Assessment of the Pretreatments and Bioconversion of Lignocellulosic Biomass Recovered from the Husk of the Cocoa Pod
Abstract
:1. Introduction
Main Components of the Shell
2. Pretreatments
2.1. Physical Pretreatment
2.2. Chemical Pretreatment
2.3. Alkaline Pretreatment
Raw Material | Pretreatment | Abstract | Ref. |
---|---|---|---|
Wheat straw | NaOH 0.1 or 0.01 mol/L for 2 h at room temperature. | Hemicellulose decreased from 23.0% to 16.1% after 2 h. Then, 21.8% of the lignin was removed, mostly on the surface of the lignin frame. | [61] |
Reed | Liquid hot water (180 °C, 60 min) and 8% NaOH (w/w) at 160 °C for 1 h. | Maximum ethanol concentration: 38.76 g/L, which can increase up to 50.6 g/L in the presence of pressurized oxygen. | [74] |
Rice straw | In total, 200 mL of 10% NaOH solution for 75 min. | Biogas yield increase of around 25%, and faster co-digestion. | [75] |
Olive pomace | In total, 8% NaOH (w/w) at 25 °C for one day. | A 96% elimination of initial lipids and a 30% increase in methane production. Higher efficiency compared to microwave and ultrasound pretreatments. | [76] |
Grape pomace | In total, 10% NaOH w/w at 20 °C for 24 h. | A 36% increase in methane generation, 50% lignin elimination, and 22% cellulose. | [60] |
Pine foliage | Surfactant-assisted NaOH. | In total, 73.47 ± 1.03% of lignin was degraded, 0.477 g/g of reducing sugars were obtained, and there was a 6.01% improvement in fermentation efficiency. | [67] |
Corn straw and rice husk | Immersion in 95% (v/v) of 1.4 M glycerol-NaOH and microwave radiation for 2 min at 180 °C. | A 22.6% lignin decrease, losses of hemicellulose and cellulose for corn straw, and improvement in hydrolysis performance. Minimal effects on the rice husk. | [77] |
Oil palm residues (bunches and leaves) | In total, 4.8 and 10% NaOH at 150 °C for 30 min. | Reduction of the lignin content from 25.83 to 13.61% and from 30.92 to 19.23%, and of hemicellulose from 23.24 to 7.42% and from 13.95 to 8.10%, resulting in an increase in the percentage of cellulose. | [78] |
2.4. Acid Pretreatment
2.5. Thermochemical Pretreatment
2.6. Ionic Liquid Pretreatment
2.7. Biological Pretreatment
3. Bioconversion Technology of the Cocoa Pod Husk
Raw Material | Process | Obtaining | Result | Ref. |
---|---|---|---|---|
Cocoa pod husk | Anaerobic digestion. | Biogas | Evaluated biogas performance through hydrothermal pretreatment. | [152] |
Thermochemical and direct combustion. | Solid fuel | Quantified the amount of cocoa pod husk generated and evaluated the potential for power generation in Uganda. | [153] | |
Anaerobic digestion. | Biogas | Evaluated the bioenergy potential of cocoa residue. | [16] | |
Direct combustion; gasification; pyrolysis; anaerobic digestion; and hydrothermal carbonization. | Solid fuel and gas | Investigated the feasibility of converting CMC into energy through five technological processes. | [41] | |
Pelletization and carbonization. | Solid fuel | Studied the use of CMC as an energy source. | [23] | |
Semisolid. | Xanthan gum | Used the microorganism Xanthomonas campestris. | [154] | |
Solid state fermentation. | Cattle fodder | Degradation by means of the fungus, Pleurotus ostreatus. | [155] | |
Solid state fermentation. | Enzyme | Obtaining Fructosyltransferase. | [156] |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Aung, T.; Bailis, R.; Chilongo, T.; Ghilardi, A.; Jumbe, C.; Jagger, P. Energy access and the ultra-poor: Do unconditional social cash transfers close the energy access gap in Malawi? Energy Sustain. Dev. 2021, 60, 102–112. [Google Scholar] [CrossRef]
- Jeuland, M.; Fetter, T.R.; Li, Y.; Pattanayak, S.K.; Usmani, F.; Bluffstone, R.A.; Chávez, C.; Girardeau, H.; Hassen, S.; Jagger, P.; et al. Is energy the golden thread? A systematic review of the impacts of modern and traditional energy use in low- and middle-income countries. Renew. Sustain. Energy Rev. 2021, 135, 110406. [Google Scholar] [CrossRef]
- Garfí, M.; Martí-Herrero, J.; Garwood, A.; Ferrer, I. Household anaerobic digesters for biogas production in Latin America: A review. Renew. Sustain. Energy Rev. 2016, 60, 599–614. [Google Scholar] [CrossRef] [Green Version]
- IEA. World Energy Outlook 2021; IEA: Paris, France, 2021. [Google Scholar]
- Ho, D.P.; Ngo, H.H.; Guo, W. A mini review on renewable sources for biofuel. Bioresour. Technol. 2014, 169, 742–749. [Google Scholar] [CrossRef] [Green Version]
- Duan, X.; Lai, M.-C.; Jansons, M.; Guo, G.; Liu, J. A review of controlling strategies of the ignition timing and combustion phase in homogeneous charge compression ignition (HCCI) engine. Fuel 2021, 285, 119142. [Google Scholar] [CrossRef]
- Maurya, R.K.; Agarwal, A. Experimental investigations of performance, combustion and emission characteristics of ethanol and methanol fueled HCCI engine. Fuel Process. Technol. 2014, 126, 30–48. [Google Scholar] [CrossRef]
- Zheng, M.; Han, X.; Asad, U.; Wang, J. Investigation of butanol-fuelled HCCI combustion on a high efficiency diesel engine. Energy Convers. Manag. 2015, 98, 215–224. [Google Scholar] [CrossRef]
- Duan, X.; Xu, Z.; Sun, X.; Deng, B.; Liu, J. Effects of injection timing and EGR on combustion and emissions characteristics of the diesel engine fuelled with acetone–butanol–ethanol/diesel blend fuels. Energy 2021, 231, 121069. [Google Scholar] [CrossRef]
- Liang, J.; Nabi, M.; Zhang, P.; Zhang, G.; Cai, Y.; Wang, Q.; Zhou, Z.; Ding, Y. Promising biological conversion of lignocellulosic biomass to renewable energy with rumen microorganisms: A comprehensive review. Renew. Sustain. Energy Rev. 2020, 134, 110335. [Google Scholar] [CrossRef]
- da Costa, T.P.; Quinteiro, P.; Arroja, L.; Dias, A.C. Environmental comparison of forest biomass residues application in Portugal: Electricity, heat and biofuel. Renew. Sustain. Energy Rev. 2020, 134, 110302. [Google Scholar] [CrossRef]
- Xu, F.; Yu, J.; Tesso, T.; Dowell, F.; Wang, D. Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: A mini-review. Appl. Energy 2013, 104, 801–809. [Google Scholar] [CrossRef] [Green Version]
- Valdez-Vazquez, I.; Acevedo-Benítez, J.A.; Hernández-Santiago, C. Distribution and potential of bioenergy resources from agricultural activities in Mexico. Renew. Sustain. Energy Rev. 2010, 14, 2147–2153. [Google Scholar] [CrossRef]
- ICCO International Cocoa Organization Quarterly Bulletin of Cocoa Statistics. 2020. Available online: http://www.icco.org (accessed on 8 December 2021).
- Betiku, E.; Etim, A.O.; Pereao, O.; Ojumu, T.V. Two-Step Conversion of Neem (Azadirachta indica) Seed Oil into Fatty Methyl Esters Using a Heterogeneous Biomass-Based Catalyst: An Example of Cocoa Pod Husk. Energy Fuels 2017, 31, 6182–6193. [Google Scholar] [CrossRef]
- Acosta, N.; De Vrieze, J.; Sandoval, V.; Sinche, D.; Wierinck, I.; Rabaey, K. Cocoa residues as viable biomass for renewable energy production through anaerobic digestion. Bioresour. Technol. 2018, 265, 568–572. [Google Scholar] [CrossRef]
- Sun, L.; Pope, P.; Eijsink, V.G.H.; Schnürer, A. Characterization of microbial community structure during continuous anaerobic digestion of straw and cow manure. Microb. Biotechnol. 2015, 8, 815–827. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Hiligsmann, S.; Gourdon, R.; Bayard, R. Anaerobic digestion of lignocellulosic biomasses pretreated with Ceriporiopsis subvermispora. J. Environ. Manag. 2017, 193, 154–162. [Google Scholar] [CrossRef]
- Kamperidou, V.; Terzopoulou, P. Anaerobic digestion of lignocellulosic waste materials. Sustainability 2021, 13, 12810. [Google Scholar] [CrossRef]
- van Kuijk, S.; Sonnenberg, A.; Baars, J.; Hendriks, W.; Cone, J. Fungal treated lignocellulosic biomass as ruminant feed ingredient: A review. Biotechnol. Adv. 2015, 33, 191–202. [Google Scholar] [CrossRef]
- Sawatdeenarunat, C.; Surendra, K.; Takara, D.; Oechsner, H.; Khanal, S.K. Anaerobic digestion of lignocellulosic biomass: Challenges and opportunities. Bioresour. Technol. 2015, 178, 178–186. [Google Scholar] [CrossRef]
- Paul, S.; Dutta, A. Challenges and opportunities of lignocellulosic biomass for anaerobic digestion. Resour. Conserv. Recycl. 2018, 130, 164–174. [Google Scholar] [CrossRef]
- Syamsiro, M.; Saptoadi, H.; Tambunan, B.; Pambudi, N.A. A preliminary study on use of cocoa pod husk as a renewable source of energy in Indonesia. Energy Sustain. Dev. 2012, 16, 74–77. [Google Scholar] [CrossRef]
- Yu, Q.; Liu, R.; Li, K.; Ma, R. A review of crop straw pretreatment methods for biogas production by anaerobic digestion in China. Renew. Sustain. Energy Rev. 2019, 107, 51–58. [Google Scholar] [CrossRef]
- Jiang, D.; Ge, X.; Zhang, Q.; Li, Y. Comparison of liquid hot water and alkaline pretreatments of giant reed for improved enzymatic digestibility and biogas energy production. Bioresour. Technol. 2016, 216, 60–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lü, H.; Shi, X.; Li, Y.; Meng, F.; Liu, S.; Yan, L. Multi-objective regulation in autohydrolysis process of corn stover by liquid hot water pretreatment. Chin. J. Chem. Eng. 2017, 25, 499–506. [Google Scholar] [CrossRef]
- Zhao, M.-J.; Xu, Q.-Q.; Zhen, M.-Y.; Li, G.-M.; Xu, G.; Yin, J.-Z. Enhancing enzyme hydrolysis of Sorghum stalk by CO2-pressurized liquid hot water pretreatment. Environ. Prog. Sustain. Energy 2017, 36, 208–213. [Google Scholar] [CrossRef]
- Dahunsi, O.; Oranusi, S.; Efeovbokhan, E. Anaerobic mono-digestion of Tithonia diversifolia (Wild Mexican sunflower). Energy Convers. Manag. 2017, 148, 128–145. [Google Scholar] [CrossRef]
- Sun, C.; Liu, R.; Cao, W.; Li, K.; Wu, L. Optimization of Sodium Hydroxide Pretreatment Conditions to Improve Biogas Production from Asparagus Stover. Waste Biomass Valorization 2019, 10, 121–129. [Google Scholar] [CrossRef]
- Wyman, V.; Henríquez, J.; Palma, C.; Carvajal, A. Lignocellulosic waste valorisation strategy through enzyme and biogas production. Bioresour. Technol. 2018, 247, 402–411. [Google Scholar] [CrossRef]
- Rouches, E.; Herpoël-Gimbert, I.; Steyer, J.; Carrere, H. Improvement of anaerobic degradation by white-rot fungi pretreatment of lignocellulosic biomass: A review. Renew. Sustain. Energy Rev. 2016, 59, 179–198. [Google Scholar] [CrossRef]
- Lu, F.; Rodriguez-Garcia, J.; Van Damme, I.; Westwood, N.J.; Shaw, L.; Robinson, J.S.; Warren, G.; Chatzifragkou, A.; Mason, S.M.; Gomez, L.; et al. Valorisation strategies for cocoa pod husk and its fractions. Curr. Opin. Green Sustain. Chem. 2018, 14, 80–88. [Google Scholar] [CrossRef]
- Tian, S.-Q.; Zhao, R.-Y.; Chen, Z.-C. Review of the pretreatment and bioconversion of lignocellulosic biomass from wheat straw materials. Renew. Sustain. Energy Rev. 2018, 91, 483–489. [Google Scholar] [CrossRef]
- Ahmad, S.; Pathak, V.V.; Kothari, R.; Singh, R.P. Prospects for pretreatment methods of lignocellulosic waste biomass for biogas enhancement: Opportunities and challenges. Biofuels 2018, 9, 575–594. [Google Scholar] [CrossRef]
- Shirkavand, E.; Baroutian, S.; Gapes, D.J.; Young, B.R. Combination of fungal and physicochemical processes for lignocellulosic biomass pretreatment-A review. Renew. Sustain. Energy Rev. 2016, 54, 217–234. [Google Scholar] [CrossRef]
- Martínez-Ángel, D.J.; Villamizar-Gallardo, R.A.; Ortíz-Rodríguez, O.O. Colegio de Postgraduados. 2015. Available online: http://www.redalyc.org/articulo.oa?id=30238027008 (accessed on 1 November 2021).
- Paramjeet, S.; Manasa, P.; Korrapati, N. Biofuels: Production of fungal-mediated ligninolytic enzymes and the modes of bioprocesses utilizing agro-based residues. Biocatal. Agric. Biotechnol. 2018, 14, 57–71. [Google Scholar] [CrossRef]
- Brazil, O.A.V.; Vilanova-Neta, J.L.; Silva, N.O.; Vieira, I.M.M.; Lima, S.; Ruzene, D.S.; Silva, D.P.; Figueiredo, R.T. Integral use of lignocellulosic residues from different sunflower accessions: Analysis of the production potential for biofuels. J. Clean. Prod. 2019, 221, 430–438. [Google Scholar] [CrossRef]
- Mansur, D.; Tago, T.; Masuda, T.; Abimanyu, H. Conversion of cacao pod husks by pyrolysis and catalytic reaction to produce useful chemicals. Biomass Bioenergy 2014, 66, 275–285. [Google Scholar] [CrossRef]
- Daud, Z.; Kassim, A.S.M.; Aripin, A.M.; Awang, H.; Hatta, M.Z.M. Chemical Composition and Morphological of Cocoa Pod Husks and Cassava Peels for Pulp and Paper Production. Aust. J. Basic Appl. Sci. 2013, 7, 406–411. [Google Scholar]
- Maleka, D. Assessment of the Implementation of Alternative Process Technologies for Rural Heat and Power Production from Cocoa Pod Husks. Master’s Thesis, KTH School of Industrial Engineering and Management, Department of Energy Technology, Division of Heat and Power Technology, Stockholm, Sweden, 2016. [Google Scholar]
- Tye, Y.Y.; Lee, K.T.; Abdullah, W.N.W.; Leh, C.P. The world availability of non-wood lignocellulosic biomass for the production of cellulosic ethanol and potential pretreatments for the enhancement of enzymatic saccharification. Renew. Sustain. Energy Rev. 2016, 60, 155–172. [Google Scholar] [CrossRef]
- Saini, J.K.; Saini, R.; Tewari, L. Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: Concepts and recent developments. 3 Biotech 2015, 5, 337–353. [Google Scholar] [CrossRef] [Green Version]
- Wadhwa, M.; Bakshi, M.P.S. Utilization of Fruit and Vegetable Wastes as Livestock Feed and as Substrates for Generation of Other Value-Added Products; FAO: Rome, Italy, 2013. [Google Scholar]
- Mood, S.H.; Golfeshan, A.H.; Tabatabaei, M.; Jouzani, G.S.; Najafi, G.; Gholami, M.; Ardjmand, M. Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew. Sustain. Energy Rev. 2013, 27, 77–93. [Google Scholar] [CrossRef]
- Kumar, A.K.; Sharma, S. Recent updates on different methods of pretreatment of lignocellulosic feedstocks: A review. Bioresour. Bioprocess. 2017, 4, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chirat, C. Use of vegetal biomass for biofuels and bioenergy. Competition with the production of bioproducts and materials? Comptes Rendus Phys. 2017, 18, 462–468. [Google Scholar] [CrossRef]
- Yuan, X.; Wen, B.; Ma, X.; Zhu, W.; Wang, X.; Chen, S.; Cui, Z. Enhancing the anaerobic digestion of lignocellulose of municipal solid waste using a microbial pretreatment method. Bioresour. Technol. 2014, 154, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Zhao, J.; Xu, F.; Li, Y. Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog. Energy Combust. Sci. 2014, 42, 35–53. [Google Scholar] [CrossRef]
- Mustafa, A.; Poulsen, T.G.; Xia, Y.; Sheng, K. Combinations of fungal and milling pretreatments for enhancing rice straw biogas production during solid-state anaerobic digestion. Bioresour. Technol. 2017, 224, 174–182. [Google Scholar] [CrossRef]
- Maurya, D.P.; Singla, A.; Negi, S. An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech 2015, 5, 597–609. [Google Scholar] [CrossRef] [Green Version]
- Ghaffar, S.H.; Fan, M. Structural analysis for lignin characteristics in biomass straw. Biomass Bioenergy 2013, 57, 264–279. [Google Scholar] [CrossRef]
- Tsapekos, P.; Kougias, P.; Angelidaki, I. Anaerobic Mono- and Co-digestion of Mechanically Pretreated Meadow Grass for Biogas Production. Energy Fuels 2015, 29, 4005–4010. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Y.; Gu, Y.; Liu, Z.; Shen, Z.; Chu, H.; Zhou, X. Enhancing methane production from rice straw by extrusion pretreatment. Appl. Energy 2014, 122, 34–41. [Google Scholar] [CrossRef]
- Duque, A.; Manzanares, P.; Ballesteros, M. Extrusion as a pretreatment for lignocellulosic biomass: Fundamentals and applications. Renew. Energy 2017, 114, 1427–1441. [Google Scholar] [CrossRef]
- Li, H.; Qu, Y.; Yang, Y.; Chang, S.; Xu, J. Microwave irradiation-A green and efficient way to pretreat biomass. Bioresour. Technol. 2016, 199, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Sun, S.; Cao, X.; Sun, R. The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresour. Technol. 2016, 199, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, V.; Verma, P. An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products. 3 Biotech 2013, 3, 415–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moretti, M.M.D.S.; Bocchini-Martins, D.A.; Nunes, C.D.C.; Villena, M.A.; Perrone, O.M.; da Silva, R.; Boscolo, M.; Gomes, E. Pretreatment of sugarcane bagasse with microwaves irradiation and its effects on the structure and on enzymatic hydrolysis. Appl. Energy 2014, 122, 189–195. [Google Scholar] [CrossRef]
- El Achkar, J.H.; Lendormi, T.; Salameh, D.; Louka, N.; Maroun, R.G.; Lanoisellé, J.-L.; Hobaika, Z. Influence of pretreatment conditions on lignocellulosic fractions and methane production from grape pomace. Bioresour. Technol. 2018, 247, 881–889. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, H.; Zou, H.; Sun, T.; Li, M.; Zhai, J.; He, Q.; Gu, L.; Tang, W.Z. Effects of acid/alkali pretreatments on lignocellulosic biomass mono-digestion and its co-digestion with waste activated sludge. J. Clean. Prod. 2020, 277, 123998. [Google Scholar] [CrossRef]
- Smits, J.; Bevers, L.; van Haastert, M.; Wiertz, R.; Kroon, H. Fast screening of optimal acid-pretreatment conditions in the conversion of wood to lignocellulosic sugars. Bioresour. Technol. Rep. 2019, 5, 220–229. [Google Scholar] [CrossRef]
- Tian, D.; Guo, Y.; Hu, J.; Yang, G.; Zhang, J.; Luo, L.; Xiao, Y.; Deng, S.; Deng, O.; Zhou, W.; et al. Acidic deep eutectic solvents pretreatment for selective lignocellulosic biomass fractionation with enhanced cellulose reactivity. Int. J. Biol. Macromol. 2020, 142, 288–297. [Google Scholar] [CrossRef]
- Yan, X.; Wang, Z.; Zhang, K.; Si, M.; Liu, M.; Chai, L.; Liu, X.; Shi, Y. Bacteria-enhanced dilute acid pretreatment of lignocellulosic biomass. Bioresour. Technol. 2017, 245, 419–425. [Google Scholar] [CrossRef]
- Gonzales, R.R.; Sivagurunathan, P.; Kim, S.-H. Effect of severity on dilute acid pretreatment of lignocellulosic biomass and the following hydrogen fermentation. Int. J. Hydrog. Energy 2016, 41, 21678–21684. [Google Scholar] [CrossRef]
- Brodeur, G.; Telotte, J.; Stickel, J.; Ramakrishnan, S. Two-stage dilute-acid and organic-solvent lignocellulosic pretreatment for enhanced bioprocessing. Bioresour. Technol. 2016, 220, 621–628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, A.K.; Negi, S. Impact of surfactant assisted acid and alkali pretreatment on lignocellulosic structure of pine foliage and optimization of its saccharification parameters using response surface methodology. Bioresour. Technol. 2015, 192, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.-Y.; Kim, B.-R.; Han, S.-H.; Shin, S.-J. Different response between woody core and bark of goat willow (Salix caprea L.) to concentrated phosphoric acid pretreatment followed by enzymatic saccharification. Energy 2015, 81, 21–26. [Google Scholar] [CrossRef]
- Muthuvelu, K.S.; Rajarathinam, R.; Kanagaraj, L.; Ranganathan, R.V.; Dhanasekaran, K.; Manickam, N.K. Evaluation and characterization of novel sources of sustainable lignocellulosic residues for bioethanol production using ultrasound-assisted alkaline pre-treatment. Waste Manag. 2019, 87, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Ismail, S.; Saharuddin, M.Q.; Zahari, M.S.M. Upgraded Seawater-Alkaline Pre-Treatment of Lignocellulosic Biomass for Bio-Methane Production. Energy Procedia 2017, 138, 372–379. [Google Scholar] [CrossRef]
- Heggset, E.B.; Syverud, K.; Øyaas, K. Novel pretreatment pathways for dissolution of lignocellulosic biomass based on ionic liquid and low temperature alkaline treatment. Biomass Bioenergy 2016, 93, 194–200. [Google Scholar] [CrossRef]
- Edwiges, T.; Bastos, J.A.; Alino, J.H.L.; D’Avila, L.; Frare, L.M.; Somer, J.G. Comparison of various pretreatment techniques to enhance biodegradability of lignocellulosic biomass for methane production. J. Environ. Chem. Eng. 2019, 7, 103495. [Google Scholar] [CrossRef]
- Qing, Q.; Zhou, L.; Huang, M.; Guo, Q.; He, Y.; Wang, L.; Zhang, Y. Improving enzymatic saccharification of bamboo shoot shell by alkalic salt pretreatment with H2O2. Bioresour. Technol. 2016, 201, 230–236. [Google Scholar] [CrossRef]
- Lu, J.; Liu, H.; Song, F.; Xia, F.; Huang, X.; Zhang, Z.; Cheng, Y.; Wang, H. Combining hydrothermal-alkaline/oxygen pretreatment of reed with PEG 6,000-assisted enzyme hydrolysis promote bioethanol fermentation and reduce enzyme loading. Ind. Crops Prod. 2020, 153, 112615. [Google Scholar] [CrossRef]
- Qian, X.; Shen, G.; Wang, Z.; Zhang, X.; Chen, X.; Tang, Z.; Lei, Z.; Zhang, Z. Enhancement of high solid anaerobic co-digestion of swine manure with rice straw pretreated by microwave and alkaline. Bioresour. Technol. Rep. 2019, 7, 100208. [Google Scholar] [CrossRef]
- Elalami, D.; Carrere, H.; Abdelouahdi, K.; Garcia-Bernet, D.; Peydecastaing, J.; Vaca-Medina, G.; Oukarroum, A.; Zeroual, Y.; Barakat, A. Mild microwaves, ultrasonic and alkaline pretreatments for improving methane production: Impact on biochemical and structural properties of olive pomace. Bioresour. Technol. 2020, 299, 122591. [Google Scholar] [CrossRef] [PubMed]
- Diaz, A.B.; de Souza Moretti, M.M.; Bezerra-Bussoli, C.; da CostaCarreira Nunes, C.; Blandino, A.; Da Silva, R.; Gomes, E. Evaluation of microwave-assisted pretreatment of lignocellulosic biomass immersed in alkaline glycerol for fermentable sugars production. Bioresour. Technol. 2015, 185, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Barlianti, V.; Dahnum, D.; Hendarsyah, H.; Abimanyu, H. Effect of Alkaline Pretreatment on Properties of Lignocellulosic Oil Palm Waste. Procedia Chem. 2015, 16, 195–201. [Google Scholar] [CrossRef] [Green Version]
- Amnuaycheewa, P.; Hengaroonprasan, R.; Rattanaporn, K.; Kirdponpattara, S.; Cheenkachorn, K.; Sriariyanun, M. Enhancing enzymatic hydrolysis and biogas production from rice straw by pretreatment with organic acids. Ind. Crops Prod. 2016, 87, 247–254. [Google Scholar] [CrossRef]
- Santos, C.C.; de Souza, W.; Anna, C.S.; Brienzo, M. Elephant grass leaves have lower recalcitrance to acid pretreatment than stems, with higher potential for ethanol production. Ind. Crops Prod. 2018, 111, 193–200. [Google Scholar] [CrossRef] [Green Version]
- Fitria; Ruan, H.; Fransen, S.C.; Carter, A.H.; Tao, H.; Yang, B. Selecting winter wheat straw for cellulosic ethanol production in the Pacific Northwest, U.S.A. Biomass Bioenergy 2019, 123, 59–69. [Google Scholar] [CrossRef]
- Sahoo, D.; Ummalyma, S.B.; Okram, A.K.; Pandey, A.; Sankar, M.; Sukumaran, R.K. Effect of dilute acid pretreatment of wild rice grass (Zizania latifolia) from Loktak Lake for enzymatic hydrolysis. Bioresour. Technol. 2018, 253, 252–255. [Google Scholar] [CrossRef]
- Kuglarz, M.; Alvarado-Morales, M.; Dąbkowska, K.; Angelidaki, I. Integrated production of cellulosic bioethanol and succinic acid from rapeseed straw after dilute-acid pretreatment. Bioresour. Technol. 2018, 265, 191–199. [Google Scholar] [CrossRef]
- Cao, L.; Chen, H.; Tsang, D.C.; Luo, G.; Hao, S.; Zhang, S.; Chen, J. Optimizing xylose production from pinewood sawdust through dilute-phosphoric-acid hydrolysis by response surface methodology. J. Clean. Prod. 2018, 178, 572–579. [Google Scholar] [CrossRef]
- Tian, S.-Q.; Wang, X.-W.; Zhao, R.-Y.; Ma, S. Effect of doping pretreated corn stover conditions on yield of bioethanol in immobilized cell systems. Renew. Energy 2016, 86, 858–865. [Google Scholar] [CrossRef]
- Pecha, M.B.; Garcia-Perez, M. Pyrolysis of lignocellulosic biomass: Oil, char, and gas. In Bioenergy; Elsevier: Amsterdam, The Netherlands, 2020; pp. 581–619. [Google Scholar] [CrossRef]
- Kumar, A.; Rapoport, A.; Kunze, G.; Kumar, S.; Singh, D.; Singh, B. Multifarious pretreatment strategies for the lignocellulosic substrates for the generation of renewable and sustainable biofuels: A review. Renew. Energy 2020, 160, 1228–1252. [Google Scholar] [CrossRef]
- Sánchez, Ó.J.; Cardona, C.A. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour. Technol. 2008, 99, 5270–5295. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, S.; Nam, H.; Chakraborty, J.P. Conversion of solid wastes to fuels and chemicals through pyrolysis. In Waste Biorefinery: Potential and Perspectives; Elsevier: Amsterdam, The Netherlands, 2018; pp. 239–263. [Google Scholar] [CrossRef]
- Jiang, L.-Q.; Fang, Z.; Zhao, Z.-L.; Zheng, A.-Q.; Wang, X.-B.; Li, H.-B. Levoglucosan and its hydrolysates via fast pyrolysis of lignocellulose for microbial biofuels: A state-of-the-art review. Renew. Sustain. Energy Rev. 2019, 105, 215–229. [Google Scholar] [CrossRef]
- Luque, L.; Orr, V.C.; Chen, S.; Westerhof, R.; Oudenhoven, S.; van Rossum, G.; Kersten, S.; Berruti, F.; Rehmann., L. Lipid accumulation from pinewood pyrolysates by Rhodosporidium diobovatum and Chlorella vulgaris for biodiesel production. Bioresour. Technol. 2016, 214, 660–669. [Google Scholar] [CrossRef]
- Chi, Z.; Rover, M.; Jun, E.; Deaton, M.; Johnston, P.; Brown, R.C.; Wen, Z.; Jarboe, L.R. Overliming detoxification of pyrolytic sugar syrup for direct fermentation of levoglucosan to ethanol. Bioresour. Technol. 2013, 150, 220–227. [Google Scholar] [CrossRef]
- Boateng, A.A. Energy crops—biomass resources and traits. In Pyrolysis of Biomass for Fuels and Chemicals; Elsevier: Amsterdam, The Netherlands, 2020; pp. 221–238. [Google Scholar] [CrossRef]
- Brandt-Talbot, A.; Gschwend, F.J.V.; Fennell, P.S.; Lammens, T.M.; Tan, B.; Weale, J.; Hallett, J.P. An economically viable ionic liquid for the fractionation of lignocellulosic biomass. Green Chem. 2017, 19, 3078–3102. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.K.; Sharma, R.K.; Ghosh, P.; Kumar, A.; Khan, M.L. Imidazolium based ionic liquids: A promising green solvent for water hyacinth biomass deconstruction. Front. Chem. 2018, 6, 548. [Google Scholar] [CrossRef] [Green Version]
- Bhatia, S.K.; Jagtap, S.S.; Bedekar, A.A.; Bhatia, R.K.; Patel, A.K.; Pant, D.; Banu, J.R.; Rao, C.V.; Kim, Y.-G.; Yang, Y.-H. Recent developments in pretreatment technologies on lignocellulosic biomass: Effect of key parameters, technological improvements, and challenges. Bioresour. Technol. 2020, 300, 122724. [Google Scholar] [CrossRef]
- Paul, A.; Muthukumar, S.; Prasad, S. Review—Room-Temperature Ionic Liquids for Electrochemical Application with Special Focus on Gas Sensors. J. Electrochem. Soc. 2020, 167, 037511. [Google Scholar] [CrossRef]
- da Costa Lopes, A.M.; João, K.G.; Rubik, D.F.; Bogel-Łukasik, E.; Duarte, L.C.; Andreaus, J.; Bogel-Łukasik, R. Pre-treatment of lignocellulosic biomass using ionic liquids: Wheat straw fractionation. Bioresour. Technol. 2013, 142, 198–208. [Google Scholar] [CrossRef] [Green Version]
- Usmani, Z.; Sharma, M.; Gupta, P.; Karpichev, Y.; Gathergood, N.; Bhat, R.; Gupta, V.K. Ionic liquid based pretreatment of lignocellulosic biomass for enhanced bioconversion. Bioresour. Technol. 2020, 304, 123003. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-Y.; Chen, X.; Wang, C.-Z.; Sun, S.-N.; Sun, R.-C. Evaluation of the two-step treatment with ionic liquids and alkali for enhancing enzymatic hydrolysis of Eucalyptus: Chemical and anatomical changes. Biotechnol. Biofuels 2016, 9, 166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sathitsuksanoh, N.; George, A.; Zhang, Y.-H.P. New lignocellulose pretreatments using cellulose solvents: A review. J. Chem. Technol. Biotechnol. 2013, 88, 169–180. [Google Scholar] [CrossRef]
- Zhao, J.; Zheng, Y.; Li, Y. Fungal pretreatment of yard trimmings for enhancement of methane yield from solid-state anaerobic digestion. Bioresour. Technol. 2014, 156, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Montoya-Rosales, J.; Peces, M.; González-Rodríguez, L.; Alatriste-Mondragón, F.; Villa-Gómez, D. A broad overview comparing a fungal, thermal and acid pre-treatment of bean straw in terms of substrate and anaerobic digestion effect. Biomass Bioenergy 2020, 142, 105775. [Google Scholar] [CrossRef]
- Kainthola, J.; Kalamdhad, A.; Goud, V.V.; Goel, R. Fungal pretreatment and associated kinetics of rice straw hydrolysis to accelerate methane yield from anaerobic digestion. Bioresour. Technol. 2019, 286, 121368. [Google Scholar] [CrossRef]
- Rouches, E.; Escudié, R.; Latrille, E.; Carrère, H. Solid-state anaerobic digestion of wheat straw: Impact of S/I ratio and pilot-scale fungal pretreatment. Waste Manag. 2019, 85, 464–476. [Google Scholar] [CrossRef]
- Alam Noonari, A.; Mahar, R.B.; Sahito, A.R.; Brohi, K.M. Effects of isolated fungal pretreatment on bio-methane production through the co-digestion of rice straw and buffalo dung. Energy 2020, 206, 118107. [Google Scholar] [CrossRef]
- Tišma, M.; Planinić, M.; Bucić-Kojić, A.; Panjičko, M.; Zupančič, G.D.; Zelić, B. Corn silage fungal-based solid-state pretreatment for enhanced biogas production in anaerobic co-digestion with cow manure. Bioresour. Technol. 2018, 253, 220–226. [Google Scholar] [CrossRef]
- Mustafa, A.; Poulsen, T.G.; Sheng, K. Fungal pretreatment of rice straw with Pleurotus ostreatus and Trichoderma reesei to enhance methane production under solid-state anaerobic digestion. Appl. Energy 2016, 180, 661–671. [Google Scholar] [CrossRef]
- Ishola, M.M.; Isroi; Taherzadeh, M.J. Effect of fungal and phosphoric acid pretreatment on ethanol production from oil palm empty fruit bunches (OPEFB). Bioresour. Technol. 2014, 165, 9–12. [Google Scholar] [CrossRef] [PubMed]
- Tri, C.L.; Kamei, I. Butanol production from cellulosic material by anaerobic co-culture of white-rot fungus Phlebia and bacterium Clostridium in consolidated bioprocessing. Bioresour. Technol. 2020, 305, 123065. [Google Scholar] [CrossRef] [PubMed]
- Tri, C.L.; Khuong, L.D.; Kamei, I. The improvement of sodium hydroxide pretreatment in bioethanol production from Japanese bamboo Phyllostachys edulis using the white rot fungus Phlebia sp. MG-60. Int. Biodeterior. Biodegrad. 2018, 133, 86–92. [Google Scholar] [CrossRef]
- Khuong, L.D.; Kondo, R.; De Leon, R.; Anh, T.K.; Shimizu, K.; Kamei, I. Bioethanol production from alkaline-pretreated sugarcane bagasse by consolidated bioprocessing using Phlebia sp. MG-60. Int. Biodeterior. Biodegrad. 2014, 88, 62–68. [Google Scholar] [CrossRef]
- Kamei, I.; Hirota, Y.; Mori, T.; Hirai, H.; Meguro, S.; Kondo, R. Direct ethanol production from cellulosic materials by the hypersaline-tolerant white-rot fungus Phlebia sp. MG-60. Bioresour. Technol. 2012, 112, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Mori, T.; Kondo, O.; Masuda, A.; Kawagishi, H.; Hirai, H. Effect on growth, sugar consumption, and aerobic ethanol fermentation of homologous expression of the sugar transporter gene Pshxt1 in the white rot fungus Phanerochaete sordida YK-624. J. Biosci. Bioeng. 2019, 128, 537–543. [Google Scholar] [CrossRef]
- Hermosilla, E.; Rubilar, O.; Schalchli, H.; da Silva, A.S.; Ferreira-Leitao, V.; Diez, M.C. Sequential white-rot and brown-rot fungal pretreatment of wheat straw as a promising alternative for complementary mild treatments. Waste Manag. 2018, 79, 240–250. [Google Scholar] [CrossRef]
- Xie, C.; Gong, W.; Yang, Q.; Zhu, Z.; Yan, L.; Hu, Z.; Peng, Y. White-rot fungi pretreatment combined with alkaline/oxidative pretreatment to improve enzymatic saccharification of industrial hemp. Bioresour. Technol. 2017, 243, 188–195. [Google Scholar] [CrossRef]
- Brethauer, S.; Lawrence, S.R.; Hans-Peter, S.M. Enhanced simultaneous saccharification and fermentation of pretreated beech wood by in situ treatment with the white rot fungus Irpex lacteus in a membrane aerated biofilm reactor. Bioresour. Technol. 2017, 237, 135–138. [Google Scholar] [CrossRef]
- Piętka, J.; Gendek, A.; Malaťák, J.; Velebil, J.; Moskalik, T. Effects of selected white-rot fungi on the calorific value of beech wood (Fagus sylvatica L.). Biomass Bioenergy 2019, 127, 105290. [Google Scholar] [CrossRef]
- Zou, Y.; Du, F.; Hu, Q.; Yuan, X.; Dai, D.; Zhu, M. Integration of Pleurotus tuoliensis cultivation and biogas production for utilization of lignocellulosic biomass as well as its benefit evaluation. Bioresour. Technol. 2020, 317, 124042. [Google Scholar] [CrossRef] [PubMed]
- Niu, D.; Zuo, S.; Jiang, D.; Tian, P.; Zheng, M.; Xu, C. Treatment using white rot fungi changed the chemical composition of wheat straw and enhanced digestion by rumen microbiota in vitro. Anim. Feed. Sci. Technol. 2018, 237, 46–54. [Google Scholar] [CrossRef]
- Rudakiya, D.; Gupte, A. Degradation of hardwoods by treatment of white rot fungi and its pyrolysis kinetics studies. Int. Biodeterior. Biodegrad. 2017, 120, 21–35. [Google Scholar] [CrossRef]
- Van Kuijk, S.J.; Sonnenberg, A.S.; Baars, J.J.; Hendriks, W.H.; del Río, J.C.; Rencoret, J.; Gutiérrez, A.; De Ruijter, N.; Cone, J.W. Chemical changes and increased degradability of wheat straw and oak wood chips treated with the white rot fungi Ceriporiopsis subvermispora and Lentinula edodes. Biomass Bioenergy 2017, 105, 381–391. [Google Scholar] [CrossRef]
- Arora, A.; Priya, S.; Sharma, P.; Sharma, S.; Nain, L. Evaluating biological pretreatment as a feasible methodology for ethanol production from paddy straw. Biocatal. Agric. Biotechnol. 2016, 8, 66–72. [Google Scholar] [CrossRef]
- García-Torreiro, M.; López-Abelairas, M.; Lu-Chau, T.A.; Lema, J.M. Fungal pretreatment of agricultural residues for bioethanol production. Ind. Crops Prod. 2016, 89, 486–492. [Google Scholar] [CrossRef]
- Mohanram, S.; Rajan, K.; Carrier, D.J.; Nain, L.; Arora, A. Insights into biological delignification of rice straw by Trametes hirsuta and Myrothecium roridum and comparison of saccharification yields with dilute acid pretreatment. Biomass Bioenergy 2015, 76, 54–60. [Google Scholar] [CrossRef] [Green Version]
- Taha, M.; Shahsavari, E.; Al-Hothaly, K.; Mouradov, A.; Smith, A.; Ball, A.; Adetutu, E.M. Enhanced Biological Straw Saccharification through Coculturing of Lignocellulose-Degrading Microorganisms. Appl. Biochem. Biotechnol. 2015, 175, 3709–3728. [Google Scholar] [CrossRef]
- Dhiman, S.S.; Haw, J.-R.; Kalyani, D.; Kalia, V.C.; Kang, Y.C.; Lee, J.-K. Simultaneous pretreatment and saccharification: Green technology for enhanced sugar yields from biomass using a fungal consortium. Bioresour. Technol. 2015, 179, 50–57. [Google Scholar] [CrossRef]
- Potumarthi, R.; Baadhe, R.R.; Nayak, P.; Jetty, A. Simultaneous pretreatment and sacchariffication of rice husk by Phanerochete chrysosporium for improved production of reducing sugars. Bioresour. Technol. 2013, 128, 113–117. [Google Scholar] [CrossRef]
- Rana, S.; Tiwari, R.; Arora, A.; Singh, S.; Kaushik, R.; Saxena, A.K.; Dutta, S.; Nain, L. Prospecting Parthenium sp. pretreated with Trametes hirsuta, as a potential bioethanol feedstock. Biocatal. Agric. Biotechnol. 2013, 2, 152–158. [Google Scholar] [CrossRef]
- Saritha, M.; Arora, A.; Singh, S.; Nain, L. Streptomyces griseorubens mediated delignification of paddy straw for improved enzymatic saccharification yields. Bioresour. Technol. 2013, 135, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Zeng, Y.; Zuo, J.; Ma, F.; Yang, X.; Zhang, X.; Wang, Y. Improving the conversion of biomass in catalytic fast pyrolysis via white-rot fungal pretreatment. Bioresour. Technol. 2013, 134, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Saritha, M.; Arora, A.; Nain, L. Pretreatment of paddy straw with Trametes hirsuta for improved enzymatic saccharification. Bioresour. Technol. 2012, 104, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.J.; Fan, J.; Wen, X. Screening of fungi capable of highly selective degradation of lignin in rice straw. Int. Biodeterior. Biodegrad. 2012, 72, 26–30. [Google Scholar] [CrossRef]
- Thakur, S.; Shrivastava, B.; Ingale, S.; Kuhad, R.C.; Gupte, A. Degradation and selective ligninolysis of wheat straw and banana stem for an efficient bioethanol production using fungal and chemical pretreatment. 3 Biotech 2013, 3, 365–372. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Y.; Yang, X.; Yu, H.; Zhang, X.; Ma, F. The delignification effects of white-rot fungal pretreatment on thermal characteristics of moso bamboo. Bioresour. Technol. 2012, 114, 437–442. [Google Scholar] [CrossRef]
- Du, W.; Yu, H.; Song, L.; Zhang, J.; Weng, C.; Ma, F.; Zhang, X. The promoting effect of byproducts from Irpex lacteus on subsequent enzymatic hydrolysis of bio-pretreated cornstalks. Biotechnol. Biofuels 2011, 4, 37. Available online: http://www.biotechnologyforbiofuels.com/content/4/1/37 (accessed on 10 December 2021). [CrossRef] [Green Version]
- Singh, D.; Zeng, J.; Laskar, D.D.; Deobald, L.; Hiscox, W.; Chen, S. Investigation of wheat straw biodegradation by Phanerochaete chrysosporium. Biomass Bioenergy 2011, 35, 1030–1040. [Google Scholar] [CrossRef]
- Yang, X.; Ma, F.; Yu, H.; Zhang, X.; Chen, S. Effects of biopretreatment of corn stover with white-rot fungus on low-temperature pyrolysis products. Bioresour. Technol. 2011, 102, 3498–3503. [Google Scholar] [CrossRef]
- Wan, C.; Li, Y. Effectiveness of microbial pretreatment by Ceriporiopsis subvermispora on different biomass feedstocks. Bioresour. Technol. 2011, 102, 7507–7512. [Google Scholar] [CrossRef] [PubMed]
- Karim, A.A.; Azlan, A.; Ismail, A.; Hashim, P.; Gani, S.S.A.; Zainudin, B.H.; Abdullah, N.A. Phenolic composition, antioxidant, anti-wrinkles and tyrosinase inhibitory activities of cocoa pod extract. BMC Complement. Altern. Med. 2014, 14, 381. [Google Scholar] [CrossRef] [Green Version]
- Koubala, B.B.; Yapo, B.M.; Besson, V.; Koubala, B.B.; Koffi, K.L. Adding Value to Cacao Pod Husks as a Potential Antioxidant-Dietary Fiber Source Valorization of Tropical food View project Adding Value to Cacao Pod Husks as a Potential Antioxidant-Dietary Fiber Source. Am. J. Food Nutr. 2013, 1, 38–46. [Google Scholar] [CrossRef]
- Sodré, G.A.; Venturini, M.T.; Ribeiro, D.O.; Marrocos, P.C.L. Extrato da casca do fruto do cacaueiro como fertilizante potássico no crescimento de mudas de cacaueiro. Rev. Bras. Frutic. 2012, 34, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Vriesmann, L.C.; de Mello Castanho Amboni, R.D.; de Oliveira Petkowicz, C.L. Cacao pod husks (Theobroma cacao L.): Composition and hot-water-soluble pectins. Ind. Crops Prod. 2011, 34, 1173–1181. [Google Scholar] [CrossRef]
- Sakagami, H.; Satoh, K.; Fukamachi, H.; Ikarashi, T.; Shimizu, A.; Yano, K.; Kanamoto, T.; Terakubo, S.; Nakashima, H.; Hasegawa, H.; et al. Anti-HIV and vitamin C-synergized radical scavenging activity of cacao husk lignin fraction. Vivo 2008, 22, 327–332. Available online: https://www.researchgate.net/publication/5241516 (accessed on 10 December 2021).
- García, R.; Pizarro, C.; Lavín, A.G.; Bueno, J.L. Characterization of Spanish biomass wastes for energy use. Bioresour. Technol. 2012, 103, 249–258. [Google Scholar] [CrossRef]
- Mendaros, C.M.; Go, A.W.; Nietes, W.J.T.; Gollem, B.E.J.O.; Cabatingan, L.K. Direct sulfonation of cacao shell to synthesize a solid acid catalyst for the esterification of oleic acid with methanol. Renew. Energy 2020, 152, 320–330. [Google Scholar] [CrossRef]
- Bureros, G.M.A.; Tanjay, A.A.; Cuizon, D.E.S.; Go, A.W.; Cabatingan, L.K.; Agapay, R.C.; Ju, Y.-H. Cacao shell-derived solid acid catalyst for esterification of oleic acid with methanol. Renew. Energy 2019, 138, 489–501. [Google Scholar] [CrossRef]
- Ofori-Boateng, C.; Lee, K.T. The potential of using cocoa pod husks as green solid base catalysts for the transesterification of soybean oil into biodiesel: Effects of biodiesel on engine performance. Chem. Eng. J. 2013, 220, 395–401. [Google Scholar] [CrossRef]
- Dahunsi, S.; Osueke, C.; Olayanju, T.; Lawal, A. Co-digestion of Theobroma cacao (Cocoa) pod husk and poultry manure for energy generation: Effects of pretreatment methods. Bioresour. Technol. 2019, 283, 229–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shet, V.B.; Sanil, N.; Bhat, M.; Naik, M.; Mascarenhas, L.N.; Goveas, L.C.; Rao, C.V.; Ujwal, P.; Sandesh, K.; Aparna, A. Acid hydrolysis optimization of cocoa pod shell using response surface methodology approach toward ethanol production. Agric. Nat. Resour. 2018, 52, 581–587. [Google Scholar] [CrossRef]
- Adjin-Tetteh, M.; Asiedu, N.; Dodoo-Arhin, D.; Karam, A.; Amaniampong, P.N. Thermochemical conversion and characterization of cocoa pod husks a potential agricultural waste from Ghana. Ind. Crops Prod. 2018, 119, 304–312. [Google Scholar] [CrossRef]
- Antwi, E.; Engler, N.; Nelles, M.; Schüch, A. Anaerobic digestion and the effect of hydrothermal pretreatment on the biogas yield of cocoa pods residues. Waste Manag. 2019, 88, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Kilama, G.; Lating, P.O.; Byaruhanga, J.; Biira, S. Quantification and characterization of cocoa pod husks for electricity generation in Uganda. Energy Sustain. Soc. 2019, 9, 22. [Google Scholar] [CrossRef] [Green Version]
- Diniz, D.D.M.; Druzian, J.I.; Audibert, S. Produção de goma xantana por cepas nativas de Xanthomonas campestris a partir de casca de cacau ou soro de leite. Polimeros 2012, 22, 278–281. [Google Scholar] [CrossRef]
- Gulfraz, M.; Mehmood, S.; Minhas, N.; Jabeen, N.; Kausar, R.; Jabeen, K.; Arshad, G. Effect of Pleurotus ostreatus fermentation on cocoa pod husk composition: Influence of fermentation period and Mn2+ supplementation on the fermentation process. Afr. J. Biotechnol. 2008, 7, 4364–4368. Available online: http://www.academicjournals.org/AJB (accessed on 10 December 2021).
- Lateef, A.; Oloke, J.K.; Kana, E.B.G.; Oyeniyi, S.O.; Onifade, O.R.; Oyeleye, A.O.; Oladosu, O.C.; Oyelami, A.O. Improving the quality of agro-wastes by solid-state fermentation: Enhanced antioxidant activities and nutritional qualities. World J. Microbiol. Biotechnol. 2008, 24, 2369–2374. [Google Scholar] [CrossRef]
Biomass (Dry Basis) | Cellulose (% Mass) | Hemicellulose (% Mass) | Lignin (% Mass) | Ref. |
---|---|---|---|---|
Sunflower stem | 36.32 | 10.08 | 18.38 | [38] |
Sunflower flower head | 23.19 | 6.96 | 12.05 | |
Cocoa pod husk | 35–35.8 | 36.5–37.5 | 14–15 | [39,40,41] |
Corn stover | 35 | 17 | 7 | [42] |
Sorghum husk | 32 | 27 | 7 | [42] |
Rice husk | 28 | 23 | 12 | [43] |
Citrus pulp | 12.8 | 2 | 22.5 | [44] |
Tomato pulp | 12 | 12 | 39 |
Raw Material | Pretreatment | Abstract | Ref. |
---|---|---|---|
Wheat straw | Hydrochloric acid (HCl) at 0.1 or 0.01 mol/L for 2 h at room temperature. | There was no significant effect with 0.01 mol/L of HCl. With 0.1 g/L, the hemicellulose content decreased from 23.0% to 17.4% at 0.5 h, and to 13.4 after 2 h; and the cellulose and lignin decreased from 38.7% to 36.2%, and from 11.9% to 11.4%, respectively. | [61] |
Poplar and fir | Sulfuric acid (HS2O4) with a concentration of 0.2 a 2.5% (v/v), temperature 180−200 °C, 2−12 min. | The conditions of the maximum release of glucose, mannose, and xylose are similar for poplar: a glucose conversion of 87%. | [62] |
Fir wood | Formic acid (CH2O2); acetic acid (C2H4O2); y lactic acid (C3H6O3) at 130° for 3 h. | Delignification 73.0–76.5%, increased cellulose content from 61.1 to 79.8–85.4%. High solids yield (75.5, 72.2 and 69.3%). | [63] |
Rice straw | Sulfuric acid solution (H2SO4) (0.5%, 1.0%, 1.5%, y 2.0%, v/v) of 5% (w/v) at 121 °C for 20−40 min, followed by a biological treatment. | Reduction of the size of the rice straw, the formation of lignin droplets, and the removal of hemicellulose causing a percentage increase in the proportion of crystalline cellulose. Increase in digestibility of up to 70%. | [64] |
Empty bunches of palm fruits, rice husk and pine wood | Sulfuric acid (H2SO4) at 5% (v/v) at a solid/liquid ratio of 10% (w/v) and 121 °C for 30, 60, and 90 min. | Maximum sugar yield at 60 min. The maximum H2 production rates of 2640, 3340, and 2565 mL of H2/L day. | [65] |
Cane bagasse and corn stover | Sulfuric acid (H2SO4) at 0.5% (w/w) for 5 min at 190 °C, followed by N-methyl morpholine N-oxide (NMMO). | Elimination of hemicellulose, a decrease in hydrolysis time (−48 h), and the conversion rates during the hydrolysis of 91.5 and 98.3%. | [66] |
Pine foliage | Sulfuric acid (H2SO4) assisted with con surfactant. | Elimination of 59.53 ± 0.76% of lignin, 0.588 g/g of reducing sugars were obtained, and there was a 16.1% increase in fermentation efficiency. | [67] |
Goat willow (Salix caprea L.) | Fosforic acid (H3PO4) at 85% at 30 °C for 2 h. | Greater effectiveness in the bark than in the wood. Up to 30.6% cellulose and 59.7% xylan were removed, and the conversion of cellulose to glucose was tripled. | [68] |
Raw Material | Strain | Study Objective | Ref. |
---|---|---|---|
Combined lignocellulosic matter | Pleurotus tuoliensis. | Biogas production. | [119] |
Wheat straw | Phanerochaete chrysosporium, Pleurotus ostreatus, Irpex lacteus | Difference in chemical composition and in vitro gas production. | [120] |
Hardwoods from India (Pithecellobium dulce and Tamarindus indica) | Pseudolagarobasidium acaciicola AGST3, and Tricholoma giganteum AGDR1. | Degradation and study of pyrolysis kinetics. | [121] |
Wheat straw and oak shavings | Ceriporiopsis subvermispora and Lentinula edodes. | Chemical characterization and enzymatic hydrolysis. | [122] |
Rice paddy straw | Trametes hirsute. | Improvement of saccharification and sugar production. | [123] |
Corn stubble, barley straw, corn cob, and wheat straw | Irpex lacteus. | Bioethanol production. | [124] |
Rice straw | Trametes hirsuta and Myrothecium roridum | Improve enzymatic saccharification and hydrolysis. | [125] |
Wheat, rice, sugarcane, and pea straw | Trichoderma longibrachiatum, Phanerochaete chrysosporium, Neosartorya fischeri, Myceliophthora thermophila, and others. | Comparison of effectiveness between the various strains of fungi and bacteria for the improvement of saccharification. | [126] |
Rice straw and sauce | Pholiota adiposa and Armillaria gemina. | Simultaneous pretreatment and saccharification. | [127] |
Rice husk | Phanerochete chrysosporium. | Simultaneous pretreatment and saccharification. | [128] |
Parthenium spp. | Trametes hirsuta ITCC136, Pycnosporus sanguineus ITCC 230, Trametes versicolor NCIM 1086, Pleurotus ostreatus ITCC 3047, and Sporotrichum sp. NCIM 1203. | Ligninolytic enzymatic activity, structural changes, and solid state fermentation. | [129] |
Rice paddy straw | Streptomyces griseorubens ssr38. | Delignification; enhance enzymatic hydrolysis. | [130] |
Corn stover | Irpex lacteus CD2. | Enhance fast pyrolysis. | [131] |
Rice paddy straw | Trametes hirsute. | Delignification; enhance enzymatic hydrolysis. | [132] |
Rice straw | Phanerochaete chrysosporium H, Fusarium sp. 82, Fusarium sp. 89, and Fusarium moniliforme 812. | Delignification; enhance solid-state fermentation. | [133] |
Wheat straw and banana stem | Pleurotus ostreatus HP−1. | Efficient bioethanol production. | [134] |
Moso bamboo (Phyllostachys pubesescens) | I. lacteus CD2 and E. taxodii 2538. | Delignification and improvement of thermal decomposition. | [135] |
Corn stem | Irpex lacteus. | Enhance enzymatic hydrolysis. | [136] |
Wheat straw | Phanerochaete chrysosporium. | Detailed structural changes. | [137] |
Corn stover | Echinodontium taxodii 2538. | Enhance the decomposition pyrolysis. | [138] |
Corn stubble, switchgrass, wheat straw, soybean straw, and hardwood | Ceriporiopsis subvermispora. | Delignification; enhance enzymatic hydrolysis. | [139] |
Waste | Extract/Fraction | Application | Result | Ref. |
---|---|---|---|---|
Cocoa pod husk | Ethanol extract | Potential antioxidant. | Antioxidant activity. | [140] |
Dietary fiber | Antioxidant activity. | Polysaccharide without starch and total phenolic content. | [141] | |
Organic extract | Fertilizer. | Dry matter of aerial parts. | [142] | |
Pectin | Gel formation. | Suggest the use of pectin from the cocoa pod shell as a gelling agent or thickening additive. | [143] | |
NaOH extract | Antiviral; antibacterial. | Anti-HIV, anti-influenza activity, and vitamin C enhancement. | [144] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz-González, A.; Perez Luna, M.Y.; Ramírez Morales, E.; Saldaña-Trinidad, S.; Rojas Blanco, L.; de la Cruz-Arreola, S.; Pérez-Sariñana, B.Y.; Robles-Ocampo, J.B. Assessment of the Pretreatments and Bioconversion of Lignocellulosic Biomass Recovered from the Husk of the Cocoa Pod. Energies 2022, 15, 3544. https://doi.org/10.3390/en15103544
Díaz-González A, Perez Luna MY, Ramírez Morales E, Saldaña-Trinidad S, Rojas Blanco L, de la Cruz-Arreola S, Pérez-Sariñana BY, Robles-Ocampo JB. Assessment of the Pretreatments and Bioconversion of Lignocellulosic Biomass Recovered from the Husk of the Cocoa Pod. Energies. 2022; 15(10):3544. https://doi.org/10.3390/en15103544
Chicago/Turabian StyleDíaz-González, Amílcar, Magdalena Yeraldi Perez Luna, Erik Ramírez Morales, Sergio Saldaña-Trinidad, Lizeth Rojas Blanco, Sergio de la Cruz-Arreola, Bianca Yadira Pérez-Sariñana, and José Billerman Robles-Ocampo. 2022. "Assessment of the Pretreatments and Bioconversion of Lignocellulosic Biomass Recovered from the Husk of the Cocoa Pod" Energies 15, no. 10: 3544. https://doi.org/10.3390/en15103544
APA StyleDíaz-González, A., Perez Luna, M. Y., Ramírez Morales, E., Saldaña-Trinidad, S., Rojas Blanco, L., de la Cruz-Arreola, S., Pérez-Sariñana, B. Y., & Robles-Ocampo, J. B. (2022). Assessment of the Pretreatments and Bioconversion of Lignocellulosic Biomass Recovered from the Husk of the Cocoa Pod. Energies, 15(10), 3544. https://doi.org/10.3390/en15103544