Numerically Coupled Thermo-Hydro-Mechanical Analyses of Ultra-Heavy Oil Reservoirs during the Micro-Fracturing Stage
Abstract
:1. Introduction
2. Coupled Thermo-Hydro-Mechanical Processes
2.1. Physical Model
2.2. Mathematical Model
2.2.1. Heat Transfer
2.2.2. Fluid Flow
2.2.3. Deformation
2.3. Boundary Conditions
2.3.1. Displacement and Stress
2.3.2. Pore Pressure and Flow
2.3.3. Temperature
3. Micro-Fracturing Numerical Simulation
3.1. Model Parameters
3.1.1. Geometrical Parameters
3.1.2. Elastoplastic Parameters
3.1.3. Flow Parameters
3.1.4. Heat Transfer Parameters
3.2. Simulation Process
4. Numerical Simulation Results and Analysis
4.1. Temperature and Geomechanical Zones
4.2. Pore Pressure
4.3. Void Ratio
4.4. In Situ Stress
4.5. Displacement
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yuan, X.; Dou, S.; Zhang, J.; Chen, S.; Xu, B. Consideration of geomechanics for in-situ bitumen recovery in Xinjiang, China. In Proceedings of the SPE Heavy Oil Conference-Canada, Calgary, AB, Canada, 11 June 2013. [Google Scholar] [CrossRef]
- Lin, B.; Jin, Y.; Chen, S. A criterion for evaluating the efficiency of water injection in oil sand reservoirs. J. Pet. Sci. Eng. 2017, 149, 322–330. [Google Scholar] [CrossRef]
- Lin, B.; Chen, S.; Jin, Y. Evaluation of reservoir deformation induced by water injection in SAGD wells considering formation anisotropy, heterogeneity and thermal effect. J. Pet. Sci. Eng. 2017, 157, 767–779. [Google Scholar] [CrossRef]
- Lin, B.; Jin, Y.; Pang, H.; Cerato, A.B. Experimental Investigation on Dilation Mechanisms of Land-Facies Karamay Oil Sand Reservoirs under Water Injection. Rock Mech. Rock Eng. 2016, 49, 1425–1439. [Google Scholar] [CrossRef]
- Yuan, Y.; Yang, B.; Xu, B. Fracturing in the Oil-Sands Reservoirs. In Proceedings of the Canadian Unconventional Resources Conference, Calgary, AL, Canada, 15–17 November 2011. [Google Scholar] [CrossRef]
- Sun, X.; Xu, B.; Qian, G.; Li, B. The application of geomechanical SAGD dilation startup in a Xinjiang oil field heavy-oil reservoir. J. Pet. Sci. Eng. 2020, 196, 107670. [Google Scholar] [CrossRef]
- Kosar, K.M. Geotechnical properties of oil sands and related strata. Ph.D. Thesis, The University of Alberta, Edmonton, AB, Canada, 1989. [Google Scholar] [CrossRef]
- Wong, R.C.K.; Barr, W.E.; Kry, P.R. Stress–strain response of Cold Lake oil sands. Can. Geotech. J. 1993, 32, 220–235. [Google Scholar] [CrossRef]
- Settari, A.; Walters, D.; Behie, G. Use of Coupled Reservoir and Geomechanical Modelling for Integrated Reservoir Analysis and Management. J. Can. Pet. Technol. 2001, 40, 55–61. [Google Scholar] [CrossRef]
- Collins, P.; Carlson, M.; Walters, D.; Settari, A. Geomechanical and thermal reservoir simulation demonstrates SAGD enhancement due to shear dilation. In Proceedings of the SPE/ISRM Rock Mechanics Conference, Irving, TX, USA, 20 October 2002. [Google Scholar] [CrossRef]
- Chalaturnyk, R.; Li, P. When Is It Important to Consider Geomechanics in SAGD Operations? J. Can. Pet. Technol. 2004, 43, 53–61. [Google Scholar] [CrossRef]
- Rabe, C.; Perdomo, P.R.R.; Roux, P.-F.; Silva, C.G.; Gamboa, L.A.P. Coupled fluid flow and geomechanics: A case study in Faja del Orinoco. Géoméch. Geophys. Geo-Energy Geo-Resour. 2020, 6, 1–23. [Google Scholar] [CrossRef]
- Li, C.; Xie, L.; Chen, S.; Dou, S.; Xu, B. Experimental research on mechanical and thermal properties of oil sand. Rock Soil Mech. 2015, 36, 2298–2306. [Google Scholar] [CrossRef]
- Gao, Y.; Chen, M.; Pang, H. Experimental investigations on elastoplastic deformation and permeability evolution of terrestrial Karamay oil sands at high temperatures and pressures. J. Pet. Sci. Eng. 2020, 190, 107124. [Google Scholar] [CrossRef]
- Wang, X.; Sun, X.; Luo, C.; Zhang, F.; Xu, B. Large-scale triaxial experimental investigation of geomechanical dilation start-up for SAGD dual horizontal wells in shallow heavy oil reservoirs. J. Pet. Sci. Eng. 2021, 203, 108687. [Google Scholar] [CrossRef]
- Batzle, M.; Zadler, B.; Hofmann, R.; Han, D. Heavy oils—Seismic properties. In Proceedings of the 2004 SEG Annual Meeting, Denver, CO, USA, 10 October 2004. [Google Scholar] [CrossRef]
- Han, D.; Liu, J.; Batzle, M. Measurement of shear wave velocity of heavy oil. In Proceedings of the 2005 SEG Annual Meeting, Houston, TX, USA, 6 November 2005. [Google Scholar] [CrossRef] [Green Version]
- Han, D.; Liu, J.; Batzle, M. Acoustic property of heavy oil—Measured data. In Proceedings of the 2006 SEG Annual Meeting, New Orleans, LA, USA, 1 October 2006. [Google Scholar] [CrossRef]
- Kang, X.; Ji, X.; Zhou, S. Numerically simulation on heating of asphalt with phase change. J. Yangzhou Univ. 1999, 2, 61–65. [Google Scholar] [CrossRef]
- Der Van Poel, C. A general system describing the visco-elastic properties of bitumens and its relation to routine test data. J. Appl. Chem. 1954, 4, 221–236. [Google Scholar] [CrossRef]
- Ali, S.F.; Meldau, R.F. Current Steamflood Technology. J. Pet. Technol. 1979, 31, 1332–1342. [Google Scholar] [CrossRef]
- Gao, Y.; Chen, M.; Lin, B.; Jin, Y. Modeling of reservoir temperature upon preheating in SAGD wells considering phase change of bitumen. Int. J. Heat Mass Transf. 2019, 144, 118650. [Google Scholar] [CrossRef]
- Li, P.; Chalaturnyk, R.; Polikar, M. Issues with Reservoir Geomechanical Simulations of the SAGD Process. J. Can. Pet. Technol. 2004, 43, 30–40. [Google Scholar] [CrossRef]
- Hepler, L.G.; His, C. AOSTRA Technical Handbook on Oil Sands, Bitumen and Heavy Oils; Alberta Oil Sands Technology and Research Authority: Edmonton, AB, Canada, 1989; pp. 286–290. [Google Scholar]
- Gao, Y.; Ren, Z.; Chen, M.; Jiang, H.; Ding, S. Coupled geomechanical-thermal simulation for oil sand reservoirs with shale barriers under hot water injection in vertical well-assisted SAGD wells. J. Pet. Sci. Eng. 2022, 208, 109644. [Google Scholar] [CrossRef]
- Fjar, E.; Holt, R.M.; Raaen, A.M.; Risnes, R. Petroleum Related Rock Mechanics, 2nd ed.; Elsevier Science: Amsterdam, The Netherlands, 2008; pp. 26–37. [Google Scholar]
- Wong, R.; Li, Y. A Deformation-Dependent Model for Permeability Changes in Oil Sand due to Shear Dilation. J. Can. Pet. Technol. 2001, 40, 37–44. [Google Scholar] [CrossRef]
- Barin, I. Thermochemical Data of Pure Substances, 3rd ed.; VCH Publishers, Inc.: New York, NY, USA, 1995; pp. 795–796. [Google Scholar]
- Abdulraheem, A.; Roegiers, J.-C.; Zaman, M. Mechanics of pore collapse and compaction in weak porous rocks. In Proceedings of the 33rd U.S. Symposium on Rock Mechanics, Santa Fe, NM, USA, 3 June 1992. [Google Scholar]
- Duong, A.N.; Tomberlin, T.; Cyrot, M. A new analytical model for conduction heating during the SAGD circulation phase. In Proceedings of the International Thermal Operations and Heavy Oil Symposium, Calgary, AB, Canada, 20 October 2008. [Google Scholar] [CrossRef]
- Duong, A.N. Thermal transient analysis applied to horizontal wells. In Proceedings of the International Thermal Operations and Heavy Oil Symposium, Calgary, AB, Canada, 20 October 2008. [Google Scholar] [CrossRef]
- Lin, B.; Jin, Y. Evaluation of the influencing factors of dilatancy effects by squeezing liquids in SAGD wells in the Fengcheng Oilfield of Xinjiang Oilfield. Pet. Drill. Tech. 2018, 46, 71–76. [Google Scholar] [CrossRef]
- Lin, B.; Meng, H.; Pan, J.; Chen, S. Porothermoelastic response of an oil sand formation subjected to injection and micro-fracturing in horizontal wells. Pet. Sci. 2020, 17, 687–700. [Google Scholar] [CrossRef] [Green Version]
Parameters | Undrained Zone | Drained Zone | ||
---|---|---|---|---|
20 °C | 45 °C | 70 °C | 100 °C | |
Young’s modulus (MPa) | 663 | 421 | 388 | 724 |
Bulk modulus (MPa) | 806 | 1000 | 1217 | 1125 |
Poisson’s ratio (-) | 0.36 | 0.43 | 0.45 | 0.39 |
Biot’s coefficient (-) | 0.96 | 0.97 | 0.99 | 0.99 |
D–P friction angle (°) | 44.3 | 29.2 | 52.5 | 22.7 |
D–P cohesion (MPa) | 2.26 | 3.31 | 0.8 | 0 |
Cap parameter pa (MPa) | 2.03 | 1.98 | 2.2 | 2.93 |
Elastic Properties | Cap/Base Rock | Screen |
---|---|---|
Young’s modulus (GPa) | 1.667 | 20 |
Poisson’s ratio (-) | 0.2 | 0.2 |
Heat Transfer Parameters | Oil Sands | Mudstones | Screens | Water |
---|---|---|---|---|
Thermal conductivity (W/(m·s)) | 1.0 | 2.0 | 16 | 0.599 |
Thermal expansion coefficient (°C−1) | 1.0 × 10−5 | 1.0 × 10−5 | 1.2 × 10−5 | 2.08 × 10−4 |
Specific heat capacity (J/(kg·°C)) | 882.7 | 2000 | 460 | 4200 |
Density (kg/m3) | 1960 | 2500 | 7900 | 1000 |
Critical Parameters | 10 °C | 80 °C |
---|---|---|
Density (kg/m3) | 999.7 | 971.8 |
Viscosity (mPa·s) | 1.3077 | 0.3565 |
Specific heat capacity (J/(kg·°C)) | 4178 | 4195 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Wang, X.; Jiang, H.; Ding, S. Numerically Coupled Thermo-Hydro-Mechanical Analyses of Ultra-Heavy Oil Reservoirs during the Micro-Fracturing Stage. Energies 2022, 15, 3677. https://doi.org/10.3390/en15103677
Gao Y, Wang X, Jiang H, Ding S. Numerically Coupled Thermo-Hydro-Mechanical Analyses of Ultra-Heavy Oil Reservoirs during the Micro-Fracturing Stage. Energies. 2022; 15(10):3677. https://doi.org/10.3390/en15103677
Chicago/Turabian StyleGao, Yanfang, Xiaoyang Wang, Hailong Jiang, and Shuaiwei Ding. 2022. "Numerically Coupled Thermo-Hydro-Mechanical Analyses of Ultra-Heavy Oil Reservoirs during the Micro-Fracturing Stage" Energies 15, no. 10: 3677. https://doi.org/10.3390/en15103677
APA StyleGao, Y., Wang, X., Jiang, H., & Ding, S. (2022). Numerically Coupled Thermo-Hydro-Mechanical Analyses of Ultra-Heavy Oil Reservoirs during the Micro-Fracturing Stage. Energies, 15(10), 3677. https://doi.org/10.3390/en15103677