A Study on the Harmonic Resonance during Energizing Primary Restorative Transmission Systems: Korean Power System Case †
Abstract
:1. Introduction
2. Harmonic Resonance during Power System Restoration
2.1. General Description of KEPCO Power System Restoration
2.2. Occurrence and Discrimination of Harmonic Resonant Overvoltage
- Transient over-voltage
- Self-excitation
- Sustained over-voltage by Ferranti effect
- Harmonic resonant over-voltage
2.3. The Interrelation between Harmonic Resonance and Equipment
2.3.1. Effects of Generator—Ideal/Practical Model
2.3.2. Effects of Transformer Saturation—Transformer Modeling
3. Countermeasure against Harmonic Resonant Overvoltage
- Case A: Delta connection of a transformer
- Case B: Energization of a transformer with loads that are connected previously
- Case C: Change in restoration path configuration (proposed method)
- Case D: Starting more generators for reducing high source impedance
3.1. Case A: Delta Connection of Transformer
3.2. Case B: Energization of Transformers with Damping Loads
3.3. Case C: Change in Restoration Path Configuration
3.4. Discussion on the Result and Proposals
4. Conclusions
Author Contributions
Funding & Acknowledgment
Conflicts of Interest
Abbreviations
RES | Renewable energy sources |
IBR | Inverter-based resources |
UFLS | Under-frequency load shedding |
IEEE | Institute of electrical and electronics engineers |
SRWG | Power system restoration working group |
H/P | Hydro power generator |
G/T | Gas turbine generator |
S/S | Substation |
T/L | Transmission line |
DS | Distribution substation |
KEPCO | Korea electric power corporation |
KPX | Korea power exchange |
References
- Wiser, R.H.; Mills, A.; Seel, J.; Levin, T.; Botterud, A. Impacts of Variable Renewable Energy on Bulk Power System Assets, Pricing, and Costs; Lawrence Berkeley National Lab (LBNL): Berkeley, CA, USA, 2017. [Google Scholar]
- Impram, S.; Nese, S.V.; Oral, B. Challenges of renewable energy penetration on power system flexibility: A survey. Energy Strategy Rev. 2020, 31, 100539. [Google Scholar] [CrossRef]
- Vaiman, M.; Bell, K.; Chen, Y.; Chowdhury, B.; Dobson, I.; Hines, P.; Papic, M.; Miller, S.S.; Zhang, P. Risk assessment of cascading outages: Methodologies and challenges. IEEE Trans. Power Syst. 2012, 27, 631–641. [Google Scholar] [CrossRef]
- Kumar, G.V.B.; Sarojini, R.K.; Palanisamy, K.; Padmanaban, S.; Holm-Nielsen, J.B. Large Scale Renewable Energy Integration: Issues and Solutions. Energies 2019, 12, 1996. [Google Scholar] [CrossRef] [Green Version]
- Milano, F.; Dörfler, F.; Hug, G.; Hill, D.J.; Verbič, G. Foundations and challenges of low-inertia systems. In Proceedings of the 2018 Power Systems Computation Conference (PSCC), Dublin, Ireland, 11–15 June 2018; pp. 1–25. [Google Scholar]
- Carreras, B.A.; Colet, P.; Reynolds-Barredo, J.M.; Gomila, D. Assessing Blackout Risk with High Penetration of Variable Renewable Energies. IEEE Access 2021, 9, 132663–132674. [Google Scholar] [CrossRef]
- Panteli, M.; Mancarella, P. The grid: Stronger, bigger, smarter: Presenting a conceptual framework of power system resilience. IEEE Power Energy Mag. 2015, 13, 58–66. [Google Scholar] [CrossRef]
- Ahsan, M.Q.; Chowdhury, A.H.; Ahmed, S.S.; Bhuyan, I.H.; Haque, M.A.; Rahman, H. Technique to develop auto load shedding and islanding scheme to prevent power system blackout. IEEE Trans. Power Syst. 2011, 27, 198–205. [Google Scholar] [CrossRef]
- Ancona, J.J. A framework for power system restoration following a major power failure. IEEE Trans. Power Syst. 1995, 10, 1480–1485. [Google Scholar] [CrossRef]
- Adibi, M.; Clelland, P.; Fink, L.; Happ, H.; Kafka, R.; Raine, J.; Scheurer, D.; Trefny, F. Power system restoration—A task force report. IEEE Trans. Power Syst. 1987, 2, 271–277. [Google Scholar] [CrossRef]
- Adibi, M.M.; Kafka, R.J. Power system restoration issues. IEEE Comput. Appl. Power 1991, 4, 19–24. [Google Scholar] [CrossRef]
- Adibi, M.M. Special consideration in power system restoration; The second working group report. IEEE Trans. Power Syst. 1994, 9, 15–21. [Google Scholar]
- Morin, G. Service restoration following a major failure on the hydro-quebec power system. IEEE Trans. Power Deliv. 1987, 2, 454–463. [Google Scholar] [CrossRef]
- Adibi, M.M.; Alexander, R.W.; Avra-Movic, B. Overvoltage control during restoration. IEEE Trans. Power Syst. 1992, 7, 1464–1470. [Google Scholar] [CrossRef]
- North American Electric Reliability Council (Operating Committee). Electric System Restoration, A Reference Document; NERC: Atlanta, GA, USA, 1993. [Google Scholar]
- Simburger, E.J.; Hubert, F.J. Low voltage bulk power system restoration simulation. IEEE Trans. Power Appar. Syst. 1981, 11, 4479–4484. [Google Scholar] [CrossRef]
- Delfino, B.; Denegri, G.B.; Invernizzi, M.; Morini, A.A.; Bonini, E.C.; Marconato, R.; Scarpellini, P. Black-start and restoration of a part of the Italian HV network: Modelling and simulation of a field test. IEEE Trans. Power Syst. 1996, 11, 1371–1379. [Google Scholar] [CrossRef]
- Fountas, N.A.; Hatziargyriou, N.D.; Orfanogiannis, C.; Tasoulis, A. Interactive long-term simulation for power system restoration planning. IEEE Trans. Power Syst. 1997, 12, 61–68. [Google Scholar] [CrossRef]
- Jain, H.; Seo, G.S.; Lockhart, E.; Gevorgian, V.; Kroposki, B. Blackstart of power grids with inverter-based resources. In Proceedings of the 2020 IEEE Power & Energy Society General Meeting (PESGM), Denver, CO, USA, 17–21 July 2020; pp. 1–5. [Google Scholar]
- Murinelli, P.P.; De Lorenci, E.V.; Zambroni, A.C.; Lo, K.L.; Lima Lopes, B.I. Robustness area technique developing guidelines for power system restoration. Energies 2017, 10, 99. [Google Scholar] [CrossRef] [Green Version]
- Abu Talib, D.N.; Mokhlis, H.; Abu Talip, M.S.; Naidu, K.; Suyono, H. Power system restoration planning strategy based on optimal energizing time of sectionalizing islands. Energies 2018, 11, 1316. [Google Scholar] [CrossRef] [Green Version]
- Thanomsat, N.; Plangklang, B.; Ohgaki, H. Analysis of Ferroresonance Phenomenon in 22 kV Distribution System with a Photovoltaic Source by PSCAD/EMTDC. Energies 2018, 11, 1742. [Google Scholar] [CrossRef] [Green Version]
- Manitoba HVDC Center. PSCAD/EMTDC User’s Manual; Manitoba HVDC Center: Winnipeg, MB, Canada, 1998. [Google Scholar]
- Shin, H.; Chae, S.H.; Kim, E.H. Design of microgrid protection schemes using PSCAD/EMTDC and ETAP programs. Energies 2020, 13, 5784. [Google Scholar] [CrossRef]
- Lee, H.J.; Lee, K.S.; Park, S.M.; Bae, J.C.; Song, I.J. Analysis of the harmonic resonance during energizing the primary restorative transmission systems. In Proceedings of the 2005 IEEE Russia Power Tech, St. Petersburg, Russia, 27–30 June 2005; pp. 1–5. [Google Scholar]
- Ketabi, A.; Sadeghkhani, I.; Feuillet, R. Using artificial neural network to analyze harmonic overvoltages during power system restoration. Eur. Trans. Electr. Power 2011, 21, 1941–1953. [Google Scholar] [CrossRef]
- Clinker, R.C. Harmonic voltages and currents in Y-and Delta-connected transformers. Trans. Am. Inst. Electr. Eng. 1914, 33, 723–733. [Google Scholar] [CrossRef]
- Jamali, M.; Mirzaie, M.; Asghar-Gholamian, S. Calculation and analysis of transformer inrush current based on parameters of transformer and operating conditions. Elektron. Ir Elektrotech. 2011, 109, 17–20. [Google Scholar] [CrossRef] [Green Version]
- Park, S.M.; Lee, K.S.; Bai, J.C.; Hwang, B.H.; Song, I.J.; Lee, N.H.; Lee, H.J. Development of New Algorithm for the Analysis of Self-Excitation in Primary Restorative Transmission Systems. Trans. Korean Inst. Electr. Eng. A 2005, 54, 117–121. [Google Scholar]
- Yoon, M.; Park, J.; Jang, G. A study of HVDC installation in Korean capital region power system. In Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012; pp. 1–5. [Google Scholar]
Sequence[s] | Operations | Remarks |
---|---|---|
0.0 | Generators start, energize no. 1 MTR Supply power to houseload | Houseload: 5% of Gen. Cap. |
5.0 | Energize the T/L line by no. 1 generator | |
7.0 | Energize DS Substation at no-load state | |
10.0 | Load pickup at DS substation | 2 [MVA] |
12.5 | Synchronization of no. 3 generator | |
15.0 | Load pickup at DS substation | 8 [MVA] |
21.5 | Synchronization of no. 2 generator | |
25.0 | Load pickup at DS substation | 10 [MVA] |
30.0 | Energize remaining transmission lines | |
40.0 | End of simulation |
Type | Result of Static Analysis | ||||
---|---|---|---|---|---|
Gen. No | Lim. of Q [MVAR] | Supply Q [MVAR] | Margin [MVAR] | Vtg. of Gen. kV | |
Primary T/L | 1 | 14.0 | 8.525 | 5.475 | 9.79 89.02 [%] |
2 | 13.7 | 6.257 | 7.443 | ||
3 | 27.9 | 15.907 | 11.993 | ||
Total | 55.6 | 30.689 | 24.911 |
Sequence[s] | Operations | Remarks |
---|---|---|
0.0 | Generators start energize no. 1 MTR Supply power to houseload | Houseload: 5% of Gen. Cap. |
0.0 | Load pickup on no load transformer at DS substation | 0.5, 1, 2 [MVA] |
5.0 | Energize T/L line by No. 1 generator | |
7.0 | Energize DS substation | |
12.5 | Synchronize no. 3 generator | |
15.5 | Synchronize no. 2 generator | |
20.0 | Load pickup at DS substation | 8 [MVA] |
25.0 | Load pickup at DS substation | 9.5, 9, 8 [MVA] |
30.0 | Energize remaining transmission lines | |
40.0 | End of simulation |
Summary | |||
---|---|---|---|
Case A | Case B | Case C | |
Harmonic resonance resolution | Possible | Possible | Possible |
Required action | Change the connection of the specified transformer | Pre-connect the damping load before transformer energization (2MVA) | Change the restoration path configuration (140% CP#1 T/L) |
Practical feasibility | None | None | Feasible |
Result of Simulation | |||
---|---|---|---|
Line length [km] | 0~7 | 7~48 | 48~ |
Harmonic resonance | Not occurred | Occurred | Not occurred |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, M.; Yu, W.; Oh, J.; Lee, H. A Study on the Harmonic Resonance during Energizing Primary Restorative Transmission Systems: Korean Power System Case. Energies 2022, 15, 290. https://doi.org/10.3390/en15010290
Yoon M, Yu W, Oh J, Lee H. A Study on the Harmonic Resonance during Energizing Primary Restorative Transmission Systems: Korean Power System Case. Energies. 2022; 15(1):290. https://doi.org/10.3390/en15010290
Chicago/Turabian StyleYoon, Minhan, Wonkeun Yu, Junghyun Oh, and Heungjae Lee. 2022. "A Study on the Harmonic Resonance during Energizing Primary Restorative Transmission Systems: Korean Power System Case" Energies 15, no. 1: 290. https://doi.org/10.3390/en15010290
APA StyleYoon, M., Yu, W., Oh, J., & Lee, H. (2022). A Study on the Harmonic Resonance during Energizing Primary Restorative Transmission Systems: Korean Power System Case. Energies, 15(1), 290. https://doi.org/10.3390/en15010290