The Impact of Conventional Power Block Startup Procedures on the Fatigue Behavior of Drum Materials
Abstract
:1. Introduction
- The properties and operating conditions of the selected drum, based on the results of load testing under industrial conditions;
- The development of a drum model on the basis of the technical documentation, and the calculation of time-dependent temperature distributions and stresses and strains for various drum startup scenarios;
- Extensive material fatigue testing;
- a prediction of drum life for each startup cycle variant and varying fatigue properties of the material;
- a summary of the findings, including an assessment of the impact of startup procedures and material fatigue properties on the fatigue life of a drum subjected to variable mechanical and thermal loading.
2. Thermo-Mechanical Loading of Boiler Drums
- OR COLD, a cold startup under real operating conditions;
- OR HOT, a hot startup under real operating conditions;
- MC SLOW, a model cold startup with a lower rate of change of steam temperature;
- MC FAST, a model cold startup with a higher rate of change of steam temperature.
3. Boiler Drum Model
4. Temperature and Stress and Strain Calculations for Various Boiler Drum Startup Scenarios
4.1. Thermal Analysis
4.2. Mechanical Analysis
5. Material Fatigue Tests
6. Discussion and Findings
7. Conclusions
- A combination of computer modeling and measurements under industrial conditions increases the accuracy of temperature field estimation, thereby improving the assessment of stress states as they relate to the current strength and fatigue life of pressure vessels in energy industries.
- The impact of the startup procedure on the durability of power unit components can be assessed by analyzing changes in the physical fields of such units, which can be determined using a model-based approach.
- The fatigue characteristics obtained in the low-cycle fatigue testing of used and unused specimens show a significant reduction in the room temperature material fatigue life of the former as compared to the latter.
- The method for predicting fatigue life presented in this paper enables the superior estimation of the impact of mechanical and thermal loads on fatigue damage accumulation, and can be used to predict the effects of changes in the startup procedure.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Standard EN 12952-3; Water-Tube Boilers and Auxiliary Installations—Part 3: Design and Calculation for Pressure Parts. European Committee for Standardization: Brussels, Belgium, 2021.
- Farragher, T.P.; Scully, S.; O’Dowd, N.P.; Leen, S.B. Development of life assessment procedures for power plant headers operated under flexible loading scenarios. Int. J. Fatigue 2013, 49, 50–61. [Google Scholar] [CrossRef]
- Okrajni, J.; Twardawa, M. Local Strains That Lead to the Thermo-mechanical Fatigue of Thick-walled Pressure Vessels. Mater. Perform. Charact. ASTM Int. 2014, 3, 244–261. [Google Scholar] [CrossRef]
- Farragher, T.P.; Scully, S.; O’Dowd, N.P.; Leen, S.B. Thermomechanical Analysis of a Pressurized Pipe Under Plant Conditions. J. Press. Vessel Technol. 2012, 135, 011204. [Google Scholar] [CrossRef]
- Taler, J.; Dzierwa, P.; Jaremkiewicz, M.; Taler, D.; Kaczmarski, K.; Trojan, M.; Węglowski, B.; Sobota, T. Monitoring of transient 3D temperature distribution and thermal stress in pressure elements based on the wall temperature measurement. J. Therm. Stress. 2019, 42, 698–724. [Google Scholar] [CrossRef]
- Banaszkiewicz, M. Online determination of transient thermal stresses in critical steam turbine components using a two-step algorithm. J. Therm. Stress. 2016, 40, 690–703. [Google Scholar] [CrossRef]
- Banaszkiewicz, M. Numerical investigations of crack initiation in impulse steam turbine rotors subject to thermo-mechanical fatigue. Appl. Therm. Eng. 2018, 138, 761–773. [Google Scholar] [CrossRef]
- Hahner, P.; Rinaldi, C.; Bicego, V.; Affeldt, E.; Brendel, T.; Andersson, H.; Beck, T.; Klingelhoffer, H.; Kuhn, H.J.; Koster, A.; et al. Research and development into a European code-of-practice for strain-controlled thermo-mechanical fatigue testing. Int. J. Fatigue 2008, 30, 371–381. [Google Scholar] [CrossRef]
- Hormozi, R.; Biglari, F.; Nikbin, K. Experimental study of type 316 stainless steel failure under LCF/TMF loading conditions. Int. J. Fatigue 2015, 75, 153–169. [Google Scholar] [CrossRef]
- Hormozi, R.; Biglari, F.; Nikbin, K. Experimental and numerical creep-atigue study of Type 316 stainless steel failure under high temperature LCF loading condition with different hold time. Eng. Fract. Mech. 2015, 141, 19–43. [Google Scholar] [CrossRef]
- Hyde, C.J.; Sun, W.; Leen, S.B. Cyclil thermo-mechanical material modelling and testing of 316 stainless steel. Int. J. Press. Vessels Pip. 2010, 87, 365–372. [Google Scholar] [CrossRef]
- Amiable, S.; Chapuliot, S.; Constantinescu, A.; Fissolo, A. A computational lifetime prediction of a thermal shock experiment. Part I: Thermomechanical modelling and lifetime prediction. Fatigue Fract. Eng. Mater. Struct. 2006, 29, 209–217. [Google Scholar] [CrossRef]
- Pineau, A.; Antolovich, S.D. High temperature fatigue: Behaviour of three typical classes of structural materials. Mater. High Temp. 2015, 32, 298–317. [Google Scholar] [CrossRef]
- Ji, D.M.; Shen, M.-H.H.; Wang, D.X.; Ren, J.X. Creep-Fatigue Life Prediction and Reliability Analysis of P91 Steel Based on Applied Mechanical Work Density. J. Mater. Eng. Perform. 2015, 24, 194–201. [Google Scholar] [CrossRef]
- Nagesha, A.; Valsan, M.; Kannan, R.; Bhanu Sankara Rao, K.; Mannan, S.L. Influence of temperature on low cycle fatigue behaviour of a modified 9Cr-1Mo ferritic steel. Int. J. Fatigue 2002, 24, 1285–1293. [Google Scholar] [CrossRef]
- Nagesha, A.; Kannan, R.; Sastry, G.; Sandhya, R.; Singh, V.; Rao, K.B.S.; Mathew, M. Isothermal and thermomechanical fatigue studies on a modified 9Cr-1Mo ferritic martensitic steel. Mater. Sci. Eng. A 2012, 554, 95–104. [Google Scholar] [CrossRef]
- Nagesha, A.; Kannan, R.; Sandhya, R.; Sastry, G.; Mathew, M.; Rao, K.B.S.; Singh, V. Thermomechanical Fatigue Behaviour of a Modified 9Cr-1Mo Ferritic-Martensitic Steel. Procedia Eng. 2013, 55, 199–203. [Google Scholar] [CrossRef] [Green Version]
- Wacławiak, K.; Okrajni, J. Transient heat transfer as a leading factor in fatigue of thick-walled elements of power boilers. Arch. Thermodyn. 2019, 40, 43–55. [Google Scholar] [CrossRef]
- Okrajni, J.; Twardawa, M. Influence of a variable in time heat transfer coefficient on stresses in models of power plant components. ASME J. Press. Vessel Technol. 2014, 136, 041602. [Google Scholar] [CrossRef]
- Pioro, I.L. Current status of research on heat transfer in forced convection of fluids at supercritical pressures. Nucl. Eng. Des. 2019, 354, 110–207. [Google Scholar] [CrossRef]
- Mokry, S.; Pioro, I.; Farah, A.; King, K.; Gupta, S.; Peiman, W.; Kirillov, P. Development of supercritical water heat-transfer correlation for vertical baretubes. Nucl. Eng. Des. 2011, 241, 1126–1136. [Google Scholar] [CrossRef]
- Jaromin, M.; Englart, H. A numerical study of heat transfer to supercritical water flowing upward invertical tubes under normal and deteriorated conditions. Nucl. Eng. Des. 2013, 264, 61–70. [Google Scholar] [CrossRef]
- Jaremkiewicz, M.; Taler, J. Online Determining Heat Transfer Coefficient for Monitoring Transient Thermal Stresses. Energies 2020, 13, 704. [Google Scholar] [CrossRef] [Green Version]
- Rudenko, A.G.; Voyevodin, V.N.; Gozhenko, S.V.; Mischenko, P.A. Studying the Metal from Drums at Thermal Power Plants after Long-Term Operation Using Subsize Charpy Specimens. Therm. Eng. 2021, 68, 640–646. [Google Scholar] [CrossRef]
- Lepikhin, S.V.; Gladkovskii, S.V. The Influence of Low-Temperature Restorative Heat Treatment on the Structure and Mechanical Properties of Boiler Drum Metal after Long-Term Operation. Therm. Eng. 2020, 67, 138–1441. [Google Scholar] [CrossRef]
- Ozhigov, L.S.; Mitrofanov, A.S.; Tolstolutskaya, G.D.; Vasilenko, R.L.; Rudenko, A.G.; Ruzhytskyi, V.V.; Ribalchenko, N.D.; Shramchenko, S.V. Comprehensive investigation of the metal in drums of boilers at thermal power stations. Therm. Eng. 2017, 64, 350–356. [Google Scholar] [CrossRef]
- Radin, Y.A. Improving the Flexibility and Reliability of Steam Power Units at Thermal Power Plants. Therm. Eng. 2021, 68, 481–489. [Google Scholar] [CrossRef]
- Drobenko, B.D. Computational experiment for determination of the cyclic durability of a boiler drum of a thermal power plant. Mater. Sci. 2012, 48, 76–82. [Google Scholar] [CrossRef]
- Wacławski, A.; Bernacik, A.; Dobrzański, J.; Śniegoń, K.; Mandybur, K.; Miliński, P.; Doniec, B. Charakterystyki stali. In Stale do Pracy w Temperaturach Podwyższonych; Wydawnictwo Śląsk: Katowice, Poland, 1978. [Google Scholar]
- Ansys. Elements Reference, Release 11.0; SAS IP, Inc.: Canonsburg, PA, USA, 2007. [Google Scholar]
- Ansys. Structural Analysis Guide, Release 12.1; SAS IP, Inc.: Canonsburg, PA, USA, 2009. [Google Scholar]
- Halama, R.; Sedlák, J.; Šofer, M. Phenomenological Modelling of Cyclic Plasticity, Numerical Modelling; Miidla, P., Ed.; InTech: London, UK, 2012; ISBN 978-953-51-0219-9. [Google Scholar]
- Okrajni, J.; Twardawa, M.; Wacławiak, K. Impact of Heat Transfer on Transient Stress Fields in Power Plant Boiler Components. Energies 2021, 14, 862. [Google Scholar] [CrossRef]
- Rusin, A.; Tomala, M.; Łukowicz, H.; Nowak, G.; Kosman, W. On-Line Control of Stresses in the Power Unit Pressure Elements Taking Account of Variable Heat Transfer Conditions. Energies 2021, 14, 4708. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, Z.; Zhu, S.; Yuan, F.; Wang, F. Thermomechanical fatigue behavior and life prediction of a cast nickel-based superalloy. Mater. Sci. Eng. A 2006, 432, 308–316. [Google Scholar] [CrossRef]
- Meltzer, R.; Fiorini, Y.; Horstman, R.; Moore, I.; Batik, A.; Ostergren, W. A Damage Function and Associated Failure Equations for Predicting Hold Time and Frequency Effects in Elevated Temperature, Low Cycle Fatigue. J. Test. Eval. 1976, 4, 327. [Google Scholar] [CrossRef]
- Okrajni, J.; Marek, A. The Attempt of the Low-Cycle Fatigue Life Description of Chosen Creep-Resistant Steels Under Mechanical and Thermal Interactions. Arch. Met. Mater. 2017, 62, 2349–2353. [Google Scholar] [CrossRef] [Green Version]
T, K | Δεc | Δσ, MPa | Δεs | Δεp | σmax, MPa | Nf |
---|---|---|---|---|---|---|
Before Operation | ||||||
293 | 0.006 | 911 | 0.004370 | 0.001630 | 455 | 7850 |
293 | 0.007 | 947 | 0.004546 | 0.002454 | 474 | 4938 |
293 | 0.008 | 964 | 0.004626 | 0.003374 | 482 | 3158 |
293 | 0.01 | 1006 | 0.004827 | 0.005173 | 503 | 1704 |
293 | 0.012 | 1034 | 0.004962 | 0.007038 | 517 | 1158 |
603 | 0.006 | 1040 | 0.005856 | 0.000144 | 520 | 1862 |
603 | 0.007 | 1141 | 0.006425 | 0.000575 | 570 | 1279 |
603 | 0.008 | 1135 | 0.006390 | 0.001610 | 567 | 798 |
603 | 0.01 | 1165 | 0.006558 | 0.003442 | 582 | 626 |
603 | 0.012 | 1218 | 0.006857 | 0.005143 | 609 | 378 |
After Operation | ||||||
293 | 0.006 | 1090 | 0.005149 | 0.000851 | 545 | 2386 |
293 | 0.007 | 1147 | 0.005420 | 0.001580 | 573 | 1452 |
293 | 0.008 | 1173 | 0.005540 | 0.002460 | 586 | 1165 |
293 | 0.01 | 1220 | 0.005765 | 0.004235 | 610 | 764 |
293 | 0.012 | 1239 | 0.005851 | 0.006149 | 619 | 358 |
603 | 0.007 | 1067 | 0.006289 | 0.000711 | 534 | 1236 |
603 | 0.008 | 1093 | 0.006441 | 0.001559 | 547 | 1087 |
603 | 0.01 | 1099 | 0.006475 | 0.003525 | 549 | 630 |
603 | 0.012 | 1107 | 0.006524 | 0.005476 | 554 | 260 |
2fva, MPa | fv, MPa | 2f*va, MPa | f*v, MPa | Rm, MPa | 2f*a, MPa | NAS, Cycle | NAL, Cycle | NAL/NALORCOLD | |
---|---|---|---|---|---|---|---|---|---|
OR COLD | 363 | 186 | 1271 | 649 | 679 | 1755 | 3198 | 866 | 1.00 |
OR HOT | 268 | 200 | 938 | 700 | 679 | 957 | 15,131 | 6164 | 4.73 |
MC SLOW | 293 | 251 | 1027 | 877 | 679 | 1146 | 9147 | 3103 | 2.86 |
MC FAST | 383 | 206 | 1342 | 719 | 679 | 1957 | 2495 | 653 | 0.78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okrajni, J.; Wacławiak, K.; Twardawa, M.; Junak, G. The Impact of Conventional Power Block Startup Procedures on the Fatigue Behavior of Drum Materials. Energies 2022, 15, 3528. https://doi.org/10.3390/en15103528
Okrajni J, Wacławiak K, Twardawa M, Junak G. The Impact of Conventional Power Block Startup Procedures on the Fatigue Behavior of Drum Materials. Energies. 2022; 15(10):3528. https://doi.org/10.3390/en15103528
Chicago/Turabian StyleOkrajni, Jerzy, Krzysztof Wacławiak, Mariusz Twardawa, and Grzegorz Junak. 2022. "The Impact of Conventional Power Block Startup Procedures on the Fatigue Behavior of Drum Materials" Energies 15, no. 10: 3528. https://doi.org/10.3390/en15103528
APA StyleOkrajni, J., Wacławiak, K., Twardawa, M., & Junak, G. (2022). The Impact of Conventional Power Block Startup Procedures on the Fatigue Behavior of Drum Materials. Energies, 15(10), 3528. https://doi.org/10.3390/en15103528