Experimental Investigation of Failure Mechanisms of Granites with Prefabricated Cracks Induced by Cyclic-Impact Disturbances
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Specimens with Prefabricated Cracks
2.2. Experimental Equipment
2.2.1. Split Hopkinson Pressure Bar (SHPB)
2.2.2. Nuclear Magnetic Resonance (NMR)
2.3. Experimental Protocol
2.3.1. Stress Loading Mode
2.3.2. Impacting-Disturbance Strength
2.3.3. Stress-Wave Propagation Characteristics
3. Results
3.1. Stress–Strain Curves
3.2. Dynamic Deformation Modulus
3.3. Dynamic Peak Stress
3.4. Rock Failure Mode
3.5. Change Laws of Porosity
4. Analysis and Discussion
4.1. Energy Density per Unit Time Analysis
4.2. Characteristic Analysis of the Deformation Modulus
4.3. Rock Failure Mechanism
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cerfontaine, B.; Collin, F. Cyclic and fatigue behaviour of rock materials: Review, interpretation and research perspectives. Rock Mech. Rock Eng. 2018, 51, 391–414. [Google Scholar] [CrossRef]
- Yang, F.J.; Hu, D.W.; Zhou, H.; Lu, J.J. Physico-mechanical behaviors of granite under coupled static and dynamic cyclic loadings. Rock Mech. Rock Eng. 2020, 53, 2157–2173. [Google Scholar] [CrossRef]
- Xie, H.P.; Zhu, J.B.; Zhou, T.; Zhang, K.; Zhou, C.T. Conceptualization and preliminary study of engineering disturbed rock dynamics. Geomech. Geophys. Geo-Energy Geo-Resour. 2020, 6, 34. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Zhang, L.Y.; Wang, W.J.; Wan, W.; Li, S.Q.; Ma, W.H.; Wang, Y.X. Creep behavior of intact and cracked limestone under multi-level loading and unloading cycles. Rock Mech. Rock Eng. 2017, 50, 1409–1424. [Google Scholar] [CrossRef]
- Li, X.B.; Gu, H.L.; Tao, M.; Peng, K.; Cao, W.Z.; Li, Q.Y. Failure characteristics and meso-deterioration mechanism of pre-stressed coal subjected to different dynamic loads. Theor. Appl. Fract. Mech. 2021, 115, 103061. [Google Scholar] [CrossRef]
- Gong, F.Q.; Hu, J.P. Energy dissipation characteristic of red sandstone in the dynamic brazilian disc test with SHPB setup. Adv. Civ. Eng. 2020, 2020, 7160937. [Google Scholar] [CrossRef]
- Gong, F.Q.; Si, X.F.; Li, X.B.; Wang, S.Y. Dynamic triaxial compression tests on sandstone at high strain rates and low confining pressures with split Hopkinson pressure bar. Int. J. Rock Mech. Min. Sci. 2019, 119, 211–219. [Google Scholar] [CrossRef]
- Jin, J.F.; Li, X.B.; Qiu, C.; Tao, W.; Zhou, X.J. Evolution model for damage accumulation of rock under cyclic impact loadings and effect of static loads on damage evolution. Chin. J. Rock Mech. Eng. 2014, 33, 1662–1671. (In Chinese) [Google Scholar]
- Tian, N.C.; Wang, Z.L.; Xiong, F.; Liu, Z.Y. Influence of axial pressure on dynamic mechanical properties of granite under cyclic impact loading. J. Harbin Inst. Technol. 2021, 53, 156–164. (In Chinese) [Google Scholar]
- Wang, Z.L.; Yang, H.; Tian, N.C. Mechanical property and damage evolution mechanism of granite under uniaxial cyclic impact. J. Harbin Inst. Technol. 2020, 52, 59–66. (In Chinese) [Google Scholar]
- Liu, H.Y.; Huang, Y.S.; Li, K.B.; Zhang, J.H. Test study of strength and failure mode of pre-existing jointed rock mass. Rock Soil Mech. 2013, 34, 1235–1241, 1246. (In Chinese) [Google Scholar]
- Zhou, Y.; Wu, S.C.; Gao, Y.T.; Misra, A. Macro and meso analysis of jointed rock mass triaxial compression test by using equivalent rock mass (ERM) technique. J. Cent. South Univ. 2014, 21, 1125–1135. [Google Scholar] [CrossRef]
- Guo, Q.F.; Wu, X.; Cai, M.F.; Xi, X.; Ren, F.H.; Miao, S.J. Experiment on the strength characteristics and failure modes of granite with pre-existing cracks. Chin. J. Eng. 2019, 41, 43–52. (In Chinese) [Google Scholar]
- Zhou, X.P.; Zhang, J.Z.; Berto, F. Fracture Analysis in Brittle Sandstone by Digital Imaging and AE Techniques: Role of Flaw Length Ratio. J. Mater. Civ. Eng. 2020, 32, 4020085. [Google Scholar] [CrossRef]
- Sun, B.; Luo, Y.; Xie, J.H.; Zeng, S. Crack propagation characteristics of jointed rock mass under static and dynamic loads. J. Univ. South China Sci. Technol. 2018, 32, 37–42. (In Chinese) [Google Scholar]
- Wang, Q.Z.; Xia, K.W.; Wu, B.B.; Xu, Y.; Liu, F. Dynamic failure of simulated rock mass plate containing two parallel cracks. J. Tianjin Univ. Sci. Technol. 2019, 52, 1099–1108. (In Chinese) [Google Scholar]
- Li, D.Y.; Han, Z.Y.; Sun, X.L.; Li, X.B. Characteristics of dynamic failure of marble with artificial flaws under split Hopkinson pressure bar tests. Chin. J. Rock Mech. Eng. 2017, 36, 2872–2883. (In Chinese) [Google Scholar]
- Li, D.Y.; Wang, T.; Cheng, T.J.; Sun, X.L. Static and dynamic tensile failure characteristics of rock based on splitting test of circular ring. Trans. Nonferr. Met. Soc. China 2014, 26, 1912–1918. [Google Scholar] [CrossRef]
- Yang, S.Q.; Ranjith, P.G.; Huang, Y.H.; Yin, P.F.; Jing, H.W.; Gui, Y.L.; Yu, Q.L. Experimental investigation on mechanical damage characteristics of sandstone under triaxial cyclic loading. Geophys. J. Int. 2015, 46, 846–866. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Li, K.; Xia, K.W.; Lin, Y.L.; Yao, W.; Lu, F.Y. Dynamic fracture properties of rocks subjected to static pre-load using notched semi-circular bend method. Rock Mech. Rock Eng. 2016, 49, 3865–3872. [Google Scholar] [CrossRef]
- Dai, F.; Huang, S.; Xia, K.W.; Tan, Z.Y. Some fundamental issues in dynamic compression and tension tests of rocks using split hopkinson pressure bar. Rock Mech. Rock Eng. 2010, 43, 657–666. [Google Scholar] [CrossRef]
- Gong, F.Q.; Wu, C. Identifying crack compaction and crack damage stress thresholds of rock using load-unload response ratio (LURR)theory. Rock Mech. Rock Eng. 2020, 53, 943–954. [Google Scholar] [CrossRef]
- Zhu, Q.Q.; Li, D.Y.; Wang, W.J. Mechanical behavior and permeability evolution of sandstone with confining pressure after dynamic loading. Geomech. Geophys. Geo-Energy Geo-Resour. 2021, 7, 81. [Google Scholar] [CrossRef]
- Jian, W.B.; Xu, X.T. Study on Damage Deterioration of Rock Slope under Dynamic Loads. Landslide Sci. Safer Geoenviron. 2014, 2014, 107–113. [Google Scholar]
- Sagong, M.; Bobet, A. Coalescence of multiple flaws in uniaxial compression. In Proceedings of the 4th North American Rock Mechanics Symposium, Seattle, WA, USA, 31 July–3 August 2000; pp. 1203–1210. [Google Scholar]
- Zhao, G.Y.; Li, Z.Y.; Wu, H.; Wang, E.J.; Liu, L.L. Dynamic failure characteristics of sandstone with non-penetrating cracks. Rock Soil Mech. 2019, 40 (Suppl. S1), 73–81. (In Chinese) [Google Scholar]
- Fairhurst, C.E.; Hudson, J.A. Draft ISRM suggested method for the complete stress-strain curve for intact rock in uniaxial compression. Int. J. Rock Mech. Min. Sci. 1999, 36, 279–289. [Google Scholar]
Crack Inclination Angle β (°) | Average Energy Consumption ED (J) | Sample Volume vs. (cm3) | Reflected Wave Time TR (ms) |
---|---|---|---|
0° | 43.19 | 195.67 | 0.165 |
30° | 50.86 | 196.46 | 0.152 |
45° | 54.32 | 197.05 | 0.142 |
60° | 49.21 | 196.30 | 0.153 |
90° | 40.73 | 197.28 | 0.164 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Xi, X.; Tan, W.; Wu, X.; Wu, X.; Guo, Q.; Cai, M. Experimental Investigation of Failure Mechanisms of Granites with Prefabricated Cracks Induced by Cyclic-Impact Disturbances. Energies 2022, 15, 3680. https://doi.org/10.3390/en15103680
Zhang J, Xi X, Tan W, Wu X, Wu X, Guo Q, Cai M. Experimental Investigation of Failure Mechanisms of Granites with Prefabricated Cracks Induced by Cyclic-Impact Disturbances. Energies. 2022; 15(10):3680. https://doi.org/10.3390/en15103680
Chicago/Turabian StyleZhang, Jie, Xun Xi, Wenhui Tan, Xu Wu, Xinghui Wu, Qifeng Guo, and Meifeng Cai. 2022. "Experimental Investigation of Failure Mechanisms of Granites with Prefabricated Cracks Induced by Cyclic-Impact Disturbances" Energies 15, no. 10: 3680. https://doi.org/10.3390/en15103680
APA StyleZhang, J., Xi, X., Tan, W., Wu, X., Wu, X., Guo, Q., & Cai, M. (2022). Experimental Investigation of Failure Mechanisms of Granites with Prefabricated Cracks Induced by Cyclic-Impact Disturbances. Energies, 15(10), 3680. https://doi.org/10.3390/en15103680