Hydrogen Containing Nanofluids in the Spark Engine’s Cylinder Head Cooling System
Abstract
:1. Introduction
2. Literature Survey
3. Problem Formulation
4. Fluid Boiling in the Cooling Jacket of the Engine Cylinder Head
5. Factors Affecting the Thermal Conductivity Coefficient of Nanofluids
6. Behavior of Nanoparticles in the Engine Cylinder Head Cooling System
7. Devices with Nanoparticles in the Engine Cylinder Head Cooling System
8. Conclusions
- -
- an increase of the cooling nanofluid thermal conductivity coefficient is determined by a change in the mass concentration of aluminum oxide nanoparticles in the base fluid. This will make it possible to create coolants with such thermophysical characteristics that are required to ensure intensive heat exchange in engine cooling systems of various capacities;
- -
- a viscosity has been achieved, at which, on the one hand, losses of nanofluid through all kinds of seals and connecting nodes will be excluded, and, on the other hand, significant power consumption will not be required for pumping the nano-heat carrier through the engine cooling system;
- -
- the set of gradients in the carrier stream of nanofluids should provide them with such a boiling point that will be 25–30 higher than the maximum allowable temperature of the nano-heat carrier in the cooling system, which will prevent the appearance of air-vapor cork in it and reduce losses of the nano-heat carrier during evaporation due to local heat exchangers, i.e., devices with nanoparticles;
- -
- the possibility to provide a needed engine temperature mode with a relatively small volume of nano-heat carrier circulating in the cooling system is ensured by a high specific heat capacity;
- -
- thermodynamics and molecular kinetic theory complement each other, the same theoretical and experimental material is a subject to synthesis and complex analysis; moisture transfer is inseparable from heat transfer and the phenomenon of heat and mass transfer must be considered in its inseparable connection: therefore, it is proposed to introduce a new concept “potential of heat-conducting transfer by nanoparticles in a fluid”.
- -
- it has been established the role of contacts between powder parts in the exchange–correlation interaction of their free electrons is evidenced by the following experimental results. If spherical nickel or aluminum oxide nanoparticles are placed between the powder microparticles using a thoroughly mixed mixture of micro- and nanoparticles, then under the same conditions, the state of spontaneous polarization of the powder with chemisorbed hydrogen does not appear.
- -
- Thus, the permissible temperature level of internal combustion engines is ensured by intensifying heat transfer in cooling systems due to the modification of coolants with “light” and “heavy” nanoparticles.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature and Abbreviations
thermal conductivity coefficient, | |
thermal conductivity coefficient of base fluid, | |
the amount of heat, | |
temperature, | |
pressure, | |
specific volume, | |
specific heat flux, | |
bulk liquid saturation temperature, | |
saturation temperature, | |
wall temperature, | |
ΔTsub = TS − Tf.—underheating, | |
the beginning of nucleate boiling, | |
DNB | the development of nucleate boiling, |
point of critical heat flow, | |
thermo electric cooler, | |
mass steam quality, | |
the relative enthalpy of the flow, | |
specific enthalpy of the flow, | |
specific enthalpy of liquid in saturation state, | |
specific heat of vaporization, | |
position of the second boiling crisis, | |
position of the second boiling crisis, | |
the volume concentration, | |
thermal conductivity coefficients of the nanofluid, | |
conductivity coefficients of the base fluid, | |
mass concentration of nanoparticles in the base liquid, | |
specific surface area, | |
displacement of electrons in powder particles, | |
average value of dipoles charges, | |
number of particles in 1 m3, | |
and | self-consistent potentials of positively and negatively charged regions of particles created by all charges of the system, |
field density in powder, | |
temperature field density, | |
field density of polarizing charges located at opposite boundaries of the powder layer, | |
dielectric susceptibility, | |
thermal conductivity coefficient of suspensions. |
References
- Sharoglazov, B.A.; Farafontov, M.F.; Klement’ev, V.V. Internal Combustion Engines: Theory, Modeling and Calculation of Processes; South Ural University Publisher: Chelyabinsk, Russia, 2005; 403p. [Google Scholar]
- Balitski, A.; Krohmalny, O.; Ripey, I. Hydrogen cooling of turbogenerators and the problem of rotor retaining ring materials degradation. Int. J. Hydrogen Energy 2000, 25, 167–171. [Google Scholar] [CrossRef]
- Kavtaradze, R.Z. Local Heat Exchange in Piston Engines; MGTU im. N.E. Bauman: Moscow, Russia, 2007; 472p. [Google Scholar]
- Shabanov, A.Y.; Zaitsev, A.B.; Mashkur, M.A. A new method for calculating the boundary conditions for thermal loading of the cylinder head of a piston engine. Dvigatelestroyeniye 2005, 1, 5–9. [Google Scholar]
- Chainov, N.D.; Obolonnyi, I.V.; Sidorov., A.A. To the issue of physical modeling of the thermal state of parts of the engine cylinder-piston group. Izv. VUZov Mech. Eng. 1989, 2, 69–72. [Google Scholar]
- Pekhovich, A.I.; Liquid, V.M. Calculations of the Thermal Mode of Solids; Energiya: Leningrad, Russia, 1976; 352p. [Google Scholar]
- Muchnik, G.F.; Rubashov, I.B. Methods of the Heat Transfer Theory: Thermal Radiation; Higher School: Moscow, Russia, 1974; 272p. [Google Scholar]
- Tsvetkov, F.F.; Grigoriev, B.A. Heat and Mass Transfer; Publishing House of MEI: Moscow, Russia, 2005; 215p. [Google Scholar]
- Shekhovtsov, A.F. Mathematical Modeling of Heat Transfer in High-Speed Diesel Engines; Vishcha shkola: Kharkov, Russia, 1978; 153p. [Google Scholar]
- Heywood, J.B. Internal Combustion Engine Fundamentals; McGraw-Hill: New York, NY, USA, 1988; 960p. [Google Scholar]
- Kawiak, M.; Balitskii, A. Embrittlement of welded joints of tram rails in city environments. Eng. Fail. Anal. 2018, 85, 97–103. [Google Scholar] [CrossRef]
- Dzhanakhmedov, A.K.; Skrypnyk, V.S.; Dolishniy, B.V.; Volchenko, N.A.; Nikipchuk, S.B.; Wudwud, A.N. Thermal balance of internal combustion engines and methods of reducing heat losses. Bull. Azerbaijan Eng. Acad. 2021, 13, 32–41. [Google Scholar]
- Rudyak, V.Y.; Minakov, A.V.; Pryazhnikov, M.I. Thermophysical properties of nanofluids and similarity criteria. Lett. J. Tech. Phys. 2016, 42, 9–16. [Google Scholar]
- Gorshkov, R.V. Ensuring the Permissible Temperature Level of Forced Ship Diesel Engines by Intensifying Heat Transfer in Cooling Systems due to the Modification of Coolants with Nanoparticles. Ph.D. Thesis, Yaroslavl University, Yaroslavl, Russia, 2019; p. 127. [Google Scholar]
- Rudyak, V.Y. Statistical Aerohydromechanics of Homogeneous and Heterogeneous Media: T. 2. Hydromechanics; NGASU: Novosibirsk, Russia, 2005; 468p. [Google Scholar]
- Ding, Y.; Chen, H.; Wang, L.; Yang, C.Y.; He, Y.; Yang, W.; Lee, W.P.; Zhang, L.; Huo, H. Heat transfer intensification using nanofluids. KONA Powder Part. J. 2007, 25, 23–38. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Xu, X.; Choi, S.U.S. Thermal conductivity of nanoparticlefluid mixture. J. Thermophys. Heat Trans. 1999, 13, 474–480. [Google Scholar] [CrossRef]
- Maxwell, J.C.A. Treatise on Electricity and Magnetism, 2nd ed.; Clarendon Press: Oxford, UK, 1881; Volume 1, 435p. [Google Scholar]
- Eastman, J.A.; Choi, S.U.S.; Li, S.; Thompson, L.J.; Lee, S. Enhanced thermal conductivity through the development of nanofluids. In Materials Research Society; FallMeeting: Boston, MA, USA, 1998; pp. 3–11. [Google Scholar]
- Ropyak, L.Y.; Shatskyi, I.P.; Prytula, I.M.; Gryn, L.O.; Belyakovskyi, V.O. Stressed state of laminated interference-absorption filter under local loading. Funct. Mater. 2020, 27, 638–642. [Google Scholar]
- Malanchuk, N.; Martynyak, R.; Monastyrskyy, B. Thermally induced local slip of contacting solids in vicinity of surface groove. Int. J. Solids Struct. 2011, 48, 1791–1797. [Google Scholar] [CrossRef] [Green Version]
- Balitskii, O.A.; Savchyn, V.P.; Savchyn, P.V. Thermal oxidation of indium and gallium sulphides. Phys. B Condens. Matter 2005, 355, 365–369. [Google Scholar] [CrossRef]
- Balitskii, O.; Borowiak-Palen, E.; Konicki, W. Synthesis and characterization of colloidal gallium selenide nanowires. Cryst. Res. Technol. 2011, 46, 417–420. [Google Scholar] [CrossRef]
- Balitskii, A.; Mochulskyi, V.; Ivaskevich, L.; Eliasz, J.; Skolozdra, O. Influence of high pressure and high temperature hydrogen on fracture toughness of Ni-containing steels and alloys. Arch. Mech. Eng. 2014, LXI, 129–138. [Google Scholar] [CrossRef] [Green Version]
- Balitskii, O.A. Recent energy targeted applications of localized surface plasmon resonance semiconductor nanocrystals: A mini-review. Mater. Today Energy 2021, 20, 100629. [Google Scholar] [CrossRef]
- Balitskii, O.A.; Kolesnikov, V.O.; Balitskii, A.I. Wear resistance of hydrogenated high nitrogen steel at dry and solid state lubricants assistant friction. Arch. Mater. Sci. Eng. 2019, 2, 57–67. [Google Scholar] [CrossRef]
- Balitskii, A.A.; Kolesnikov, V.A.; Vus, O.B. Tribotechnical properties of nitrogen manganese steels under rolling friction at addition of (GaSe)xIn1-x powders into contact zone. Metallofiz. I Noveishie Tekhnologii 2010, 32, 685–695. [Google Scholar]
- Osenin, Y.I.; Sosnov, I.I.; Chesnokov, A.V.; Antoshkina, L.I.; Osenin, Y.Y. Friction Unit of a Disc Brake Based on a Combination of Friction Materials. J. Frict. Wear 2019, 40, 293–296. [Google Scholar] [CrossRef]
- Osenin, Y.I.; Krivosheya, Y.V.; Chesnokov, A.V.; Antoshkin, V.K. Influence of the Mutual Overlapping Coefficient on the Process of a Disc Brake Squealing during Braking. J. Frict. Wear 2021, 42, 38–43. [Google Scholar] [CrossRef]
- Sander, D.E.; Allmaier, H.; Priebsch, H.H.; Witt, M.; Skiadas, A. Simulation of journal bearing friction in severe mixed lubrication—Validation and effect of surface smoothing due to running-in. Tribol. Int. 2016, 96, 173–183. [Google Scholar] [CrossRef] [Green Version]
- Balyts’kyi, O.I.; Kolesnikov, V.O. Investigation of wear products of high-nitrogen manganese steels. Mater. Sci. 2009, 45, 576–581. [Google Scholar] [CrossRef]
- Balyts’kyi, O.I.; Abramek, K.F.; Mruzik, M.; Shtoeck, T.; Osipowicz, T. Evaluation of the losses of hydrogen-containing gases in the process of wear of pistons of an internal-combustion engine. Mater. Sci. 2017, 53, 289–294. [Google Scholar] [CrossRef]
- Hu, S.; d’Ambrosio, S.; Finesso, R.; Manelli, A.; Marzano, M.R.; Mittica, A.; Ventura, L.; Wang, H.; Wang, Y. Comparison of physics-based, semi-empirical and neural network-based models for model-based combustion control in a 3.0 L diesel engine. Energies 2019, 12, 3423. [Google Scholar] [CrossRef] [Green Version]
- Dorscheidt, F.; Pischinger, S.; Claßen, J.; Sterlepper, S.; Krysmon, S.; Görgen, M.; Nijs, M.; Straszak, P.; Abdelkader, A.M. Development of a novel gasoline particulate filter loading method using a burner bench. Energies 2021, 14, 4914. [Google Scholar] [CrossRef]
- Żółtowski, A.; Gis, W. Ammonia emissions in SI engines fueled with LPG. Energies 2021, 14, 691. [Google Scholar] [CrossRef]
- Cubito, C.; Millo, F.; Boccardo, G.; Di Pierro, G.; Ciuffo, B.; Fontaras, G.; Serra, S.; Otura Garcia, M.; Trentadue, G. Impact of different driving cycles and operating conditions on CO2 emissions and energy management strategies of a Euro-6 hybrid electric vehicle. Energies 2017, 10, 1590. [Google Scholar] [CrossRef]
- Feru, E.; Willems, F.; De Jager, B.; Steinbuch, M. Modeling and control of a parallel waste heat recovery system for euro-VI heavy-duty diesel engines. Energies 2014, 7, 6571–6592. [Google Scholar] [CrossRef] [Green Version]
- Attaphong, C.; Sabatini, D.A. Phase Behaviors of vegetable oil-based microemulsion fuels: The effects of temperatures, surfactants, oils, and water in ethanol. Energy Fuels 2013, 27, 6773–6780. [Google Scholar] [CrossRef]
- Dmytrakh, I.M.; Leshchak, R.L.; Syrotyuk, A.M.; Barna, R.A. Effect of hydrogen concentration on fatigue crack growth behaviour in pipeline steel. Int. J. Hydrogen Energy 2017, 42, 6401–6408. [Google Scholar] [CrossRef]
- Belov, S.V. Environmental Protection; Higher School Publisher House: Moscow, Russia, 1991; 319p. [Google Scholar]
- Karpuschewski, B.; Welzel, F.; Risse, K.; Matthias Schorgel, M.; Kreter, S. Potentials for improving efficiency of combustion engines due to cylinder liner surface engineering. Procedia CIRP 2016, 46, 258–265. [Google Scholar] [CrossRef] [Green Version]
- Borowski, T.; Kulikowski, K.; Adamczyk-Cieślak, B.; Rożniatowski, K.; Spychalski, M.; Tarnowski, M. Influence of nitrided and nitrocarburised layers on the functional properties of nitrogen-doped soft carbon-based coatings deposited on 316L steel under DC glow-discharge conditions. Surf. Coat. Technol. 2020, 392, 125705. [Google Scholar] [CrossRef]
- Balyts’kyi, O.I.; Kolesnikov, V.O.; Eliasz, Y.; Havrylyuk, M.R. Specific features of the fracture of hydrogenated high-nitrogen manganese steels under conditions of rolling friction. Mater. Sci. 2015, 50, 604–611. [Google Scholar] [CrossRef]
- Balyts’kyi, O.I.; Kolesnikov, V.O.; Havrylyuk, M.R. Influence of lubricating liquid on the formation of the products of cutting of 38KhN3MFA steel. Mater. Sci. 2019, 54, 722–727. [Google Scholar] [CrossRef]
- Balyts’Kyi, O.I.; Kolesnikov, V.O.; Eliasz, J. Study of the wear resistance of high-nitrogen steels under dry sliding friction. Mater. Sci. 2013, 48, 642–646. [Google Scholar] [CrossRef]
- Balyts’kyi, O.I.; Kolesnikov, V.O.; Kubicki, E. Enhancement of the crack resistance of manganese cast irons. Mater. Sci. 2005, 41, 67–73. [Google Scholar] [CrossRef]
- Balyts’kyi, O.I.; Kolesnikov, V.O. Investigation of the wear products of austenitic manganese cast irons. Mater. Sci. 2004, 40, 78–82. [Google Scholar] [CrossRef]
- Balyts’kyi, O.I.; Chniel, J.; Dorobczynski, L. Analysis of electrochemical osciliations under conditions of vibration cavitation. Mater. Sci. 2011, 47, 21–25. [Google Scholar] [CrossRef]
- Balitskii, O.A.; Kolesnikov, V.O.; Balitskii, A.I.; Eliasz, J.J.; Havrylyuk, M.R. Hydrogen effect on the high-nickel surface steel properties during machining and wear with lubricants. Arch. Mater. Sci. Eng. 2020, 104, 49–57. [Google Scholar] [CrossRef]
- Kindrachuk, M.; Volchenko, D.; Balitskii, A.; Abramek, K.F.; Volchenko, M.; Balitskii, O.; Skrypnyk, V.; Zhuravlev, D.; Yurchuk, A.; Kolesnikov, V. Wear Resistance of spark ignition engine piston rings in hydrogen-containing environments. Energies 2021, 14, 4801. [Google Scholar] [CrossRef]
- Balitskii, O.; Kolesnikov, V. Identification of wear products in the automotive tribotechnical system using computer vision methods, artificial intelligence and big data. In Proceedings of the XIth International Scientific and Practical Conference on Electronics and Information Technologies (ELIT), Ukraine, Russia, 16–18 September 2019; pp. 24–27. [Google Scholar]
- Jamrozik, A.; Tutak, W.; Grab-Rogalski, K. Combusting stability, performance and emission characteristics of a CI engine fueled with diesel/n-butanol blends. Energies 2021, 14, 2817. [Google Scholar] [CrossRef]
- Kindrachuk, M.V.; Vol’chenko, D.A.; Vol’chenko, N.A.; Stebeletskaya, N.M.; Voznyi, A.V. Influence of hydrogen on the wear resistance of materials in the friction couples of braking units. Mater. Sci. 2017, 53, 282–288. [Google Scholar] [CrossRef]
- Hussain, A.; Arshad, M.; Rehman, A.; Hassan, A.; Elagan, S.K.; Ahmad, H.; Ishan, A. Three-dimensional water-based magneto-hydrodynamic rotating nanofluid flow over a linear extending sheet and heat transport analysis: A numerical approach. Energies 2021, 14, 5133. [Google Scholar] [CrossRef]
- Hayat, T.; Nadeem, S. An improvement in heat transfer for rotating flow of hybrid nanofluid: A numerical study. Can. J. Phys. 2018, 96, 1420–1430. [Google Scholar] [CrossRef]
- Hayat, T.; Nadeem, S.; Khan, A.U. Rotating flow of Ag-CuO/H2O hybrid nanofluid with radiation and partial slip boundary effects. Eur. Phys. J. E 2018, 41, 75. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, S.; Rehman, A.; Mehmood, R.; Sadiq, M. Partial Slip effects on a rotating flow of two phase nano fluid over a stretching surface. Curr. Nanosci. 2014, 10, 846–854. [Google Scholar] [CrossRef]
- Aslani, K.-E.; Mahabaleshwar, U.S.; Singh, J.; Sarris, I.E. Combined effect of radiation and inclined MHD flow of a micropolar fluid over a porous stretching/shrinking sheet with mass transpiration. Int. J. Appl. Comput. Math. 2021, 7, 60. [Google Scholar] [CrossRef]
- Bahiraei, M.; Hosseinalipour, S.M.; Hangi, M. Numerical study and optimization of hydrothermal characteristics of Mn–Zn ferrite nanofluid within annulus in the presence of magnetic field. J. Superconduct. Novel Magn. 2014, 27, 527–534. [Google Scholar] [CrossRef]
- Shahid, A.; Huang, H.L.; Khalique, C.M.; Bhatti, M.M. Numerical analysis of activation energy on MHD nanofluid flow with exponential temperature-dependent viscosity past a porous plate. J. Therm. Anal. Calorim. 2021, 143, 2585–2596. [Google Scholar] [CrossRef]
- Ahmad, S.; Nadeem, S.; Ullah, N. Entropy generation and temperature-dependent viscosity in the study of SWCNT–MWCNT hybrid nanofluid. Appl. Nanosci. 2020, 10, 5107–5511. [Google Scholar] [CrossRef]
- Rizwana, R.; Hussain, A.; Nadeem, S. Mix convection non- boundary layer flow of unsteady MHD oblique stagnation point flow of nanofluid. Int. Commun. Heat Mass Transf. 2021, 124, 105285. [Google Scholar] [CrossRef]
- Moustabchir, H.; Azari, Z.; Hairi, S.; Dmytrakh, I. Experimental and computed stress distribution ahead of notch in pressure vessel: Application of T-stress conception. Comput. Mater. Sci. 2012, 58, 59–66. [Google Scholar] [CrossRef]
- Shafiq, A.; Rasool, G.; Khalique, C.M. Significance of thermal slip and convective boundary conditions in three dimensional rotating darcy-forchheimer nanofluid flow. Symmetry 2020, 12, 741. [Google Scholar] [CrossRef]
- Waini, I.; Ishak, A.; Pop, I. Unsteady flow and heat transfer past a stretching/shrinking sheet in a hybrid nanofluid. Int. J. Heat Mass Transf. 2019, 136, 288–297. [Google Scholar] [CrossRef]
- Hussain, A.; Alshbool, M.H.; Abdussattar, A.; Rehman, A.; Ahmad, H.; Nofal, T.A.; Khan, M.R. A computational model for hybrid nanofluid flow on a rotating surface in the existence of convective condition. Case Stud. Therm. Eng. 2021, 27, 101089. [Google Scholar] [CrossRef]
- Hussain, A.; Hassan, A.; Al Mdallal, Q.; Ahmad, H.; Rehman, A.; Altanji, M.; Arshad, M. Heat transport investigation of magneto-hydrodynamics (SWCNT-MWCNT) hybrid nanofluid under the thermal radiation regime. Case Stud. Therm. Eng. 2021, 27, 101244. [Google Scholar] [CrossRef]
- Nasirzadehroshenin, F.; Sadeghzadeh, M.; Khadang, A.; Maddah, H.; Ahmadi, M.H.; Sakhaeinia, H.; Chen, L. Modeling of heat transfer performance of carbon nanotube nanofluid in a tube with fixed wall temperature by using ANN–GA. Eur. Phys. J. Plus 2020, 135, 217. [Google Scholar] [CrossRef]
- Sheikholeslami, M.; Bhatti, M. Active method for nanofluid heat transfer enhancement by means of EHD. Int. J. Heat Mass Transf. 2017, 109, 115–122. [Google Scholar] [CrossRef]
- Cheng, L. Nanofluid heat transfer technologies. Recent Pat. Eng. 2009, 3, 1–7. [Google Scholar] [CrossRef]
- Afrand, M. Using a magnetic field to reduce natural convection in a vertical cylindrical annulus. Int. J. Therm. Sci. 2017, 118, 12–23. [Google Scholar] [CrossRef]
- Choi, S.U.; Eastman, J.A. Enhancing Thermal Conductivity of Fluids with Nanoparticles; No. ANL/MSD/CP-84938, CONF-951135-29; Argonne National Laboratory: Lemont, IL, USA, 1995; 250p.
- Hussain, A.; Arshad, M.; Rehman, A.; Hassan, A.; Elagan, S.K.; Alshehri, N.A. Heat transmission of engine-oil-based rotating nanofluids flow with influence of partial slip condition: A Computational model. Energies 2021, 14, 3859. [Google Scholar] [CrossRef]
- Abbas, W.; Magdy, M.M. Heat and mass transfer analysis of nanofluid flow based on, and over a moving rotating plate and impact of various nanoparticle shapes. Math. Prob. Eng. 2020, 2020, 9606382. [Google Scholar] [CrossRef]
- Khan, N.S.; Shah, Q.; Bhaumik, A.; Kumam, P.; Thounthong, P.; Amiri, I. Entropy generation in bioconvec-tion nanofluid flow between two stretchable rotating disks. Sci. Rep. 2020, 10, 4448. [Google Scholar] [CrossRef]
- Elcioglu, E.B. A High-Accuracy Thermal conductivity model for water-based graphene nanoplatelet nanofluids. Energies 2021, 14, 5178. [Google Scholar] [CrossRef]
- Zhou, Y.; Cui, X.; Weng, J.; Shi, S.; Han, H.; Chen, C. Experimental investigation of the heat transfer performance of anos-cillating heat pipe with graphene nanofluids. Powder Technol. 2018, 332, 371–380. [Google Scholar] [CrossRef]
- Arzani, H.K.; Amiri, A.; Kazi, S.N.; Chew, B.T.; Badarudin, A. Experimental and numerical investigation of thermophysical properties, heat transfer and pressure drop of covalent and noncovalent functionalized graphene nanoplatelet-based water nanofluids in an annular heat exchanger. Int. Commun. Heat Mass Transf. 2015, 68, 267–275. [Google Scholar] [CrossRef]
- Keklikcioglu, O.; Dagdevir, T.; Ozceyhan, V. Heat transfer and pressure drop investigation of graphene nanoplatelet-water and titanium dioxide-water nanofluids in a horizontal tube. Appl. Therm. Eng. 2019, 162, 114256. [Google Scholar] [CrossRef]
- Iranmanesh, S.; Ong, H.C.; Ang, B.C.; Sadeghinezhad, E.; Esmaeilzadeh, A.; Mehrali, M. Thermal performance enhancement of an evacuated tube solar collector using graphene nanoplatelets nanofluid. J. Clean. Prod. 2017, 162, 121–129. [Google Scholar] [CrossRef]
- Sadeghinezhad, E.; Mehrali, M.; Rosen, M.A.; Akhiani, A.R.; Latibari, S.T.; Mehrali, M.; Metselaar, H.S.C. Experimental investigation of the effect of graphene nanofluids on heat pipe thermal performance. Appl. Therm. Eng. 2016, 100, 775–787. [Google Scholar] [CrossRef] [Green Version]
- Mehrali, M.; Sadeghinezhad, E.; Rosen, M.A.; Latibari, S.T.; Mehrali, M.; Metselaar, H.S.C.; Kazi, S.N. Effect of specific surface area on convective heat transfer of graphene nanoplate letaqueous nanofluids. Exp. Therm. FluidSci. 2015, 68, 100–108. [Google Scholar] [CrossRef]
- Ali, H.M.; Arshad, W. Effect of channel angle of pin-fin heat sink on heat transfer performance using water based graphene nanoplatelets nanofluids. Int. J. Heat Mass Transf. 2017, 106, 465–472. [Google Scholar] [CrossRef]
- Akhavan-Zanjani, H.; Saffar-Avval, M.; Mansourkiaei, M.; Sharif, F.; Ahadi, M. Experimental investigation of laminar forced convective heat transfer of graphene-water nanofluid inside a circular tube. Int. J. Therm. Sci. 2016, 100, 316–323. [Google Scholar] [CrossRef]
- Agromayor, R.; Cabaleiro, D.; Pardinas, A.A.; Vallejo, J.P.; Fernandez-Seara, J.; Lugo, L. Heat transfer performance of functionalized graphene nanoplatelet aqueous nanofluids. Materials 2016, 9, 455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nazari, M.A.; Ahmadi, M.H.; Sadeghzadeh, M.; Shafii, M.B.; Goodarzi, M. A review on application of nanofluid in various types of heat pipes. J. Cent. S. Univ. 2019, 26, 1021–1041. [Google Scholar] [CrossRef]
- Ganvir, R.B.; Walke, P.V.; Kriplani, V.M. Heat transfer characteristics in nanofluid—A review. Renew. Sustain. Energy Rev. 2017, 75, 451–460. [Google Scholar] [CrossRef]
- Sharma, A.K.; Tiwari, A.K.; Dixit, A.R. Progress of nanofluid application in machining: A Review. Mater. Manuf. Process. 2015, 30, 813–828. [Google Scholar] [CrossRef]
- Suleimanov, B.A.; Ismailov, F.S.; Veliyev, E.F. Nanofluid for enhanced oil recovery. J. Pet. Sci. Eng. 2011, 78, 431–437. [Google Scholar] [CrossRef]
- Le Ba, T.; Mahian, O.; Wongwises, S.; Szilágyi, I.M. Review on the recent progress in the preparation and stability of graphene- based nanofluids. J. Therm. Anal. Calorim. 2020, 142, 1145–1172. [Google Scholar] [CrossRef] [Green Version]
- Pavía, M.; Alajami, K.; Estellé, P.; Desforges, A.; Vigolo, B. A critical review on thermal conductivity enhancement of graphene- based nanofluids. Adv. Colloid Interface Sci. 2021, 294, 102452. [Google Scholar] [CrossRef]
- Mehrali, M.; Sadeghinezhad, E.; Latibari, S.T.; Kazi, S.N.; Mehrali, M.; Zubir, M.N.B.M.; Metselaar, H.S.C. Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets. Nanoscale Res. Lett. 2014, 9, 15. [Google Scholar] [CrossRef] [Green Version]
- Sarsam, W.S.; Amiri, A.; Zubir, M.N.M.; Yarmand, H.; Kazi, S.N.; Badarudin, A. Stability and thermophysical properties of water-based nanofluids containing triethanolamine-treated graphene nanoplatelets with different specific surface areas. Colloids Surfaces A Physicochem. Eng. Asp. 2016, 500, 17–31. [Google Scholar] [CrossRef]
- Yarmand, H.; Gharehkhani, S.; Shirazi, S.F.S.; Amiri, A.; Alehashem, M.S.; Dahari, M.; Kazi, S.N. Experimental investigation of thermo-physical properties, convective heat transfer and pressure drop of functionalized graphene nanoplatelets aqueous nanofluid in a square heated pipe. Energy Convers. Manag. 2016, 114, 38–49. [Google Scholar] [CrossRef]
- Khosrojerdi, S.; Vakili, M.; Yahyaei, M.; Kalhor, K. Thermal conductivity modeling of graphene nanoplatelets/deionized water nanofluid by MLP neural network and theoretical modeling using experimental results. Int. Commun. Heat Mass Transf. 2016, 74, 11–17. [Google Scholar] [CrossRef]
- Tahani, M.; Vakili, M.; Khosrojerdi, S. Experimental evaluation and ANN modeling of thermal conductivity of graphene oxide nanoplatelets/deionized water nanofluid. Int. Commun. Heat Mass Transf. 2016, 76, 358–365. [Google Scholar] [CrossRef]
- Bihun, R.I.; Stasyuk, Z.V.; Balitskii, O.A. Crossover from quantum to classical electron transport in ultrathin metal films. Physica B: Condensed Matter 2016, 487, 73–77. [Google Scholar] [CrossRef]
- Aksimentyeva, O.I.; Demchenko, P.Y.; Savchyn, V.P.; Balitskii, O.A. The chemical exfoliation phenomena in layered GaSe-polyaniline composite. Nanoscale Res. Lett. 2013, 8, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasmito, A.P.; Kurnia, J.C.; Mujumdar, A.S. Numerical evaluation of laminar heat transfer enhancement in nanofluid flow in coiled square tubes. Nanoscale Res. Lett. 2011, 6, 376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, S.U.S.; Eastman, J.A. Enhancing thermal conductivity of fluids with nanoparticles. Am. Soc. Mech. Eng. 1995, 231, 99–106. [Google Scholar]
- Teng, T.P.; Hung, Y.H.; Teng, T.C.; Mo, H.E.; Hsu, H.G. The effect of alumina/water nanofluid particle size on thermal conductivity. Appl. Therm. Eng. 2010, 30, 2213–2218. [Google Scholar] [CrossRef]
- Nallusamy, S. Characterization of Al2O3/water nanofluid through shell and tube heat exchangers over parallel and counter flow. J. Nano Res. 2017, 45, 155–163. [Google Scholar] [CrossRef]
- Haddad, Z.; Abid, C.; Oztop, F.H.; Mataoui, A. A review on how the researchers prepare their nanofluids. Int. J. Therm. Sci. 2014, 76, 168–189. [Google Scholar] [CrossRef]
- Sahin, B.; Gültekin, G.G.; Manay, E. Experimental investigation of heat transfer and pressure drop characteristics of Al2O3–water nanofluid. Exp. Therm. Fluid Sci. 2013, 50, 21–28. [Google Scholar] [CrossRef]
- Balyts’kyi, O.O. Elastic characteristics of laminated gallium and indium chalcogenides. Mater. Sci. 2004, 40, 706–709. [Google Scholar] [CrossRef]
- Chandrasekar, M.; Suresh, S.; Bose, A.C. Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid. Exp. Therm. Fluid Sci. 2010, 34, 210–216. [Google Scholar] [CrossRef]
- Roy, G.; Nguyen, C.T.; Lajoie, P.R. Numerical investigation of laminar flow and heat transfer in a radial flow cooling system with the use of nanofluids. Superlattices Microstruct. 2004, 35, 497–511. [Google Scholar] [CrossRef]
- Maıäga, S.; Nguyen, C.T.; Galanis, N. Heat transfer behaviours of nanofluids in a uniformly heated tube. Superlattices Microstruct. 2004, 35, 543–577. [Google Scholar] [CrossRef]
- Anoop, K.B.; Sundararajan, T.; Das, K.S. Effect of particle size on the convective heat transfer in nanofluid in the developing region. Int. J. Heat Mass Tran. 2009, 52, 2189–2195. [Google Scholar] [CrossRef]
- Timofeeva, E.V.; Yu, W.; France, M.D. Base fluid and temperature effects on the heat transfer characteristics of SiC in ethylene glycol/H2O and H2O nanofluids. J. Appl. Phys. 2011, 109, 014914. [Google Scholar] [CrossRef] [Green Version]
- Esfe, M.H.; Saedodin, S. Turbulent forced convection heat transfer and thermophysical properties of MgO–water nanofluid with consideration of different nanoparticles diameter, an empirical study. J. Therm. Anal. Calorim. 2015, 119, 1205–1213. [Google Scholar] [CrossRef]
- Arani, A.; Amani, J. Experimental investigation of diameter effect on heat transfer performance and pressure drop of TiO2–water nanofluid. Exp. Therm. Fluid Sci. 2013, 44, 520–533. [Google Scholar] [CrossRef]
- Dawood, H.K.; Mohammed, H.A.; Sidik, N.A.C. Heat transfer augmentation in concentric elliptic annular by ethylene glycol based nanofluids. Int. Commun. Heat Mass Transf. 2017, 82, 29–39. [Google Scholar] [CrossRef]
- Elsebay, M.; Elbadawy, I.; Shedid, M.H. Numerical resizing study of Al2O3 and CuO nanofluids in the flat tubes of a radiator. Appl. Math. Model. 2016, 40, 6437–6450. [Google Scholar] [CrossRef]
- Farajollahi, B.; Etemad, S.G.; Hojjat, M. Heat transfer of nanofluids in a shell and tube heat exchanger. Int. J. Heat Mass Tran. 2010, 53, 12–17. [Google Scholar] [CrossRef]
- Hayder, A.D.; Sinan, A.A.; Miqdam, T.C. Combustion analysis and performance characteristics of compression ignition engines with diesel fuel supplemented with nano-TiO2 and nano-Al2O3. Case Stud. Therm. Eng. 2020, 20, 100651. [Google Scholar]
- Nassir, A.K.; Shahad, H.A.K. Experimental study of a diesel engine performance fueled with different types of nano-fuel. J. Univ. Babylon Eng. Sci. 2018, 26, 36–57. [Google Scholar] [CrossRef]
- Balyts’kyi, O.I.; Kostyuk, I.F. Strength of welded joints of Cr-Mn steels with elevated content of nitrogen in hydrogen-containing media. Mater. Sci. 2009, 41, 97–107. [Google Scholar] [CrossRef]
- Chaichan, M.T. Performance and emissions characteristics of CIE using hydrogen, biodiesel, and massive EGR. Int. J. Hydrogen Energy 2018, 43, 5415–5435. [Google Scholar] [CrossRef]
- Soudagar, M.E.M.; Ghazali, N.N.; Kalam, M.A.; Badruddin, I.A.; Banapurmath, N.R.; Khan, T.M.; Bashir, Y.M.N.; Akram, N.; Farade, R.; Afzal, A. The effects of graphene oxide nanoparticle additive stably dispersed in dairy scum oil biodiesel-diesel fuel blend on CI engine: Performance, emission and combustion characteristics. Fuel 2019, 257, 116015. [Google Scholar] [CrossRef]
- Yaşar, A.; Keskin, A.; Yıldızhan, Ş.; Uludamar, E. Emission and vibration analysis of diesel engine fueled diesel fuel containing metallic based nanoparticles. Fuel 2019, 239, 1224–1230. [Google Scholar] [CrossRef]
- D’Silva, R.; Binu, K.G.; Bhat, T. Performance and Emission characteristics of a CI Engine fueled with diesel and TiO2 nanoparticles as fuel additive. Mater. Today Proc. 2015, 2, 3728–3735. [Google Scholar] [CrossRef]
- Karthikeyan, S.; Elango, A.; Prathima, A. Performance and emission study on zinc oxide nano particles addition with pomoplion stearin wax biodiesel of CI engine. J. Sci. Ind. Res. 2014, 73, 187–190. [Google Scholar]
- Tyagi, H.; Phelan, P.E.; Prasher, R.; Peck, R.; Lee, T.; Pacheco, J.R.; Arentzen, P. Increased hotplate ignition probability for nanoparticle-laden diesel fuel. Nano Lett. 2008, 8, 1410–1416. [Google Scholar] [CrossRef]
- Vellaiyana, S.; Subbiah, A.; Chockalingam, P. Multi-response optimization to improve the performance and emissions level of a diesel engine fueled with ZnO incorporated water emulsified soybean biodiesel/diesel fuel blends. Fuel 2019, 237, 1013–1020. [Google Scholar] [CrossRef]
- Srinidhia, C.; Madhusudhan, A.; Channapattana, S.V. Effect of NiO nanoparticles on performance and emission characteristics at various injection timings using biodiesel-diesel blends. Fuel 2019, 235, 185–193. [Google Scholar] [CrossRef]
- Saxena, V.; Kumar, N.; Saxena, V.K. A comprehensive review on combustion and stability aspects of metal nanoparticles and its additive effect on diesel and biodiesel fueled CI engine. Renew. Sustain. Energy Rev. 2017, 70, 563–588. [Google Scholar] [CrossRef]
- Soudagar, M.E.M.; Nik-Ghazali, N.N.; Kalam, M.A.; Badruddin, I.A.; Banapurmath, N.R.; Akram, N. The effect of nano-additives in diesel-biodiesel fuel blends: A comprehensive review on stability, engine performance and emission characteristics. Energy Convers. Manag. 2018, 178, 146–177. [Google Scholar] [CrossRef]
- Hamadi, A.S.; Dhahad, H.A.; Khidhir, A.G. An experimental investigation of Impact of ZrO2 nanoparticles in DI engine performance. Kirkuk Univ. J. Sci. Stud. (KUJSS) 2019, 14, 67–85. [Google Scholar] [CrossRef]
- Ekaab, N.S.; Hamza, N.H.; Chaichan, M.T. Performance and emitted pollutants assessment of diesel engine fueled with Biokerosene. Case Stud. Therm. Eng. 2019, 13, 100381. [Google Scholar] [CrossRef]
- Chaichan, M.T.; Kadhum, A.H.; Al-Amiery, A.A. Novel technique for enhancement of diesel fuel: Impact of aqueous alumina nano-fluid on engine’s performance and emissions. Case Stud. Therm. Eng. 2017, 10, 611–620. [Google Scholar] [CrossRef]
- Chaichan, M.T. Combustion and emission characteristics of E85 and diesel blend in conventional diesel engine operating in PPCI mode. Therm. Sci. Eng. Progr. 2018, 7, 45–53. [Google Scholar] [CrossRef]
- Alam, M.A.; Samad, U.A.; Khan, R.; Alam, M.; Al-Zahrani, S.M. Anti-corrosive performance of epoxy coatings containing various nano-particles for splash zone applications. Korean J. Chem. Eng. 2017, 34, 2301–2310. [Google Scholar] [CrossRef]
- Ganesh, V.; Shumaila, J.; Al-Mdallal, Q.M.; Kalaivanan, R.; Chamkha, A.J. Numerical study of heat generating γ Al2O3–H2O nanofluid inside a square cavity with multiple obstacles of different shapes. Heliyon 2020, 6, e05752. [Google Scholar] [CrossRef] [PubMed]
- Moghaieb, H.S.; Abdel-Hamid, H.M.; Shedid, M.H.; Helali, A.B. Engine cooling using Al2O3/water nanofluids. Appl. Therm. Eng. 2017, 115, 152–159. [Google Scholar] [CrossRef]
- Radwan, M.S.; Saleh, H.E.; Attai, Y.A.; Elsherbiny, M.S. On heat transfer enhancement in diesel engine cylinder head using γ-Al2O3/water nanofluid with different nanoparticle sizes. Adv. Mech. Eng. 2020, 12, 16878. [Google Scholar] [CrossRef] [Green Version]
- Nowrouzi, I.; Manshad, A.K.; Mohammadi, A.H. Effects of TiO2, MgO and γ-Al2O3 nano-particles on wettability alteration and oil production under carbonated nano-fluid imbibition in carbonate oil reservoirs. Fuel 2020, 259, 116110. [Google Scholar] [CrossRef]
- Abdul-Aziz, M.; Azza, H.; Ali, H.; Elkhatib, H.; Othman, S. Effect of operating parameters on the transient behavior of gravity-assisted heat-pipe using radio- chemically prepared γ Al2O3 nano-fluid. Adv. Powder Technol. 2016, 27, 1651–1662. [Google Scholar] [CrossRef]
- Bayomy, A.M.; Saghir, M.Z. Experimental study of using γ-Al2O3–water nanofluid flow through aluminium foam heat sink: Comparison with numerical approach. Int. J. Heat Mass Tran. 2017, 107, 181–203. [Google Scholar] [CrossRef]
- Vishnu Ganesh, N.; Abdul Hakeem, A.K.; Ganga, B. A comparative theoretical study on Al2O3 and γ-Al2O3 nanoparticles with different base fluids over a stretching sheet. Adv. Powder Technol. 2016, 27, 436–441. [Google Scholar] [CrossRef]
- Rashidi, M.M.; Vishnu Ganesh, N.; Abdul Hakeem, A.K.; Ganga, B.; Lorenzini, G. Influences of an effective Prandtl number model on nano boundary layer flow of γ Al2O3–H2O and γ Al2O3–C2H6O2 over a vertical stretching sheet. Int. J. Heat Mass Tran. 2016, 98, 616–623. [Google Scholar] [CrossRef]
- Vishnu, G.N.; Kameswaran, P.K.; Al-Mdallal, Q.M.; Hakeem, A.K.; Ganga, B. Non-linear thermal radiative Marangoni boundary layer flow of gamma Al2O3 nanofluids past a stretching sheet. J. Nanofluids 2018, 7, 944–950. [Google Scholar]
- Vishnu Ganesh, N.; Chamkha, A.J.; Al-Mdallal, Q.M.; Kameswaran, P.K. Magneto-Marangoni nano-boundary layer flow of water and ethylene glycol based γ Al2O3 nanofluids with non-linear thermal radiation effects. Case Stud. Thermal Eng. 2018, 12, 340–348. [Google Scholar] [CrossRef]
- Mahmoudi, A.I.; Mejri, M.A.; Abbassi, A.; Omri, A. Analysis of MHD natural convection in a nanofluid-filled open cavity with non uniform boundary condition in the presence of uniform heat generation/absorption. Powder Technol. 2015, 269, 275–289. [Google Scholar] [CrossRef]
- Rashad, A.M.; Rashidi, M.M.; Lorenzini, G.; Ahmed, S.E.; Aly, A.M. Magnetic field and internal heat generation effects on the free convection in a rectangular cavity filled with a porous medium saturated with Cu–water nanofluid. Int. J. Heat Mass Tran. 2017, 104, 878–889. [Google Scholar] [CrossRef]
- Selimefendigil, F.; Öztop, H.F. Mixed convection in a partially heated triangular cavity filled with nanofluid having a partially flexible wall and internal heat generation. J. Taiwan Inst. Chem. Eng. 2017, 70, 168–178. [Google Scholar] [CrossRef]
- Rashad, A.M.; Chamkha, A.J.; Ismael, M.A.; Salah, T. Magnetohydrodynamics natural convection in a triangular cavity filled with a Cu-Al2O3/water hybrid nanofluid with localized heating from below and internal heat generation. J. Heat Tran. 2018, 140, 072502. [Google Scholar] [CrossRef]
- Benos, L.; Sarris, I.E. Analytical study of the magnetohydrodynamic natural convection of a nanofluid filled horizontal shallow cavity with internal heat generation. Int. J. Heat Mass Tran. 2019, 130, 862–873. [Google Scholar] [CrossRef]
- Armaghani, T.; Chamkha, A.; Rashad, A.M.; Mansour, M.A. Inclined magneto: Convection, internal heat, and entropy generation of nanofluid in an I-shaped cavity saturated with porous media. J. Therm. Anal. Calorim. 2020, 142, 2273–2285. [Google Scholar] [CrossRef]
- Selimefendigil, F.; Öztop, H.F. Natural convection and entropy generation of nanofluid filled cavity having different shaped obstacles under the influence of magnetic field and internal heat generation. J. Taiwan Inst. Chem. Eng. 2015, 56, 42–56. [Google Scholar] [CrossRef]
- Sheikholeslami, M. Influence of magnetic field on Al2O3-H2O nanofluid forced convection heat transfer in a porous lid driven cavity with hot sphere obstacle by means of LBM. J. Mol. Liq. 2018, 263, 472–488. [Google Scholar] [CrossRef]
- Hamid, M.; Khan, Z.H.; Khan, W.A.; Haq, R.U. Natural convection of water-based carbon nanotubes in a partially heated rectangular fin-shaped cavity with an inner cylindrical obstacle. Phys. Fluids 2019, 31, 103607. [Google Scholar] [CrossRef]
- Alkanhal, T.A.; Sheikholeslami, M.; Usman, M.; Haq, R.U.; Shafee, A.; Al-Ahmadi, A.S.; Tlili, I. Thermal management of MHD nanofluid within the porous medium enclosed in a wavy shaped cavity with square obstacle in the presence of radiation heat source. Int. J. Heat Mass Tran. 2019, 139, 87–94. [Google Scholar] [CrossRef]
- Usman, M.; Khan, Z.H.; Liu, M.B. MHD natural convection and thermal control inside a cavity with obstacles under the radiation effects. Phys. Stat. Mech. Appl. 2019, 535, 122443. [Google Scholar] [CrossRef]
- Selimefendigil, F.; Öztop, H.F. Control of natural convection in a CNT-water nanofluid filled 3D cavity by using an inner T-shaped obstacle and thermoelectric cooler. Int. J. Mech. Sci. 2020, 169, 105104. [Google Scholar] [CrossRef]
- Azizul, F.M.; Alsabery, A.I.; Hashim, I. Heatlines visualisation of mixed convection flow in a wavy heated cavity filled with nanofluids and having an inner solid block. Int. J. Mech. Sci. 2020, 175, 105529. [Google Scholar] [CrossRef]
- Rehman, K.U.; Al-Mdallal, Q.M.; Tlili, I.; Malik, M.Y. Impact of heated triangular ribs on hydrodynamic forces in a rectangular domain with heated elliptic cylinder: Finite element analysis. Int. Commun. Heat Mass Tran. 2020, 112, 104501. [Google Scholar] [CrossRef]
- Rehman, K.U.; Al-Mdallal, Q.M.; Qaiser, A.; Malik, M.Y.; Ahmed, M.N. Finite element e amination of hydrodynamic forces in grooved channel having two partially heated circular cylinders. Case Stud. Thermal Eng. 2020, 18, 100600. [Google Scholar] [CrossRef]
- Rehman, K.U.; Al-Mdallal, Q.M. On partially heated circular obstacle in a channel having heated rectangular ribs: Finite element outcomes. Case Stud. Thermal Eng. 2020, 18, 100597. [Google Scholar] [CrossRef]
- Karbalaei, A.; Cho, H.J. Passive mixing rate of trapped squeezed nanodroplets—A time scale analysis. Exp. Comput. Multiph. Flow 2020, 2, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Vierecki, F.; Schleicher, E.; Schuster, C.; Lippmann, W.; Hurtado, A. Experimental and theoretical investigation of the boiling heat transfer in a low-pressure natural circulation system. Exp. Comput. Multiph. Flow 2019, 1, 286–299. [Google Scholar] [CrossRef] [Green Version]
- Behzad, M.; Botlani Esfahani, S.; Sajadi, M.; Baleanu, D. The effect of sedimentation phenomenon of the additives silver nano particles on water pool boiling heat transfer coefficient: A comprehensive experimental study. J. Mol. Liq. 2021, 345, 117891. [Google Scholar]
- Choi, E.S.; Brooks, J.S.; Eaton, D.L.; Al-Haik, M.S.; Hussiani, M.Y.; Garmestani, H.; Li, D.; Dahmen, K. Enchancement of thermal and ekectrical properties of carbon nanotube polymer composites by magnetic field processing. J. Appl. Phys. 2003, 94, 6034–6039. [Google Scholar] [CrossRef]
- Chien-Chih, L.; Jenn-Gwo, H. Performance enhancement of metal-oxidesemiconductor tunneling temperature sensors with nanoscale oxides by employing ultrathin Al2O3 high-k dielectrics. Nanoscale 2013, 5, 8090. [Google Scholar]
- Heris, S.Z.; Etemad, S.G.; Esfahany, M.N. Experimental investigation of oxide nanofluids laminar flow convective heat transfer. Int. Commun. Heat Mass 2006, 33, 529–535. [Google Scholar] [CrossRef]
- Peng-Cheng, P.; Chen Xiaolong, C.; LiuJames, L.; Hedrick Zhuang, H.; Shunzhi, X.; Qing-Yuan, W.; Lin-Mark, C.; Hersam Vinayak, P.; Chad, D.; Mirkin, A. Polyelemental nanoparticle libraries. Science 2016, 352, 1565–1569. [Google Scholar]
- Alaraji, K.M.; Hachim, D.M.; Almoussawi, M.A. Nano-Fluids as a Coolant for Automotive Engine Radiators: Review Study. J. Innov. Mech. Sustain. Energy Eng. (FJIMSE) 2021, 1, 28–50. [Google Scholar]
- Zhao, N.; Li, S.; Yang, J. A review on nanofluids: Data-driven modeling of thermal physical properties and the application in automotive radiator. Renew. Sustain. Energy Rev. 2016, 66, 596–616. [Google Scholar] [CrossRef]
- Angadi, V.M.; Nagaraj, R.; Hebbal, O.D. CFD Analysis of heat transfer enhancement of a car radiator using nanofluid as a coolant. Int. J. Eng. Res. Technol. 2014, 3, 1058–1063. [Google Scholar]
- Said, Z. Enhancing the performance of automotive radiators using nanofluids. Renew. Sustain. Energy Rev. 2019, 112, 183–194. [Google Scholar] [CrossRef]
- Tafakhori, M.; Kalantari, D.; Biparva, P.; Peyghambarzadeh, S.M. Assessment of Fe3O4–water nanofluid for enhancing laminar convective heat transfer in a car radiator. J. Therm. Anal. Calorim. 2020, 146, 841–853. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Farhadi, M.; Sedighi, K.; Akbarzade, S. Experimental investigation of force convection heat transfer in a car radiator filled with SiO2-water nanofluid. Int. J. Eng. Trans. B Appl. 2014, 27, 333–340. [Google Scholar] [CrossRef]
- Nieh, H.M.; Teng, T.P.; Yu, C.C. Enhanced heat dissipation of a radiator using oxide nano coolant. Int. J. Therm. Sci. 2014, 77, 252–261. [Google Scholar] [CrossRef]
- Hussein, A.M.; Bakar, R.A.; Kadirgama, K. Study of forced convection nanofluid heat transfer in the automotive cooling system. Case Stud. Therm. Eng. 2014, 2, 50–61. [Google Scholar] [CrossRef] [Green Version]
- Balyts’kyi, O.I.; Ivaskevich, L.M.; Mochylskii, V.M. Mechanical properties of martensitic steels in gaseous hydrogen. Strength Mater. 2012, 44, 64–73. [Google Scholar] [CrossRef]
- Tkachev, V.I.; Levina, I.M.; Ivas’kevych, L.M. Distinctive features of hydrogen degradation of heat-resistant alloys based on nickel. Mater. Sci. 1997, 33, 524–531. [Google Scholar] [CrossRef]
- Peyghambarzadeh, S.M.; Hashemabadi, S.H.; Naraki, M.; Vermahmoudi, Y. Experimental study of overall heat transfer coefficient in the application of dilute nanofluids in the car radiator. Appl. Therm. Eng. 2013, 52, 8–16. [Google Scholar] [CrossRef]
- Heris, S.Z.; Shokrgozar, M.; Poorpharhang, S.; Shanbedi, M.; Noie, S.H. Experimental study of heat transfer of a car radiator with CuO/Ethylene Glycol-water as a coolant. J. Dispers. Sci. Technol. 2014, 35, 677–684. [Google Scholar] [CrossRef]
- Ali, H.M.; Azhar, M.D.; Saleem, M.; Saeed, Q.S.; Saieed, A. Heat transfer enhancement of car radiator using aqua-based magnesium oxide nanofluids. Therm. Sci. 2015, 19, 2039–2048. [Google Scholar] [CrossRef]
- Teng, T.P.; Yu, C.C. Heat dissipation performance of MWCNTs nano-coolant for vehicle. Exp. Therm. Fluid Sci. 2013, 49, 22–30. [Google Scholar] [CrossRef]
- Hussein, A.M.; Bakar, R.A.; Kadirgama, K.; Sharma, K.V. Heat transfer augmentation of a car radiator using nanofluids. Heat Mass Transf. Stoffuebertragung 2014, 50, 1553–1561. [Google Scholar] [CrossRef] [Green Version]
- Che Sidik, N.A.C.; Yazid, M.N.A.W.M.; Mamat, R. A review on the application of nanofluids in vehicle engine cooling system. Int. Commun. Heat Mass Transf. 2015, 68, 85–90. [Google Scholar] [CrossRef] [Green Version]
- Mohammadreza, A.; Ommi, F. Using nanofluid for heat transfer enhancement in engine cooling process. J. Nano Energy Power Res. 2013, 2, 132–134. [Google Scholar]
- Moita, A.; Moreira, A.; Pereira, J. Nanofluids for the next generation thermal management of electronics: A Review. Symmetry 2021, 13, 1362. [Google Scholar] [CrossRef]
Material of nanoparticles | Thermal conductivity coefficient | λ, W/(m·K) | |
Aluminum, Al | 237 | ||
Aluminum oxide, Al2O3 | 40 | ||
Cooper, Cu | 401 | ||
Copper oxide, CuO | 76.5 | ||
Carborundum, SiC | 120 | ||
Aurum, Au | 318 | ||
Carbon nanotubes | ~3000 | ||
Graphene oxide | ~3500 | ||
Graphene | ~3000–5000 |
φm, % s, m2/g | Thermal Conductivity Coefficient λ, W/(m·K) | |||
0.025 | 0.05 | 0.075 | 0.1 | |
300 | 0.66 | 0.68 | 0.70 | 0.72 |
500 | 0.69 | 0.72 | 0.74 | 0.77 |
750 | 0.71 | 0.75 | 0.77 | 0.80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balitskii, A.; Kindrachuk, M.; Volchenko, D.; Abramek, K.F.; Balitskii, O.; Skrypnyk, V.; Zhuravlev, D.; Bekish, I.; Ostashuk, M.; Kolesnikov, V. Hydrogen Containing Nanofluids in the Spark Engine’s Cylinder Head Cooling System. Energies 2022, 15, 59. https://doi.org/10.3390/en15010059
Balitskii A, Kindrachuk M, Volchenko D, Abramek KF, Balitskii O, Skrypnyk V, Zhuravlev D, Bekish I, Ostashuk M, Kolesnikov V. Hydrogen Containing Nanofluids in the Spark Engine’s Cylinder Head Cooling System. Energies. 2022; 15(1):59. https://doi.org/10.3390/en15010059
Chicago/Turabian StyleBalitskii, Alexander, Myroslav Kindrachuk, Dmytro Volchenko, Karol F. Abramek, Olexiy Balitskii, Vasyl Skrypnyk, Dmytro Zhuravlev, Iryna Bekish, Mykola Ostashuk, and Valerii Kolesnikov. 2022. "Hydrogen Containing Nanofluids in the Spark Engine’s Cylinder Head Cooling System" Energies 15, no. 1: 59. https://doi.org/10.3390/en15010059
APA StyleBalitskii, A., Kindrachuk, M., Volchenko, D., Abramek, K. F., Balitskii, O., Skrypnyk, V., Zhuravlev, D., Bekish, I., Ostashuk, M., & Kolesnikov, V. (2022). Hydrogen Containing Nanofluids in the Spark Engine’s Cylinder Head Cooling System. Energies, 15(1), 59. https://doi.org/10.3390/en15010059