Flushing of Soils Highly Contaminated with Cd Using Various Washing Agents Derived from Sewage Sludge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soils
2.2. Sewage Sludge Washing Agents
2.3. Cd Removal via Soil Flushing
2.4. Analytical Methods
2.5. Statistical Analysis
3. Results and Discussion
3.1. Cd Removal Efficiency and Cd Distribution Patterns
3.2. Stability of Flow Velocity during Soil Flushing
3.3. Kinetics of Cd Removal
3.4. Valorization of Flushed Soil
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bi, X.; Feng, X.; Yang, Y.; Qiu, G.; Li, G.; Li, F.; Liu, T.; Fu, Z.; Jin, Z. Environmental contamination of heavy metals from zinc smelting areas in Hezhang County, western Guizhou, China. Environ. Int. 2006, 32, 883–890. [Google Scholar] [CrossRef]
- Ettler, V. Soil contamination near non-ferrous metal smelters: A review. Appl. Geochemistry 2016, 64, 56–74. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Xiao, T.; Perkins, R.B.; Zhu, J.; Zhu, Z.; Xiong, Y.; Ning, Z. Geogenic cadmium pollution and potential health risks, with emphasis on black shale. J. Geochem. Explor. 2017, 176, 42–49. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Cheng, H.; Tao, S. The challenges and solutions for cadmium-contaminated rice in China: A critical review. Environ. Int. 2016, 92, 515–532. [Google Scholar] [CrossRef] [PubMed]
- Bi, D.; Yuan, G.; Wei, J.; Xiao, L.; Feng, L.; Meng, F.; Wang, J. A soluble humic substance for the simultaneous removal of cadmium and arsenic from contaminated soils. Int. J. Environ. Res. Public Health 2019, 16, 4999. [Google Scholar] [CrossRef] [Green Version]
- Haider, F.U.; Liqun, C.; Coulter, J.A.; Cheema, S.A.; Wu, J.; Zhang, R.; Wenjun, M.; Farooq, M. Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicol. Environ. Saf. 2021, 211, 111887. [Google Scholar] [CrossRef]
- Radomirović, M.; Ćirović, Ž.; Maksin, D.; Bakić, T.; Lukić, J.; Stanković, S.; Onjia, A. Ecological risk assessment of heavy metals in the soil at a former painting industry facility. Front. Environ. Sci. 2020, 8, 560415. [Google Scholar] [CrossRef]
- Kupka, D.; Kania, M.; Pietrzykowski, M.; Łukasik, A.; Gruba, P. Multiple factors influence the accumulation of heavy metals (Cu, Pb, Ni, Zn) in forest soils in the Vicinity of Roadways. Water Air Soil Pollut. 2021, 232, 194. [Google Scholar] [CrossRef]
- Soil Washing Application. United States Environmental Protection Agency. Available online: https://clu-in.org/techfocus/default.focus/sec/soil_washing/cat/Application/ (accessed on 8 November 2021).
- Wang, Z.; Wang, H.; Wang, H.; Li, Q.; Li, Y. Effect of soil washing on heavy metal removal and soil quality: A two-sided coin. Ecotoxicol. Environ. Saf. 2020, 203, 11098. [Google Scholar] [CrossRef]
- Qiao, J.; Sun, H.; Luo, X.; Zhang, W.; Mathews, S.; Yin, X. EDTA-assisted leaching of Pb and Cd from contaminated soil. Chemosphere 2017, 167, 422–428. [Google Scholar] [CrossRef]
- Beiyuan, J.; Lau, A.Y.; Tsang, D.C.; Zhang, W.; Kao, C.M.; Baek, K.; Ok, Y.S.; Li, X.D. Chelant-enhanced washing of CCA-contaminated soil: Coupled with selective dissolution or soil stabilization. Sci. Total Environ. 2018, 612, 1463–1472. [Google Scholar] [CrossRef]
- Gluhar, S.; Kaurin, A.; Lestan, D. Soil washing with biodegradable chelating agents and EDTA: Technological feasibility, remediation efficiency and environmental sustainability. Chemosphere 2020, 257, 127226. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Beiyuan, J.; Gielen, G.; Mao, X.; Song, Z.; Xu, S.; Ok, Y.S.; Rinklebe, J.; Liu, D.; Hou, D.; et al. Optimizing extraction procedures for better removal of potentially toxic elements during EDTA-assisted soil washing. J. Soils Sediments 2020, 20, 3417–3426. [Google Scholar] [CrossRef]
- Makino, T.; Takano, H.; Kamiya, T.; Itou, T.; Sekiya, N.; Inahara, M.; Sakurai, Y. Restoration of cadmium-contaminated paddy soils by washing with ferric chloride: Cd extraction mechanism and bench-scale verification. Chemosphere 2008, 70, 1035–1043. [Google Scholar] [CrossRef]
- Yu, X.A.; Zhou, T.; Zhao, J.; Dong, C.; Wu, L.; Luo, Y.; Christie, P. Remediation of a metal-contaminated soil by chemical washing and repeated phytoextraction: A field experiment. Int. J. Phytoremediat. 2021, 23, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Zhao, J.; Dong, C.; Wu, L.; Hu, P. Remediation of metal-contaminated paddy soils by chemical washing with FeCl3 and citric acid. J. Soils Sediments 2018, 18, 1020–1028. [Google Scholar] [CrossRef]
- Assawadithalerd, M.; Phasukarratchai, N. Optimization of cadmium and zinc removal from contaminated soil by surfactants using mixture design and central composite rotatable design. Water. Air Soil Pollut. 2020, 231, 329. [Google Scholar] [CrossRef]
- Peng, Y.; Zhang, S.; Zhong, Q.; Wang, G.; Feng, C.; Xu, X.; Pu, Y.; Guo, X. Removal of heavy metals from abandoned smelter contaminated soil with poly-phosphonic acid: Two-objective optimization based on washing efficiency and risk assessment. Chem. Eng. J. 2021, 421, 129882. [Google Scholar] [CrossRef]
- Xia, Z.; Zhang, S.; Cao, Y.; Zhong, Q.; Wang, G.; Li, T.; Xu, X. Remediation of cadmium, lead and zinc in contaminated soil with CETSA and MA/AA. J. Hazard. Mater. 2019, 366, 177–183. [Google Scholar] [CrossRef]
- Gusiatin, Z.M.; Radziemska, M. Saponin versus rhamnolipids for remediation of Cd contaminated soils. CLEAN—Soil Air Water 2018, 46, 1700071. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, S.; Wang, G.; Huang, Q.; Li, T.; Xu, X. Removal of Pb, Zn, and Cd from contaminated soil by new washing agent from plant material. Environ. Sci. Pollut. Res. 2017, 24, 8525–8533. [Google Scholar] [CrossRef]
- Chiang, P.N.; Tong, O.Y.; Chiou, C.S.; Lin, Y.A.; Wang, M.K.; Liu, C.C. Reclamation of zinc-contaminated soil using a dissolved organic carbon solution prepared using liquid fertilizer from food-waste composting. J. Hazard. Mater. 2016, 301, 100–105. [Google Scholar] [CrossRef]
- Feng, C.; Zhang, S.; Li, L.; Wang, G.; Xu, X.; Li, T.; Zhong, Q. Feasibility of four wastes to remove heavy metals from contaminated soils. J. Environ. Manag. 2018, 212, 258–265. [Google Scholar] [CrossRef]
- Gusiatin, Z.M.; Kulikowska, D.; Klik, B. New-generation washing agents in remediation of metal-polluted soils and methods for washing effluent treatment: A Review. Int. J. Environ. Res. Public Health 2020, 17, 6220. [Google Scholar] [CrossRef]
- Liu, C.-C.; Chen, G.-B. Reclamation of cadmium-contaminated soil using dissolved organic matter solution originating from wine-processing waste sludge. J. Hazard. Mater. 2013, 244, 645–653. [Google Scholar] [CrossRef] [PubMed]
- Klik, B.; Gusiatin, Z.M.; Kulikowska, D. A holistic approach to remediation of soil contaminated with Cu, Pb and Zn with sewage sludge-derived washing agents and synthetic chelator. J. Clean. Prod. 2021, 311, 127664. [Google Scholar] [CrossRef]
- Klik, B.; Gusiatin, Z.M.; Kulikowska, D. Kinetics of Cu, Pb and Zn removal during soil flushing with washing agents derived from sewage sludge. Sci. Rep. 2021, 111, 10067. [Google Scholar] [CrossRef]
- Klik, B.; Kulikowska, D.; Gusiatin, Z.M.; Pasieczna-Patkowska, S. Washing agents from sewage sludge: Efficiency of Cd removal from highly contaminated soils and effect on soil organic balance. J. Soils Sediments 2020, 20, 284–296. [Google Scholar] [CrossRef] [Green Version]
- Kulikowska, D.; Klimiuk, E. Organic matter transformations and kinetics during sewage sludge composting in a two-stage system. Bioresour. Technol. 2011, 102, 10951–10958. [Google Scholar] [CrossRef] [PubMed]
- Ostrowska, A.; Gawlinski, S.; Szczubiałka, Z. Analysis of Soils and Plants, 3rd ed.; Institute of Environmental Protection—National Research Institute: Warsaw, Poland, 1991. [Google Scholar]
- Boratynski, K.; Wilk, K. Investigations on humus. Part IV. Fractionation of humus compounds with complexing solutions and diluted alkali solutions. Soil Sci. Annu. 1965, 15, 53–63. [Google Scholar]
- Kulikowska, D.; Klik, B.K.; Gusiatin, Z.M.; Jabłoński, R. Sewage sludge can provide a washing agent for remediation of soil from a metallurgical area. Catena 2019, 173, 22–28. [Google Scholar] [CrossRef]
- Pueyo, M.; Mateu, J.; Rigol, A.; Vidal, M.; López-Sánchez, J.F.; Rauret, G. Use of the modified BCR three-step sequential extraction procedure for the study of trace element dynamics in contaminated soils. Environ. Pollut. 2008, 152, 330–341. [Google Scholar] [CrossRef] [PubMed]
- Casida, L.E.; Klein, D.A.; Santoro, T. Soil dehydrogenase activity. Soil Sci. 1964, 98, 371–376. [Google Scholar] [CrossRef]
- Furtak, K.; Gajda, A.M. Activity of dehydrogenases as an indicator of soil environment quality. Polish J. Soil Sci. 2017, 50, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Juwarkar, A.A.; Nair, A.; Dubey, K.V.; Singh, S.K.; Devotta, S. Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere 2007, 68, 1996–2002. [Google Scholar] [CrossRef] [PubMed]
- Mgbeahuruike, L.U.; Barrett, J.; Potgieter, H.J.; Van Dyk, L.; Potgieter-Vermaak, S.S. A comparison of batch, column and heap leaching efficiencies for the recovery of heavy metals from artificially contaminated simulated soil. J. Environ. Prot. 2019, 10, 632–650. [Google Scholar] [CrossRef] [Green Version]
- Ugwu, E.; Gupta, B.; Adeloye, A.J.; Martínez-Villegas, N. Column experiment for the removal of cadmium, copper, lead and zinc from artificially contaminated soil using EDTA, rhamnolipids, and soapnut. Eur. J. Environ. Earth Sci. 2021, 2, 1–7. [Google Scholar] [CrossRef]
- Klik, B.K.; Gusiatin, Z.M.; Kulikowska, D. Suitability of environmental indices in assessment of soil remediation with conventional and next generation washing agents. Sci. Rep. 2020, 101, 20586. [Google Scholar] [CrossRef] [PubMed]
- Gusiatin, Z.M.; Kaal, J.; Wasilewska, A.; Kumpiene, J.; Radziemska, M. Short-term soil flushing with tannic acid and its effect on metal mobilization and selected properties of calcareous soil. Int. J. Environ. Res. Public Health 2021, 18, 5698. [Google Scholar] [CrossRef] [PubMed]
- Nejad, Z.D.; Rezania, S.; Jung, M.C.; Al-Ghamdi, A.A.; Mustafa, A.E.Z.M.; Elshikh, M.S. Effects of fine fractions of soil organic, semi-organic, and inorganic amendments on the mitigation of heavy metal(loid)s leaching and bioavailability in a post-mining area. Chemosphere 2021, 271, 129538. [Google Scholar] [CrossRef]
- Leštan, D.; Luo, C.; Li, X. The use of chelating agents in the remediation of metal-contaminated soils: A review. Environ. Pollut. 2008, 153, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Mulligan, C.N. An evaluation of surfactant foam technology in remediation of contaminated soil. Chemosphere 2004, 57, 1079–1089. [Google Scholar] [CrossRef] [PubMed]
- Rothemel, R.K.; Petres, R.W.; St. Martin, E.; DeFlaun, M. Surfactant foam/bioaugmentation technology for in situ treatment of TCE-DNAPLs. Environ. Sci. Technol. 1998, 32, 1667–1675. [Google Scholar] [CrossRef]
- Wyszkowska, J.; Wyszkowski, M. Effect of cadmium and magnesium on enzymatic activity in soil. Polish J. Environ. Stud. 2003, 12, 473–479. [Google Scholar]
- Vig, K.; Megharaj, M.; Sethunathan, N.; Naidu, R. Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: A review. Adv. Environ. Res. 2003, 8, 121–135. [Google Scholar] [CrossRef]
- Nannipieri, P. The potential use of soil enzymes as indicators of productivity, sustainability and pollution. In Soil Biota Management in Sustainable Farming Systems; Pankhurst, C.E., Double, B.M., Gupta, V.V.S.R., Grace, P.R., Eds.; CSIRO: Melbourne, Australia, 1994; pp. 238–244. [Google Scholar]
- Yuan, B.C.; Yue, D.X. Soil microbial and enzymatic activities across a chronosequence of Chinese Pine plantation development on the Loess Plateau of China. Pedosphere 2012, 22, 1–12. [Google Scholar] [CrossRef]
- Basak, B.; Biswas, D.R.; Pal, S. Soil biochemical properties and quality as affected by organic manures and mineral fertilizers in soil under maize-wheat rotation. Agrochimica 2013, 57, 49–66. [Google Scholar]
- Moreno, J.L.; Sanchez-Marin, A.; Marin, M. Effect of cadmium on microbial activity and a ryegrass crop in two semiarid Soils. Environ. Manag. 2006, 37, 626–663. [Google Scholar] [CrossRef]
- Lighthart, B.; Baham, J.; Volk, V.V. Microbial respiration and chemical speciation in metal-amended soils. J. Environ. Qual. 1983, 12, 543–548. [Google Scholar] [CrossRef]
- Dar, G.H. Effects of cadmium and sewage-sludge on soil microbial biomass and enzyme activities. Bioresour. Technol. 1996, 56, 141–145. [Google Scholar] [CrossRef]
- Kuo, S.; Baker, A.S. Sorption of copper, zinc, and cadmium by some acid soils. Soil Sci. Soc. Am. J. 1980, 44, 969–974. [Google Scholar] [CrossRef]
- Doelman, P.; Haanstra, L. Short-term and long-term effects of cadmium, chromium, copper, nickel, lead and zinc on soil microbial respiration in relation to abiotic soil factors. Plant Soil 1984, 79, 317–327. [Google Scholar] [CrossRef]
Parameter | Flow Rate | S1 | S2 | ||||
---|---|---|---|---|---|---|---|
DOM | HLS | SHS | DOM | HLS | SHS | ||
k [h−1] | 0.5 mL/min | 0.19 | 0.19 | 0.21 | 0.18 | 0.21 | 0.21 |
1.0 mL/min | 0.19 | 0.2 | 0.2 | 0.23 | 0.22 | 0.18 | |
Cmax [mg/kg] | 0.5 mL/min | 205 | 198 | 176 | 192 | 178 | 160 |
1.0 mL/min | 232 | 221 | 199 | 202 | 192 | 189 | |
r [mg/kg⋅h] | 0.5 mL/min | 39.0 | 37.6 | 37.0 | 34.6 | 37.4 | 33.6 |
1.0 mL/min | 44.1 | 44.2 | 39.8 | 46.5 | 42.2 | 34.0 |
Soil | SS_Was (1) | Flow Rate mL/min | pH | Organic Matter | Humic Substances | Fulvic Fraction | Humic Acid | NH4 (2) | P2O5 (3) | K2O (3) | Mg (3) | Ca (3) | Na (3) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
- | % | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | |||
S1 | Unflushed | 7.1 ± 0.1 | 1.6 ± 0.08 | 4.8 ± 0.25 | 2.0 ± 0.3 | 2.8 ± 0.54 | 19.7 ± 1.1 | 176.6 ± 11.9 | 125.4 ± 9.9 | 72.2 ± 7.4 | 176.8 ± 18.4 | 44.9 ± 3.5 | |
DOM | 0.5 | 6.3 ± 0.1 | 1.87 ± 0.06 | 7.04 ± 0.58 | 2.90 ± 0.4 | 4.14 ± 0.9 | 57.8 ± 3.7 | 316.54 ± 17.1 | 374.22 ± 20.5 | 92.47 ± 7.4 | 168.25 ± 14.2 | 141.26 ± 9.3 | |
1.0 | 6.1 ± 0.1 | 1.94 ± 0.1 | 7.26 ± 0.42 | 3.21 ± 0.5 | 4.05 ± 0.17 | 64.8 ± 4.6 | 367.45 ± 22.3 | 384.53 ± 26.9 | 106.36 ± 6.1 | 180.29 ± 10.3 | 176.48 ± 12.2 | ||
HLS | 0.5 | 6.2 ± 0.1 | 2.01 ± 0.09 | 7.48 ± 0.44 | 3.02 ± 0.5 | 4.46 ± 0.6 | 60.8 ± 5.6 | 332.58 ± 19.1 | 348.71 ± 20.1 | 76.18 ± 5.8 | 175.25 ± 8.4 | 196.47 ± 11.9 | |
1.0 | 6.1 ± 0.2 | 2.17 ± 0.07 | 7.99 ± 0.54 | 3.31 ± 0.3 | 4.68+++ ±0.88 | 62.5 ± 6.0 | 393.15 ± 24.2 | 417.82 ± 28.3 | 88.53 ± 4.5 | 176.54 ± 8.7 | 229.10 ± 9.6 | ||
SHS | 0.5 | 6.2 ± 0.1 | 3.27 ± 0.1 | 11.49 ± 0.77 | 4.38 ± 0.2 | 7.11 ± 0.65 | 27.4 ± 2.1 | 319.84 ± 24.7 | 351.07 ± 28.5 | 81.46 ± 6.1 | 170.39 ± 13.8 | 258.17 ± 10.4 | |
1.0 | 6.2 ± 0.1 | 3.96 ± 0.11 | 13.68 ± 0.83 | 5.76 ± 0.3 | 7.92 ± 0.7 | 32.9 ± 2.8 | 390.18 ± 30.3 | 413.64 ± 31.4 | 96.28 ± 7.2 | 174.28 ± 11.1 | 307.51 ± 17.5 | ||
S2 | Unflushed | 7.2 ± 0.2 | 2.1 ± 0.11 | 6.8 ± 0.2 | 4.3 ± 0.4 | 2.6 ± 0.2 | 14.2 ± 2.8 | 157.9 ± 17.1 | 213.6 ± 18.7 | 64.3 ± 5.7 | 129.6 ± 10.6 | 30.4 ± 6.7 | |
DOM | 0.5 | 6.4 ± 0.1 | 2.43 ± 0.09 | 7.92 ± 0.6 | 5.13 ± 0.4 | 2.79 ± 0.3 | 52.8 ± 3.1 | 288.55 ± 20.5 | 436.85 ± 22.5 | 69.82 ± 6.9 | 116.74 ± 10.8 | 102.85 ± 8.4 | |
1.0 | 6.3 ± 0.1 | 2.48 ± 0.13 | 8.19 ± 0.63 | 5.11 ± 0.5 | 3.08 ± 0.3 | 58.5 ± 3.4 | 306.16 ± 25.9 | 454.69 ± 27.9 | 70.14 ± 7.3 | 124.59 ± 9.3 | 114.26 ± 14.1 | ||
HLS | 0.5 | 6.5 ± 0.2 | 2.88 ± 0.08 | 9.51 ± 0.72 | 5.83 ± 0.4 | 3.68 ± 0.2 | 49.9 ± 3.8 | 312.86 ± 30.1 | 419.63 ± 21.3 | 73.58 ± 6.7 | 123.63 ± 11.6 | 131.47 ± 11.8 | |
1.0 | 6.3 ± 0.1 | 3.11 ± 0.12 | 10.16 ± 0.79 | 6.46 ± 0.7 | 3.7 ± 0.3 | 54.9 ± 4.1 | 337.43 ± 26.6 | 447.42 ± 20.4 | 74.96 ± 8.3 | 136.47 ± 13.9 | 149.63 ± 16.6 | ||
SHS | 0.5 | 6.5 ± 0.1 | 4.5 ± 0.14 | 14.28 ± 0.9 | 9.23 ± 0.6 | 5.05 ± 0.4 | 29.6 ± 3.1 | 268.8 ± 24.5 | 411.62 ± 35.6 | 70.86 ± 6.4 | 108.54 ± 9.3 | 197.58 ± 10.4 | |
1.0 | 6.4 ± 0.2 | 4.93 ± 0.11 | 16.22 ± 0.86 | 10.35 ± 0.8 | 5.87 ± 0.3 | 33.2 ± 2.9 | 299.42 ± 28.4 | 436.92 ± 31.4 | 74.18 ± 6.1 | 122.48 ± 10.5 | 218.49 ± 11.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klik, B.K.; Kulikowska, D.; Gusiatin, Z.M. Flushing of Soils Highly Contaminated with Cd Using Various Washing Agents Derived from Sewage Sludge. Energies 2022, 15, 349. https://doi.org/10.3390/en15010349
Klik BK, Kulikowska D, Gusiatin ZM. Flushing of Soils Highly Contaminated with Cd Using Various Washing Agents Derived from Sewage Sludge. Energies. 2022; 15(1):349. https://doi.org/10.3390/en15010349
Chicago/Turabian StyleKlik, Barbara K., Dorota Kulikowska, and Zygmunt M. Gusiatin. 2022. "Flushing of Soils Highly Contaminated with Cd Using Various Washing Agents Derived from Sewage Sludge" Energies 15, no. 1: 349. https://doi.org/10.3390/en15010349
APA StyleKlik, B. K., Kulikowska, D., & Gusiatin, Z. M. (2022). Flushing of Soils Highly Contaminated with Cd Using Various Washing Agents Derived from Sewage Sludge. Energies, 15(1), 349. https://doi.org/10.3390/en15010349