Natural Gas Consumption Forecasting Based on the Variability of External Meteorological Factors Using Machine Learning Algorithms
Abstract
:1. Introduction
1.1. The Importance of Natural Gas Demand Prediction
1.2. Methods of Forecasting Natural Gas Demand Literature Overview
1.3. Approach Presented in Article
- Proving that with different climate it is possible to accurately forecast the demand for natural gas among municipal consumers;
- Determining which factors have a significant impact on the demand for natural gas;
- Comparing the three different models used for the forecast.
2. Methods
- -
- Select m variables randomly from the p variables;
- -
- Pick the best variable/split-point among the m;
- -
- Split the node into two nodes;
- -
- Recursively repeat the last three steps for each terminal node of the tree, until the set minimum node size nmin is reached.
3. Assumptions
4. Types of External Factors
4.1. Meteorological Factors
4.2. Other Factors
5. Relations between External Factors and Natural Gas Consumption
6. Forecasting Model
6.1. Data Preparation
6.2. Model Development
7. Results and Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MA | Moving Average |
ARMAX | AutoRegressive Moving Average with eXogenous input, |
ARIMA | AutoRegressive Integrated Moving Average |
GDP | Gross Domestic Product |
DNN | Deep Neural Network |
ANN | Artificial Neural Network |
BP | Back Propagation |
MLR | Multi Linear Regression |
RF | Random Forest |
RMSE | Root Mean Square Error |
MAPE | Mean Absolute Percentage Error |
STD | Standard Deviation |
MSE | Mean Square Error |
LNG | Liquefied Natural Gas |
NG | Natural Gas |
References
- Krey, V.; Masera, O.; Blanford, G.; Bruckner, T.; Cooke, R.; Fisher-Vanden, K.; Haberl, H.; Hertwich, E.; Kriegler, E.; Mueller, D. Metrics & Methodology Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Safari, A.; Das, N.; Langhelle, O.; Joyashree, R.; Mohsen, A. Natural gas: A transition fuel for sustainable energy system transformation? Energy Sci. Eng. 2017, 7, 1075–1099. [Google Scholar] [CrossRef]
- Kaliski, M.; Nagy, S.; Rychlicki, S.; Siemek, J.; Szurlej, A. Gaz Ziemny w Polsce—Wydobycie, zużycie i import do 2030 roku. Górnictwo I Geol. 2010, 5, 27–40. (In Polish) [Google Scholar]
- Szurlej, A. The state policy for natural gas sector. Arch. Min. Sci. 2013, 58, 925–940. [Google Scholar]
- Kosowski, P.; Kosowska, K. Valuation of Energy Security for Natural Gas. Energies 2021, 14, 2678. [Google Scholar] [CrossRef]
- Market Observatory for Energy. Quarterly Report on European Gas Markets; DG Energy. 2020. Available online: https://www.euneighbours.eu/en/east/stay-informed/publications/quarterly-report-european-gas-markets-3 (accessed on 4 October 2021).
- Łaciak, M. Thermodynamic Processes involving liquefied natural gas at the LNG receiving terminals. Arch. Min. Sci. 2013, 58, 349–359. [Google Scholar]
- Soldo, B. Forecasting natural gas consumption. Appl. Energy 2012, 92, 26–37. [Google Scholar] [CrossRef]
- Yun, B.; Chuan, L. Daily natural gas consumption forecasting based on a structure-calibrated support vector regression approach. Energy Build. 2016, 127, 571–579. [Google Scholar]
- Liu, J.; Wang, S.; Wei, N.; Chen, X.; Xie, H.; Wang, J. Natural gas consumption forecasting: A discussion on forecasting history and future challenges. J. Nat. Gas Sci. Eng. 2021, 90, 103930. [Google Scholar] [CrossRef]
- Bąkowski, K. Sieci i Instalacje Gazowe, 4th ed.; PWN: Warszawa, Poland, 2013. [Google Scholar]
- Demirel, F.O.; Zaim, S.; Çaliskan, A.; Özuyar, P. Forecasting natural gas consumption in İstanbul using neural networks and multivariate time series methods. Turk. J. Electr. Eng. Comput. Sci. 2012, 20, 695–711. [Google Scholar]
- Erdogdu, E. Natural gas demand in Turkey. Appl. Energy 2010, 87, 211–219. [Google Scholar] [CrossRef] [Green Version]
- Taşpınar, F.; Çelebi, N.; Tutkun, N. Forecasting of daily natural gas consumption on regional basis in Turkey using various computational methods. Energy Build. 2013, 56, 23–31. [Google Scholar] [CrossRef]
- Szoplik, J. Forecasting of natural gas consumption with artificial neural networks. Energy 2015, 85, 208–220. [Google Scholar] [CrossRef]
- Adebiyi, A.A.; Adewumi, A.O.; Ayo, C.K. Comparison of ARIMA and Artificial Neural Networks Models for Stock Price Prediction. J. Appl. Math. 2014, 2014, 614342. [Google Scholar] [CrossRef] [Green Version]
- Geem, Z.W.; Roper, W.E. Energy demand estimation of South Korea using artificial neural network. Energy Policy 2009, 37, 4049–4054. [Google Scholar] [CrossRef]
- Bianco, V.; Scarpa, F.; Tagliafico, L.A. Scenario analysis of nonresidential natural gas consumption in Italy. Appl. Energy 2014, 114, 392–403. [Google Scholar] [CrossRef]
- Merkel, G.D.; Povinelli, R.J.; Brown, R.H. Short-Term Load Forecasting of Natural Gas with Deep Neural Network Regression. Energies 2018, 11, 2008. [Google Scholar] [CrossRef] [Green Version]
- Fahrmeir, L.; Kneib, T.; Lang, S.; Marx, B. Regression, Models Methods and Applications; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Khotanzad, A.; Elragal, H.; Lu, T.-L. Combination of artificial neural-network forecasters for prediction of natural gas consumption. IEEE Trans. Neural Netw. 2000, 11, 464–473. [Google Scholar] [CrossRef]
- Feng, Y.; Xiaozhong, X. A short-term load forecasting model of natural gas based on optimized. Appl. Energy 2014, 134, 102–113. [Google Scholar]
- Panapakidis, I.P.; Dagoumas, A.S. Day-ahead natural gas demand forecasting based on the combination of wavelet transform and ANFIS/genetic algorithm/neural network model. Energy 2017, 118, 231–245. [Google Scholar] [CrossRef]
- Aras, H.; Aras, N. Forecasting Residential Natural Gas Demand. Energy Sources 2004, 26, 463–472. [Google Scholar] [CrossRef]
- Forouzanfar, M.; Doustmohammadi, A.; Hasanzadeh, S.; Shakouri, G.H. Transport energy demand forecast using multi-level genetic programming. Appl. Energy 2012, 91, 496–503. [Google Scholar] [CrossRef]
- Forouzanfar, M.; Doustmohammadi, A.; Bagher Menhaj, M.; Hasanzadeh, S. Modeling and estimation of the natural gas consumption for residential and commercial sectors in Iran. Appl. Energy 2010, 87, 268–274. [Google Scholar] [CrossRef]
- Shaikh, F.; Ji, Q.; Shaikh, P.H.; Mirjat, N.H.; Uqaili, M.A. Forecasting China’s natural gas demand based on optimised nonlinear grey models. Energy 2017, 140, 941–951. [Google Scholar] [CrossRef]
- Qiao, W.; Yang, Z.; Kang, Z.; Pan, Z. Short-term natural gas consumption prediction based on Volterra adaptive filter and improved whale optimization algorithm. Eng. Appl. Artif. Intell. 2020, 87, 103323. [Google Scholar] [CrossRef]
- Beyca, O.F.; Ervular, B.C.; Tatoglu, E.; Ozuyar, P.G.; Zaim, S. Using machine learning tools for forecasting natural gas consumption in the province of Istanbul. Energy Econ. 2019, 80, 937–949. [Google Scholar] [CrossRef]
- Bozorgian, A. Investigation of Predictive Methods of Gas Hydrate Formation in Natural Gas Transmission Pipelines. Adv. J. Chem. B 2020, 2, 91–101. [Google Scholar]
- Čeperić, E.; Žiković, S.; Čeperić, V. Short-term forecasting of natural gas prices using machine learning and feature selection algorithms. Energy 2017, 140, 893–900. [Google Scholar] [CrossRef]
- Mouchtaris, D.; Sofianos, E.; Gogas, P.; Papadimitriou, T. Forecasting Natural Gas Spot Prices with Machine Learning. Energies 2021, 14, 5782. [Google Scholar] [CrossRef]
- Kim, J.; Chae, M.; Han, J.; Park, S.; Lee, Y. The development of leak detection model in subsea gas pipeline using machine learning. J. Nat. Gas Sci. Eng. 2021, 94, 104134. [Google Scholar] [CrossRef]
- Kaliski, M.; Sikora, S.; Szurlej, A.; Janusz, P. Wykorzystanie gazu ziemnego w gospodarstwach domowych w Polsce. Naft. Gaz 2011, 67, 125–134. (In Polish) [Google Scholar]
- Matusiak, B.E. Inteligentne Sieci Gazowe na zintegrowanym rynku. Rynek Energii 2016, 6, 16–19. [Google Scholar]
- Bonaccorso, G. Machine Learning Algorithms; Packt Publishing: Birmingham, UK, 2017. [Google Scholar]
- Specht, D.F. A General Regression Neural Network. IEEE Trans. Neural Netw. 1991, 2, 568–576. [Google Scholar] [CrossRef] [Green Version]
- Aiken, L.; West, S.; Pitts, S.; Baraldi, S.; Wurpts, I. Multiple Linear Regression. In Handbook of Psychology, 2nd ed.; Wiley and Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Uyanik, G.K.; Guler, N. A study on multiple linear regresion analysis. Procedia Soc. Behav. Sci. 2013, 106, 234–240. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Fijorek, K.; Mróz, K.; Niedziela, K.; Fijorek, D. Prognozowanie cen energii elektrycznej na rynku dnia następnego metodami data mining. Rynek Energii 2010, 6, 46–50. [Google Scholar]
- Al-Mudhafar, W.J. Polynomial and Nonparametric Regressions for Efficient Predictive Proxy Metamodeling: Application through the CO2-EOR in Shale Oil Reservoirs. J. Nat. Gas Sci. Eng. 2019, 72, 103038. [Google Scholar] [CrossRef]
- Anagnostis, A.; Papageorgiou, E.; Bochtis, D. Application of Artificial Neural Networks for Natural Gas Consumption Forecasting. Sustainability 2020, 12, 6409. [Google Scholar] [CrossRef]
- Vieira, A.; Ribeiro, B. Introduction to Deep Learning Business Applications for Developers; APRESS: New York, NY, USA, 2018. [Google Scholar]
- Agarap, A.F. Deep Learning using Rectified Linear Units (ReLU). arXiv 2018, arXiv:1803.08375. [Google Scholar]
- Tadeusiewcz, R. Sieci Neuronowe, 2nd ed.; AOW RM: Warszawa, Poland, 1993. (In Polish) [Google Scholar]
- Piepho, H.P. A coefficient of determination (R2) for generalized linear-mixed models. Biom. J. 2019, 61, 860–872. [Google Scholar] [CrossRef]
- McKelvey, R.D.; Zavoina, W. A statistical model for the analysis of ordinal level dependent variables. J. Math. Sociol. 2010, 4, 103–120. [Google Scholar] [CrossRef]
- Taylor, R. Interpretation of the Correlation Coefficient: A Basic Review. JDMS 1990, 6, 35–39. [Google Scholar] [CrossRef]
- Kornbrot, D. Correlation. In Encyclopedia of Statistics in Behavioral Science; John Wiley & Sons, Ltd.: Chichester, UK, 2005; pp. 398–400. [Google Scholar]
- Al-Mudhafar, W.J. Incorporation of Bootstrapping and Cross-Validation for Efficient Multivariate Facies and Petrophysical Modeling. In Proceedings of the SPE Low Perm Symposium, Denver, CO, USA, 5–6 May 2016. [Google Scholar]
- Fasihizadeh, M.; Sefti, M.V.; Torbati, H.M. Improving gas transmission networks operation using simulation algorithms: Case study of the National Iranian Gas Network. J. Nat. Gas Sci. Eng. 2014, 20, 319–327. [Google Scholar] [CrossRef]
Factor: | The Value of the Pearson Correlation Coefficient for the Daily Consumption and: | |
---|---|---|
1 | Month | 0.69 |
2 | Cloud cover | −0.035 |
3 | Wind velocity | 0.16 |
4 | Vapor Pres. | 0.19 |
5 | Air Temperature | −0.91 |
6 | Humidity | 0.44 |
7 | Atmospheric Pressure | 0.11 |
8 | Related Atmospheric Pressure | 0.21 |
9 | Rain/Snowfall | −0.12 |
10 | Volume of NG in time t = −1 day | 0.98 |
11 | Day of week | 0.15 |
X | Volume of NG demand | 1 |
Algorithm: | R2 Score | STD of Predicted Values | STD of Real Values | RMSE | MAPE | STD APE |
---|---|---|---|---|---|---|
Linear Regression: | ||||||
Current daily demand | 0.995 | 39,949.91 | 40,319.57 | 3664.90 | 4.73 | 4.86 |
Future +1 d demand | 0.978 | 39,381.50 | 40,658.22 | 8300.58 | 10.63 | 10.15 |
Random Forest: | ||||||
Current daily demand | 0.998 | 40,149.19 | 40,319.57 | 2179.02 | 1.61 | 2.22 |
Future +1 d demand | 0.983 | 39,837.23 | 40,658.22 | 7289.73 | 7.53 | 7.78 |
DNN: | ||||||
Current daily demand | 0.998 | 40,195.98 | 40,319.57 | 2181.74 | 2.46 | 3.54 |
Future +1 d demand | 0.978 | 39,220.48 | 40,658.22 | 8458.93 | 10.84 | 9.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panek, W.; Włodek, T. Natural Gas Consumption Forecasting Based on the Variability of External Meteorological Factors Using Machine Learning Algorithms. Energies 2022, 15, 348. https://doi.org/10.3390/en15010348
Panek W, Włodek T. Natural Gas Consumption Forecasting Based on the Variability of External Meteorological Factors Using Machine Learning Algorithms. Energies. 2022; 15(1):348. https://doi.org/10.3390/en15010348
Chicago/Turabian StylePanek, Wojciech, and Tomasz Włodek. 2022. "Natural Gas Consumption Forecasting Based on the Variability of External Meteorological Factors Using Machine Learning Algorithms" Energies 15, no. 1: 348. https://doi.org/10.3390/en15010348
APA StylePanek, W., & Włodek, T. (2022). Natural Gas Consumption Forecasting Based on the Variability of External Meteorological Factors Using Machine Learning Algorithms. Energies, 15(1), 348. https://doi.org/10.3390/en15010348