Performance Analysis of Organic Rankine Cycle with the Turbine Embedded in a Generator (TEG)
Abstract
:1. Introduction
2. Thermodynamic Analysis of the ORC
- The system operates under steady-state conditions.
- The system is adiabatic with negligible heat losses.
- The pressure drop in the pipes is neglected.
- The mechanical efficiency of the system is neglected.
3. Design of the Turbine for the TEG
3.1. Concept of TEG
3.2. Turbine Design Procedure
3.2.1. Mean-Line Design Method
3.2.2. Velocity Triangle and Dimensionless Parameters
3.2.3. Turbine Loss Model
3.2.4. Flow Chart of the Turbine Design
4. Results and Discussion
4.1. Mean-Line Design Validation
4.2. Parametric Analysis
4.3. Thermal Efficiency of ORC
4.4. 3D Turbine Generator Assembly
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Blade chord length, m | |
Blade axial chord length, m | |
Specific total enthalpy, kJ/kg | |
Blade height, m | |
Mass flow rate (MFR), kg/s | |
P | Pressure, Pa |
Heat transfer rate, kW | |
Blade radius, m | |
S | Blade pitch, m |
T | Temperature, K |
Tangential velocity, m/s | |
Absolute velocity, m/s | |
Meridional velocity, m/s | |
W | Relative velocity, m/s |
W | Power, kW |
Y | Total pressure loss coefficient |
Greek Symbols | |
α | Absolute flow angle |
β | Relative flow angle |
η | Efficiency |
ξ | Degree of reaction |
σ | Blade solidity (C/S) |
τ | Tip clearance height, m |
φ | Flow coefficient |
ψ | Loading (work) coefficient |
ω | Angular velocity, 1/s |
Subscrips | |
1−4 | state point in ORC |
Carnot | |
Evaporation | |
Exergy | |
High | |
L | Low |
Mean value of the blade | |
Pump, profile loss | |
s | Isentropic, secondary loss |
t | Turbine |
TC | Tip clearance loss |
TE | Trailing edge |
th | Thermal |
0 | total |
1 | Inlet of the stator |
2 | Inlet of the rotor |
3 | Outlet of the rotor |
References
- Hung, T.C. Waste heat recovery of organic Rankine cycle using dry fluids. Energy Convers Manag. 2001, 42, 539–553. [Google Scholar] [CrossRef]
- Quoilin, S.; Lemort, V.; Lebrun, J. Experimental study and modeling of an Organic Rankine Cycle using scroll expander. Appl. Energy 2010, 87, 1260–1268. [Google Scholar] [CrossRef]
- Barse, K.A.; Mann, M.D. Maximizing ORC performance with optimal match of working fluid with system design. Appl. Eng. 2016, 100, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Wei, D.; Lu, X.; Lu, Z.; Gu, J. Performance analysis and optimization of organic Rankine cycle (ORC) for waste heat recovery. Energy Convers Manag. 2007, 48, 1113–1119. [Google Scholar] [CrossRef]
- Li, Y.R.; Wang, J.N.; Du, M.T. Influence of coupled pinch point temperature difference and evaporation temperature on performance of organic Rankine cycle. Energy 2012, 42, 503–509. [Google Scholar] [CrossRef]
- Wang, J.; Yan, Z.; Wang, M.; Li, M.; Dai, Y. Multi-objective optimization of an organic Rankine cycle (ORC) for low grade waste heat recovery using evolutionary algorithm. Energy Convers Manag. 2013, 71, 146–158. [Google Scholar] [CrossRef]
- Kang, S.H. Design and experimental study of ORC (organic Rankine cycle) and radial turbine using R245fa working fluid. Energy 2012, 41, 514–524. [Google Scholar] [CrossRef]
- Declaye, S.; Quoilin, S.; Guillaume, L.; Lemort, V. Experimental study on an open-drive scroll expander integrated into an ORC (Organic Rankine Cycle) system with R245fa as working fluid. Energy 2013, 55, 173–183. [Google Scholar] [CrossRef]
- Lazzaretto, A.; Manente, G. A new criterion to optimize ORC design performance using efficiency correlations for axial and radial turbines. Int. J. Thermo. 2014, 17, 192–200. [Google Scholar] [CrossRef] [Green Version]
- Al Jubori, A.M.; Al-Dadah, R.; Mahmoud, S. An innovative small-scale two-stage axial turbine for low-temperature organic Rankine cycle. Energy Convers Manag. 2017, 144, 18–33. [Google Scholar] [CrossRef]
- Al Jubori, A.M.; Al-Mousawi, F.N.; Rahbar, K.; Al-Dadah, R.; Mahmoud, S. Design and manufacturing a small-scale radial-inflow turbine for clean organic Rankine power system. J. Clean. Prod. 2020, 257, 120488. [Google Scholar] [CrossRef]
- Giovannelli, A.; Archilei, E.M.; Salvini, C. Two-Stage Radial Turbine for a Small Waste Heat Recovery Organic Rankine Cycle (ORC) Plant. Energies 2020, 13, 1054. [Google Scholar] [CrossRef] [Green Version]
- Peng, N.; Wang, E.; Zhang, H. Preliminary Design of an Axial-Flow Turbine for Small-Scale Supercritical Organic Rankine Cycle. Energies 2021, 14, 5277. [Google Scholar] [CrossRef]
- Hu, S.; Yang, Z.; Li, J.; Duan, Y. A Review of Multi-Objective Optimization in Organic Rankine Cycle (ORC) System Design. Energies 2021, 14, 6492. [Google Scholar] [CrossRef]
- Wang, E.H.; Zhang, H.G.; Fan, B.Y.; Ouyang, M.G.; Zhao, Y.; Mu, Q.H. Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery. Energy 2011, 36, 3406–3418. [Google Scholar] [CrossRef]
- Fernández-Guillamón, A.; Molina-García, Á.; Vera-García, F.; Almendros-Ibáñez, J.A. Organic Rankine Cycle Optimization Performance Analysis Based on Super-Heater Pressure: Comparison of Working Fluids. Energies 2021, 14, 2548. [Google Scholar] [CrossRef]
- Tournier, J.M.; El-Genk, M.S. Axial flow, multi-stage turbine and compressor models. Energy Convers Manag. 2010, 51, 16–29. [Google Scholar] [CrossRef]
- Da Lio, L.; Manente, G.; Lazzaretto, A. New efficiency charts for the optimum design of axial flow turbines for organic Rankine cycles. Energy 2014, 77, 447–459. [Google Scholar] [CrossRef]
- Da Lio, L.; Manente, G.; Lazzaretto, A. Predicting the optimum design of single stage axial expanders in ORC systems: Is there a single efficiency map for different working fluids? Appl. Energy 2016, 167, 44–58. [Google Scholar] [CrossRef]
- Moustapha, H.; Zelesky, M.F.; Baines, N.C.; Japikse, D. Axial and Radial Turbines; Concepts NREC: White River Junction, VT, USA, 2003. [Google Scholar]
- Wilson, D.G.; Korakianitis, T. The Design of High-Efficiency Turbomachinery and Gas Turbines; MIT Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Ainley, D.G.; Mathieson, G.C.R. A Method of Performance Estimation for Axial-Flow Turbines; Aeronautical Research Council: London, UK, 1951. [Google Scholar]
- Dunham, J.; Came, P.M. Improvements to the Ainley-Mathieson method of turbine performance prediction. J. Eng. Power 1970, 92, 252–256. [Google Scholar] [CrossRef]
- Craig, H.R.M.; Cox, H.J.A. Performance estimation of axial flow turbines. Proc. Inst. Mech. Eng. 1970, 185, 407–424. [Google Scholar] [CrossRef]
- Zhu, J.; Sjolander, S.A. Improved profile loss and deviation correlations for axial-turbine blade rows. In Proceedings of the Turbo Expo: Power for Land, Sea, and Air; ASME: Reno, NV, USA, 2005; Volume 47306, pp. 783–792. [Google Scholar]
- Kacker, S.C.; Okapuu, U. A mean-line prediction method for axial flow turbine efficiency. J. Eng. Power 1982, 104, 111–119. [Google Scholar] [CrossRef]
- Patdiwala, U.J.; Patel, H.C.; Parmar, P.K. A review on tip clearance flow and secondary flow losses in linear turbine cascade. J. Mech. Civ. Eng. 2014, 11, 33–37. [Google Scholar] [CrossRef]
- Dixon, S.L.; Hall, C. Fluid Mechanics and Thermodynamics of Turbomachinery; Butterworth-Heinemann: Oxford, UK, 2013. [Google Scholar]
- Rist, D. Influence of geometric effects on the aspect ratio optimization of axial turbine bladings. In Proceedings of the Turbo Expo: Power for Land, Sea, and Air; ASME: London, UK, 1978; Volume 79726, p. V01BT02A072. [Google Scholar]
- Gao, K.; Xie, Y.; Zhang, D. Effects of rotor solidity and leakage flow on the unsteady flow in axial turbine. Appl. Therm. Eng. 2018, 128, 926–939. [Google Scholar] [CrossRef]
- Simpson, A.T.; Spence, S.W.T.; Watterson, J.K. Numerical and experimental study of the performance effects of varying vaneless space and vane solidity in radial turbine stators. J. Turbomach. 2013, 135, 031001. [Google Scholar] [CrossRef]
- Zweifel, O. The spacing of turbomachine blading, especially with large angular deflection. Brown Boveri. Rev. 1945, 32, 436–444. [Google Scholar]
- Kofskey, M.G.; Nusbaum, W.J. Aerodynamic Evaluation of Two-Stage Axial-Flow Turbine Designed for Brayton-Cycle Space Power System; National Aeronautics and Space Administration: Washington, DC, USA, 1968.
- Smith, S.F. A simple correlation of turbine efficiency. Aeronaut. J. 1965, 69, 467–470. [Google Scholar] [CrossRef]
- Nagpurwala, Q.H. Hydraulic Turbine; PEMP RMD 2501; M.S. Ramaiah School of Advanced Studies: Bengaluru, India, 2016; pp. 1–70. [Google Scholar]
Working Fluid | Molecular Formula | Mol. Weight (g/mol) | Critical Temperature (K) | Critical Pressure (MPa) | GWP (100 yr) |
---|---|---|---|---|---|
R245fa | CF3CH2CHF2 | 134.05 | 427.16 | 3.651 | 1030 |
Parameter | Value |
---|---|
Working fluid | R245fa |
Mass flow rate [kg/s] | 2.02 |
Turbine inlet temperature [°C] | 80 |
Turbine inlet total pressure [MPa] | 0.7 |
Turbine rotor rotational speed [rpm] | 20,000 |
Heat source temperature [°C] | 90 |
Heat sink temperature [°C] | 20 |
Pump efficiency [-] | 0.75 |
Generator efficiency [-] | 0.95 |
Design Parameters | Value |
---|---|
Flow coefficient, φ [-] | 0.70 |
Loading coefficient, ψ [-] | 1.00 |
Degree of reaction, ξ [-] | 0.50 |
Total-to-total pressure ratio, PR [-] | 2.09 |
[mm] | 47.70 |
Aspect ratio (H/C), AR [-] | 1.05 |
[mm] | 9.51 |
Number of blade [-] | 37 |
Solidity (C/S), σ [-] | 1.20 |
Zeweifel coefficient, Z [-] | 0.78 |
Tip clearance height, τ [mm] | 0.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sim, J.-B.; Yook, S.-J.; Kim, Y.W. Performance Analysis of Organic Rankine Cycle with the Turbine Embedded in a Generator (TEG). Energies 2022, 15, 309. https://doi.org/10.3390/en15010309
Sim J-B, Yook S-J, Kim YW. Performance Analysis of Organic Rankine Cycle with the Turbine Embedded in a Generator (TEG). Energies. 2022; 15(1):309. https://doi.org/10.3390/en15010309
Chicago/Turabian StyleSim, Jung-Bo, Se-Jin Yook, and Young Won Kim. 2022. "Performance Analysis of Organic Rankine Cycle with the Turbine Embedded in a Generator (TEG)" Energies 15, no. 1: 309. https://doi.org/10.3390/en15010309
APA StyleSim, J. -B., Yook, S. -J., & Kim, Y. W. (2022). Performance Analysis of Organic Rankine Cycle with the Turbine Embedded in a Generator (TEG). Energies, 15(1), 309. https://doi.org/10.3390/en15010309