Microwave Soil Heating Promotes Strawberry Runner Production and Progeny Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Statistical Analyses
2.2. Experiments 1 & 2—Field Experiments
2.3. Experiment 3—Pot Experiment to Assess Impacts of Different Soil Treatments
2.4. Experiment 4—On-Growing of Runners from the Second Field Experiment
3. Results
3.1. Field Experiments
3.2. Experiment 3—Pot Experiment to Assess Impacts of Different Soil Treatments
3.3. Experiment 4—On-Growing of Runners from the Second Field Experiment
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Porter, I.J.; Mattner, S.W.; Mann, R.C.; Gounder, R.K. Strawberry nurseries: Summaries of alternatives and trials in different geographic regions. Acta Hortic. 2006, 708, 187–192. [Google Scholar] [CrossRef]
- Porter, I.J.; Banks, J.; Mattner, S.W.; Fraser, P. Global phaseout of methyl bromide under the Montreal Protocol: Implications for bioprotection, biosecurity and the ozone layer. In Recent Developments in Management of Plant Diseases. Plant Pathology in the 21st Century; Gisi, U., Chet, I., Gullino, M., Eds.; Springer: Dordrecht, The Netherlands, 2010; Volume 1. [Google Scholar] [CrossRef]
- Mattner, S.W.; Milinkovic, M.; Merriman, P.R.; Porter, I.J. Critical challenges for the phase-out of methyl bromide in the Australian strawberry industry. Acta Hortic. 2014, 1044, 367–373. [Google Scholar] [CrossRef]
- Wilhelm, S.; Paulus, A.O. How soil fumigation benefits the California strawberry industry. Plant Dis. 1980, 64, 264–270. [Google Scholar]
- Ozone Secretariat: United Nations Environment Programme. The Montreal Protocol on Substances that Deplete the Ozone Layer; United Nations Environment Programme: Nairobi, Kenya, 2000. [Google Scholar]
- Mattner, S.W.; Porter, I.J.; Gounder, R.K.; Mann, R.C.; Guijarro, B.; Williams, E.N. Maintaining biosecurity and market access in the Australian strawberry industry following methyl bromide phase-out. Acta Hortic. 2010, 883, 99–106. [Google Scholar] [CrossRef]
- Lepeschkin, W.W. Zur Kenntnis der Einwirkung supamaximaler Temperaturen auf die Pflanze. Ber. Der Dtsch. Bot. Ges. 1912, 30, 713–714. [Google Scholar]
- Shlevin, E.; Saguy, I.S.; Mahrer, Y.; Katan, J. Modeling the Survival of Two Soilborne Pathogens Under Dry Structural Solarization. Phytopathology 2003, 93, 1247–1257. [Google Scholar] [CrossRef]
- Trevisani, M.; Mancusi, R.; Valero, A. Thermal inactivation kinetics of shiga toxin-producing Escherichia coli in buffalo mozzarella curd. J. Dairy Sci. 2014, 97, 642–650. [Google Scholar] [CrossRef] [Green Version]
- Noling, J.W. Relative lethal dose, a Time-Temperature model for relating soil solarization efficacy and treatment duration for nematode control. In Proceedings of the Methyl Bromide Alternative Outreach, San Diego, CA, USA, 11–12 November 2019; pp. 17-11–17-14. [Google Scholar]
- Samtani, J.B.; Gilbert, C.; Ben Weber, J.; Subbarao, K.V.; Goodhue, R.E.; Fennimore, S.A. Effect of Steam and Solarization Treatments on Pest Control, Strawberry Yield, and Economic Returns Relative to Methyl Bromide Fumigation. HortScience 2012, 47, 64–70. [Google Scholar] [CrossRef] [Green Version]
- Pullman, G.S.; DeVay, J.E.; Garber, R.H. Soil solarization and thermal death: A logarithmic relationship between time and temperature for four soilborne plant pathogens. Phytopathology 1981, 71, 959–964. [Google Scholar] [CrossRef]
- Johnson, J. Soil-steaming for disease control. Soil Sci. 1946, 61, 83–92. [Google Scholar] [CrossRef]
- Fennimore, S.; Goodhue, R. Estimated Costs to Disinfest Soil with Steam. Fuel 2009, 66, 1–301. [Google Scholar]
- Weststeijn, G. Soil sterilization and glasshouse disinfection to control Fusarium oxysporum f.sp. lycopersici in tomatoes in the Netherlands. Neth. J. Plant Pathol. 1973, 79, 36–40. [Google Scholar] [CrossRef]
- Samtani, J.B.; Ajwa, H.A.; Weber, J.B.; Browne, G.T.; Klose, S.; Hunzie, J.; Fennimore, S.A. Evaluation of non-fumigant alternatives to methyl bromide for weed control and crop yield in California strawberries (Fragaria ananassa L.). Crop Prot. 2011, 30, 45–51. [Google Scholar] [CrossRef]
- Fennimore, S.A.; Martin, F.N.; Miller, T.C.; Broome, J.C.; Dorn, N.; Greene, I. Evaluation of a Mobile Steam Applicator for Soil Disinfestation in California Strawberry. HortScience 2014, 49, 1542–1549. [Google Scholar] [CrossRef]
- Kim, D.S.; Kim, S.; Fennimore, S.A. Evaluation of broadcast steam application with mustard seed meal in fruiting strawberry. HortScience 2021, 56, 500–505. [Google Scholar] [CrossRef]
- Meszka, B.; Malusà, E. Effects of soil disinfection on health status, growth and yield of strawberry stock plants. Crop Prot. 2014, 63, 113–119. [Google Scholar] [CrossRef]
- Kothari, V.; Dholiya, K.; Pate, D. Effect of Low Power Microwave on Microbial Growth and Metabolism; GRIN Verlag: Munich, Gemany, 2012. [Google Scholar]
- Banik, S.; Bandyopadhyay, S.; Ganguly, S. Bioeffects of microwave—A brief review. Bioresour. Technol. 2003, 87, 155–159. [Google Scholar] [CrossRef]
- Brodie, G. Applications of Microwave Heating in Agricultural and Forestry Related Industries. In The Development and Application of Microwave Heating; Cao, W., Ed.; InTech: Rijeka, Croatia, 2012; pp. 45–78. [Google Scholar]
- Brodie, G. The influence of load geometry on temperature distribution during microwave heating. Trans. Am. Soc. Agric. Biol. Eng. 2008, 51, 1401–1413. [Google Scholar] [CrossRef]
- Metaxas, A.C.; Meredith, R.J. Industrial Microwave Heating; Peter Peregrinus: London, UK, 1983. [Google Scholar]
- Totsche, K.U.; Amelung, W.; Gerzabek, M.H.; Guggenberger, G.; Klumpp, E.; Knief, C.; Lehndorff, E.; Mikutta, R.; Peth, S.; Prechtel, A.; et al. Microaggregates in soils. J. Plant Nutr. Soil Sci. 2018, 181, 104–136. [Google Scholar] [CrossRef] [Green Version]
- Tran, V.N. Effects of Microwave Energy on the Strophiole, Seed Coat and Germination of Acacia Seeds. Aust. J. Plant Physiol. 1979, 6, 277–287. [Google Scholar]
- Nelson, S.O.; Stetson, L.E. Germination responses of selected plant species to RF electrical seed treatment. Trans. ASAE 1985, 28, 2051–2058. [Google Scholar] [CrossRef]
- Ark, P.A.; Parry, W. Application of High-Frequency Electrostatic Fields in Agriculture. Q. Rev. Biol. 1940, 15, 172–191. [Google Scholar] [CrossRef]
- Bebawi, F.F.; Cooper, A.P.; Brodie, G.I.; Madigan, B.A.; Vitelli, J.S.; Worsley, K.J.; Davis, K.M. Effect of microwave radiation on seed mortality of rubber vine (Cryptostegia grandiflora R.Br.), parthenium (Parthenium hysterophorous L.) and bellyache bush (Jatropha gossypiifolia L.). Plant Prot. Q. 2007, 22, 136–142. [Google Scholar]
- Brodie, G.; Harris, G.; Pasma, L.; Travers, A.; Leyson, D.; Lancaster, C.; Woodworth, J. Microwave soil heating for controlling ryegrass seed germination. Trans. Am. Soc. Agric. Biol. Eng. 2009, 52, 295–302. [Google Scholar] [CrossRef]
- Davis, F.S.; Wayland, J.R.; Merkle, M.G. Ultrahigh-Frequency Electromagnetic Fields for Weed Control: Phytotoxicity and Selectivity. Science 1971, 173, 535–537. [Google Scholar] [CrossRef]
- Davis, F.S.; Wayland, J.R.; Merkle, M.G. Phytotoxicity of a UHF Electromagnetic Field. Nature 1973, 241, 291–292. [Google Scholar] [CrossRef]
- Ferriss, R.S. Effects of microwave oven treatment on microorganisms in soil. Phytopathology 1984, 74, 121–126. [Google Scholar] [CrossRef]
- Khan, M.J.; Jurburg, S.D.; He, J.; Brodie, G.; Gupta, D. Impact of microwave disinfestation treatments on the bacterial communities of no-till agricultural soils. Eur. J. Soil Sci. 2019, 71, 1006–1017. [Google Scholar] [CrossRef]
- Gibson, B.F.; Frances, M.F.; Deacon, J.W. Effects of microwave treatment of soil on growth of birch (Betula pendula) seedlings and infection of them by ectomycorrhizal fungi. New Phytol. 1988, 108, 189–204. [Google Scholar] [CrossRef]
- Maynaud, G.; Baudoin, E.; Bourillon, J.; Duponnois, R.; Cleyet-Marel, J.-C.; Brunel, B. Short-term effect of 915-MHz microwave treatments on soil physicochemical and biological properties. Eur. J. Soil Sci. 2019, 70, 443–453. [Google Scholar] [CrossRef]
- LéVesque, C.A.; De Cock, A.W.A.M. Molecular phylogeny and taxonomy of the genus. Pythium. Mycol. Res. 2004, 108, 1363–1383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ophel-Keller, K.; McKay, A.; Hartley, D.; Herdina, H.; Curran, J. Development of a routine DNA-based testing service for soilborne diseases in Australia. Australas. Plant Pathol. 2008, 37, 243–253. [Google Scholar] [CrossRef]
- Haling, R.E.; Simpson, R.J.; McKay, A.C.; Hartley, D.; Lambers, D.; Opel-Keller, K.; Wiebkin, S.; Riley, I.T.; Richardson, A.E. Direct measurement of roots in soil for single and mixed species using a quantitative DNA-based method. Plant Soil 2011, 348, 123–137. [Google Scholar] [CrossRef]
- Wing, K.B.; Pritts, M.P.; Wilcox, W.F. Biotic, edaphic, and cultural factors associated with strawberry black root rot in New York. HortScience 1995, 30, 86–90. [Google Scholar] [CrossRef] [Green Version]
- Brodie, G.; Khan, M.J.; Gupta, D. Microwave Soil Treatment and Plant Growth. In Sustainable Crop Production; Filho, M.C.M.T., Hasanuzzaman, M., Eds.; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Brodie, G.; Gupta, D.; Khan, M.J. Microwave Treatment of Soil for Weed and Pathogen Control. Nov. Tech. Nutr. Food Sci. 2021, 6, 530–532. [Google Scholar] [CrossRef]
- Brodie, G.; Torgovnikov, G. Microwave Soil Heating with Evanescent Fields from Slow-Wave Comb and Ceramic Applicators. Energies 2022, 15, 1068. [Google Scholar] [CrossRef]
- Porter, I.J.; Brett, R.W.; Mattner, S.W.; Donohoe, H.E. Implications of the increased growth response after fumigation on future crop protection and production strategies. Acta Hortic. 2005, 698, 229–238. [Google Scholar] [CrossRef]
- Speir, T.W.; Cowling, J.C.; Sparling, G.P.; West, A.W.; Corderoy, D.M. Effects of microwave radiation on the microbial biomass, phosphatase activity and levels of extractable N and P in a low fertility soil under pasture. Soil Biol. Biochem. 1986, 18, 377–382. [Google Scholar] [CrossRef]
- Khan, M.J.; Brodie, G. Soil Modifications. In Agritech: Innovative Agriculture Using Microwaves and Plasmas: Thermal and Non-Thermal Processing; Horikoshi, S., Brodie, G., Takaki, K., Serpone, N., Eds.; Springer: Singapore, 2022; pp. 133–146. [Google Scholar] [CrossRef]
- Shirvanimoghaddam, K.; Czech, B.; Abdikheibari, S.; Brodie, G.; Kończak, M.; Krzyszczak, A.; Al-Othman, A.; Naebe, M. Microwave synthesis of biochar for environmental applications. J. Anal. Appl. Pyrolysis 2022, 161, 105415. [Google Scholar] [CrossRef]
Pathogen | Treatment | Experiment 1 (2016/17) | Experiment 2 (2019/20) | ||||
---|---|---|---|---|---|---|---|
2.5 cm | 5 cm | 10 cm | 2.5 cm | 5 cm | 10 cm | ||
F. oxysporum | Untreated | 98.0 a | 100.0 a | 98.0 a | 100.0 a | 96.7 a | 100.0 a |
Microwave | 7.0 b | 57.0 b | 87.0 b | 23.3 b | 56.7 b | 90.0 a | |
LSD (p = 0.05) | 10.5 | 27.5 | |||||
S. rolfsii | Untreated | 98.0 a | 99.0 a | 96.0 a | 93.3 a | 96.7 a | 96.7 a |
Microwave | 32.0 b | 29.0 b | 71.0 b | 0.0 b | 6.7 b | 70.0 b | |
LSD (p = 0.05) | 9.2 | 14.8 |
Pathogen | Treatment | Experiment 1 (2016/17) | Experiment 2 (2019/20) | ||||
---|---|---|---|---|---|---|---|
2.5 cm | 5 cm | 10 cm | 2.5 cm | 5 cm | 10 cm | ||
F. oxysporum | Untreated | 30.12 a | 32.45 a | 32.07 a | 29.23 a | 28.54 a | 28.23 a |
Microwave | 5.28 b | 16.54 b | 22.45 b | 5.27 b | 9.26 b | 18.46 b | |
LSD (p = 0.05) | 4.11 | 3.07 | |||||
S. rolfsii | Untreated | 33.23 a | 33.66 a | 33.13 a | 34.17 a | 35.86 a | 34.58 a |
Microwave | 13.64 b | 17.34 b | 27.41 b | 0.00 b | 1.12 b | 14.32 b | |
LSD (p = 0.05) | 4.82 | 3.91 |
Assessment Time | Treatment | Experiment 1 (2016/17) | Experiment 2 (2019/20) | ||||
---|---|---|---|---|---|---|---|
2.5–5 cm | 5–10 cm | 10–15 cm | 2.5–5 cm | 5–10 cm | 10–15 cm | ||
Planting | Untreated | 2.31 a | 2.45 a | 2.70 a | 2.25 a | 2.40 a | 2.41 a |
Microwave | 1.76 b | 2.13 a | 2.37 a | 1.96 b | 2.05 b | 2.16 b | |
LSD (p = 0.05) | 0.34 | 0.03 | |||||
Harvest | Untreated | 2.11 a | 2.03 a | 2.50 a | 2.18 a | 2.23 a | 2.27 b |
Microwave | 1.94 a | 1.83 a | 2.40 a | 1.89 b | 1.97 b | 2.38 a | |
LSD (p = 0.05) | 0.37 | 0.16 |
Year | Treatment | Runner Yield m−1 of row | Runner Crown Diameter (mm) | Black Root Score (0–5) |
---|---|---|---|---|
Experiment 1 (2016/17) | Untreated | 83.5 b | 10.35 a | 0.72 a |
Microwave | 91.9 a | 11.13 a | 0.45 a | |
LSD (p = 0.05) | 7.0 | 0.99 | 0.40 | |
Experiment 2 (2019/20) | Untreated | 53.8 b | 8.33 a | 2.03 a |
Microwave | 74.0 a | 7.84 a | 2.34 a | |
LSD (p = 0.05) | 10.5 | 1.05 | 0.83 |
Treatment | Parameter | |||||
---|---|---|---|---|---|---|
No. of Stolons | Length of Stolons (cm) | Stolon Fresh Weight (g) | No. of Daughter Plants | No. of Fruit | Fruit Fresh Weight per Pot (g) | |
Control | 1.2 a | 48.0 | 7.5 ab | 1.2 a | 2.5 a | 14.9 b |
Steamed | 0.7 a | 36.1 | 4.0 a | 0.9 a | 1.6 a | 5.8 a |
Fumigated | 2.2 b | 82.4 | 17.6 c | 3.0 b | 2.6 a | 14.6 b |
Microwaved | 2.1 b | 43.8 | 10.2 b | 2.3 b | 5.0 b | 21.5 b |
LSD (p = 0.05): | 0.7 | 35.0 | 5.2 | 1.0 | 1.6 | 7.4 |
Source of Mother Plants | Treatment Imposed on Pots | Parameter | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Number of Weeds (pot−1) | Weight of Weeds (g pot−1) | Number of Stolons (pot−1) | Total Stolon Length (mm) | Number of Daughter Plants per Pot | Weight of Stolons and Daughter Plants (g pot−1) | Number of Mature Fruit (pot−1) | Fruit Weight (g pot−1) | Fruit Size (g) | ||
Untreated Soil | Untreated Soil | 11.1 a | 16.5 b | 2.8 ab | 2638.5 b | 5.0 b | 10.6 a | 6.6 ab | 53.0 b | 7.1 b |
Fumigated Soil | 2.7 c | 2.9 bc | 2.4 b | 2390.0 b | 4.4 b | 11.8 a | 5.9 b | 57.0 b | 11.9 a | |
Steamed Soil | 4.6 b | 8.7 bc | 2.5 b | 2330.4 b | 5.0 b | 10.7 a | 6.9 ab | 61.5 ab | 8.2 b | |
Microwave Heated Soil | 2.7 c | 3.2 bc | 3.5 a | 2834.0 b | 6.6 a | 12.4 a | 4.6 b | 44.1 b | 8.0 b | |
Fumigated Soil | Untreated Soil | 11.2 a | 24.4 a | 3.2 ab | 2955.7 b | 6.0 ab | 8.6 bc | 8.5 a | 75.0 a | 8.6 b |
Fumigated Soil | 3.0 c | 2.3 c | 3.0 ab | 3145.0 b | 6.6 a | 6.2 c | 7.9 a | 60.2 ab | 7.2 b | |
Steamed Soil | 5.8 b | 8.2 c | 2.8 ab | 2682.5 b | 5.8 b | 10.6 a | 6.3 ab | 47.8 b | 6.4 b | |
Microwave Heated Soil | 1.6 c | 2.0 c | 2.4 b | 3545.0 ab | 5.7 b | 13.1 a | 5.2 b | 49.5 b | 8.3 b | |
Microwave Treated Soil | Untreated Soil | 9.2 a | 21.6 a | 2.4 b | 2350.2 b | 5.4 b | 13.1 a | 9.0 a | 87.9 a | 8.7 ab |
Fumigated Soil | 2.9 c | 4.6 bc | 3.0 ab | 4337.0 a | 7.0 a | 9.6 b | 7.9 a | 62.9 ab | 8.2 b | |
Steamed Soil | 6.5 b | 10.9 b | 2.9 ab | 2404.0 b | 5.8 b | 10.0 b | 7.4 ab | 69.9 ab | 9.1 ab | |
Microwave Heated Soil | 2.6 c | 5.8 bc | 3.5 a | 4640.2 a | 8.0 a | 11.2 a | 6.0 b | 45.3 b | 7.5 b | |
LSD (p = 0.05) | 2.4 | 7.7 | 0.9 | 1363.6 | 2.0 | 2.5 | 2.9 | 28.5 | 3.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brodie, G.I.; McFarlane, D.J.; Khan, M.J.; Phung, V.B.G.; Mattner, S.W. Microwave Soil Heating Promotes Strawberry Runner Production and Progeny Performance. Energies 2022, 15, 3508. https://doi.org/10.3390/en15103508
Brodie GI, McFarlane DJ, Khan MJ, Phung VBG, Mattner SW. Microwave Soil Heating Promotes Strawberry Runner Production and Progeny Performance. Energies. 2022; 15(10):3508. https://doi.org/10.3390/en15103508
Chicago/Turabian StyleBrodie, Graham Ian, Dylan John McFarlane, Muhammed Jamal Khan, Valerie Buu Giao Phung, and Scott William Mattner. 2022. "Microwave Soil Heating Promotes Strawberry Runner Production and Progeny Performance" Energies 15, no. 10: 3508. https://doi.org/10.3390/en15103508
APA StyleBrodie, G. I., McFarlane, D. J., Khan, M. J., Phung, V. B. G., & Mattner, S. W. (2022). Microwave Soil Heating Promotes Strawberry Runner Production and Progeny Performance. Energies, 15(10), 3508. https://doi.org/10.3390/en15103508