google Scholar] [CrossRef]
- Sutton, S.A. Urban Revitalization in the United States. Policiesand Practices; Final Report; Columbia University: New York, NY, USA, 2008. [Google Scholar]
- Koolhaas, R.; Mau, B. S. M, L, XL; The Monacelli Press: Rotterdam, The Netherlands, 1997. [Google Scholar]
- Kosiński, W. Human-Values-Beauty City-Architect-Composition. Tech. Trans. Archit. 2014, 111(2-A), 121–193. [Google Scholar]
- Pasik, T.; Chalecki, M.; Koda, E. Analysis of embedded retaining wall using the subgrade reaction method. Studia Geotechnica et Mechanica 2015, 37, 59–73. [Google Scholar] [CrossRef] [Green Version]
Type of Waste | w [%] | γ [kN/m3] | φ′ [°] | c′ [kPa] | Testing Methods |
---|---|---|---|---|---|
Old waste | 33–45 | 14.0 | 26 | 20 | back-analysis, geotechnical tests (CPT, WST, DPH) |
Mixed waste | 23–32 | 12.0 | 25 | 23 | trial loading, geotechnical tests (CPT, WST, DPH) |
Parameter | Unit | Mean | Min. | Max. | Std. Dev. |
---|---|---|---|---|---|
pH | - | 7.80 | 7.10 | 8.89 | 0.96 |
EC | mS/cm | 34.57 | 5.00 | 68.70 | 32.09 |
OM | % | 34.60 | 32.70 | 36.40 | 1.85 |
w | % | 38.47 | 31.10 | 45.80 | 7.35 |
Cu | mg/kg d.m. | 112.83 | 33.20 | 252.00 | 120.94 |
Cr | mg/kg d.m. | 19.23 | 11.10 | 35.00 | 13.66 |
Cd | mg/kg d.m. | 6.30 | 2.80 | 12.10 | 5.06 |
Zn | mg/kg d.m. | 659.60 | 230.20 | 1335.00 | 592.06 |
Ni | mg/kg d.m. | 29.77 | 5.40 | 67.00 | 32.75 |
Pb | mg/kg d.m. | 199.53 | 21.00 | 556.00 | 308.71 |
Groups of Plant Types | TM_I | TM_II | TM_III |
---|---|---|---|
Trees and shrubs | 3 | 6 | 8 |
Grasses | 15 | 12 | 10 |
Perennial green plants | 17 | 23 | 20 |
Annual green plants | 28 | 28 | 20 |
Plant Category | Occurrence | |
---|---|---|
Existing | Potential | |
1—deciduous trees and tall shrubs with height h exceeding 2 m | Acer negundo, Fraxinus excelsior, Populus nigra, Populus tremula, Robinia pseudoacacia | Acer platanoides (convar. Royal Red), Acer campestre |
2—Deciduous shrubs with height h between 0.5–0.7 and 2 m | Prunus cerasifera, Prunus spinosa, Salix alba, Sambucus nigra | Sambucus racemosa, Salix sp., Rosa canina, Corylus avellana (convar. Purpurea), Acer palmatum, Syringa vulgaris |
3—deciduous herbs with height h up to 0.5–0.7 m | Achillea millefolium, Dipsacus fullonum, Melilotus albus, Melilotus officinalis, Oenother abiennis, Onopor dumacanthium, Phragmites australis, Silene latifolia, Solidago canadensis, Tanacetum vulgare, Verbascum thapsus | Hydrangea macrophylla |
4—evergreen (coniferous or deciduous) trees and tall shrubs with height h exceeding 2 m, most preferably columnar | Platycladus orientalis | |
5—evergreen (coniferous or deciduous) shrubs with height h between 0.5–0.7 and 2 m. | Taxus baccata, Juniperus communis | |
6—evergreen (coniferous or deciduous) plants with height h up to 0.5–0.7 m | Pinus mugo, Buxus sempervirens | |
7—Climbing plants | Calystegia sepium, Humulus lupulus | |
8—Lawn | Centaurea cyanus, Dactylis glomerata, Festuca pratensis, Festuca rubra, Lolium perenne, Lotus corniculats, Plantago major, Trifolium arvense, Trifolium pratense, Trifolium repens | xFestulolium |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koda, E.; Rybak-Niedziółka, K.; Winkler, J.; Černý, M.; Osiński, P.; Podlasek, A.; Kawalec, J.; Vaverková, M.D. Space Redevelopment of Old Landfill Located in the Zone between Urban and Protected Areas: Case Study. Energies 2022, 15, 146. https://doi.org/10.3390/en15010146
Koda E, Rybak-Niedziółka K, Winkler J, Černý M, Osiński P, Podlasek A, Kawalec J, Vaverková MD. Space Redevelopment of Old Landfill Located in the Zone between Urban and Protected Areas: Case Study. Energies. 2022; 15(1):146. https://doi.org/10.3390/en15010146
Chicago/Turabian StyleKoda, Eugeniusz, Kinga Rybak-Niedziółka, Jan Winkler, Martin Černý, Piotr Osiński, Anna Podlasek, Jacek Kawalec, and Magdalena Daria Vaverková. 2022. "Space Redevelopment of Old Landfill Located in the Zone between Urban and Protected Areas: Case Study" Energies 15, no. 1: 146. https://doi.org/10.3390/en15010146
APA StyleKoda, E., Rybak-Niedziółka, K., Winkler, J., Černý, M., Osiński, P., Podlasek, A., Kawalec, J., & Vaverková, M. D. (2022). Space Redevelopment of Old Landfill Located in the Zone between Urban and Protected Areas: Case Study. Energies, 15(1), 146. https://doi.org/10.3390/en15010146